当前位置:文档之家› 相控阵超声波聚焦技术研究

相控阵超声波聚焦技术研究

相控阵超声波聚焦技术研究
相控阵超声波聚焦技术研究

大连理工大学

硕士学位论文

相控阵超声波聚焦技术研究

姓名:孙晓明

申请学位级别:硕士

专业:材料工程

指导教师:李喜孟;吕屹

20080531

使用相控阵进行超声检测的常规步骤

使用相控阵 进行超声检测的常规步骤 2006.5.1 制作者:马克.戴维斯 美国无损检测学会超声三级 奥林巴斯无损检测

免责条款 使用这个程序之前仔细阅读下面的内容,你确信可以接受下面所有的条款和条件。 1.这个程序没有进行任何形式的授权,提供给客户的仅仅是一个最基本的原理,使用此程序的全部风险和后果由消费者和最终用户承担,奥林巴斯无损检测和戴维斯不能做出明确的和含蓄的保证,但是不包括商业上的承诺,要尊重此程序。 2.无论使用这个程序所产生的任何直接的、间接的和附带的损害结果,奥林巴斯无损检测和戴维斯不承担任何责任,包括商业利益的损失、商业中断、商业信息的丢失等等,在这个程序派生出来的其他技术,在这个协议之外或者不能使用这个程序,奥林巴斯已经考虑到这个损害的可能性。

目录 1.0 目的 2.0 范围 3.0 参考书目 4.0 超声相控阵检测设备 5.0 相控阵设备的线性 6.0 相控阵探头可操作确认 7.0 相控阵系统校准 8.0 表面处理 9.0 扫查覆盖和扫查方法 10.0 记录评价标准和波幅判断 11.0 检测后的清理 12.0 文件 附录1 相控阵术语学 附录2 相控阵内不可用晶片的评价指导方针附录3 超声信号的缺陷定性 附录4 相控阵确定缺陷的尺寸

1.0目的 1.1这个程序提供了手动和带编码器的相控阵检测焊缝和母材的 必要条件。 1.2这个程序也对相控阵的以下几个方面很有用 1.2.1 探测 1.2.2 定性 1.2.3 缺陷长度 1.2.4 缺陷位置:距离上表面或者下表面 1.2.5 缺陷尺寸:向内表面或者外表面延伸的连接裂纹 2.0 应用范围 2.1 此程序可以用于一般的相控阵检测,也可以用于炭钢和不锈钢的焊缝和母材的检测 2.2 这个程序可应用在0.5到1英寸的厚度上,为了和程序保持一致,有效的范围要乘以0.5到1.5倍(举个例子:最小的尺寸是0.25英寸,和最小的一样最大的尺寸是1 .5英寸)。 2.3 当需要一个标准的时候,此程序的设计论证了奥林巴斯无损检测相控阵系统Omniscan是符合美国机械工程师协会的标准。 2.4 使用Omniscan 相控阵系统做一个标准的测试演示实例。 2.5 针对产品外形和材料的特殊要求,设计一个大概的相控阵检测计划。 3.0 参考书目 3.1美国机械工程师协会,锅炉和压力容器标准,第四章第五节,

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

超声相控阵检测系统

超声相控阵检测系统

超声相控阵检测系统 摘要:在无损检测领域里,超声检测凭借可靠、安全、经济的优势,得到了越来越广泛的应用。超声相控阵系统由于具有独特的线性扫查、动态聚焦、扇形扫描的特点,成为近几年超声检测领域里的一个研究热点。本文介绍了超声相控阵的发展、在工业领域中的应用以及国内外现状。简述了超声相控阵系统工作原理、主要特点及相控阵系统的探头、超声发射接收电路、超声成像部分。说明了超声相控阵的研究在无损检测领域里具有广阔的应用前景。 关键词:无损检测;超声相控阵;相控阵探头;超声成像 Ultrasonic phased array testing system Liu Shengchun (College of information and communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China) Abstract:In non-destructive detecting field, depending on the superiorities of credibility, security and economy, ultrasonic detecting is getting more and more broad application. Ultrasonic phased array system which has characteristics of linearity scanning , dynamic focus and sector scanning, is becoming a hot research in the ultrasonic detecting field in recent years.This paper introduce the development, status quo of ultrasonic phased array, and its application in industry. Briefly describe its work principle, main characteristic and phased array system including probe,ultrasonic transmitting and receiving circuit and ultrasonic imaging. It illuminates that there is a wide application foreground of ultrasonic phased array's research in non-destructive detecting field. Key words:Non-destructive defecting;Ultrasonic phased array;Phased array probe;Ultrasonic imaging 1 引言 超声相控阵技术已有40多年的发展历史,初期,由于系统的复杂

无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介 夏纪真 无损检测资讯网 https://www.doczj.com/doc/0017291182.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性 关键词:无损检测超声检测相控阵 1 超声波相控阵检测技术的基本原理 超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。 并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。 常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。 超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。 超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。此外,从电子技术上为阵列确定相位顺序和相继激发的速度可以使固定在一个位置上的探头发出的超声波束在被检工件中动态地“扫描”或“扫调”通过一个选定的波束角范围或者一个检测的区域,而不需要对探头进行人工操作。相控阵探头的关键特性包括:电子焦距长度调整、电子线性扫描和电子波束控制/偏角。 图1示出了超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图。 图1超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图超声波相控阵换能器的晶片不同组合构成不同的相控阵列,目前主要有三种阵列类型:线形阵列(晶片成间隔状直线形分布在探头中)、面形(二维矩阵)阵列和圆(环)形阵列,

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

超声相控阵技术细谈

航空无损检测新技术之超声相控阵技术的发展及应用 学院:测试与光电工程学院 班级:080812班 姓名:郭林

超声相控阵技术的发展及应用 郭林 (南昌航空大学测试与光电工程学院0808012班) 摘要: 扼要介绍超声相控阵技术的发展历史、原理及特点。着重介绍其最新研究动态及其在无损检测与评价中的典型应用。指出将相控阵技术同其它诸如纵波一发一收(TRL) 、声时衍射(TOFD) 技术、数字信号处理(DSP) 及成像等技术结合起来,将有助于充分发挥其特点,提高其检测能力,促进无损检测与评价的发展及应用。 关键词: 超声检验; 相控阵技术;换能器; Abstract : The development history , theory and characterization of ultrasonic phased array technique , especially the state2of2the2arts and applications of the technique in nuclear industry nondestructive testing and evaluation (NDT & E) are https://www.doczj.com/doc/0017291182.html,bining phased array technique with TRL ( the transmitter2receiver technique for longitudinal waves) , TOFD ( time of flightdiffraction) , DSP(digital signal processing) and imaging technique will improve detectabilityand promote NDT&E developmentand application. Keywords :Ultrasonic testing ; Phased array technique ; Transducer ; 前沿:超声检测是根据超声波在材料中传播特性,检测材料中的缺陷。向工件中发射超声波;超声波在工件中传播,遇到缺陷,传播特性改变,检测变化后的超声波,并进行处理和分析;根据接收波的特征,评估工件内存在缺陷的特性。在超声无损检测新技术中,大概有相控阵检测技术、电磁超声检测技术、激光超声检测技术、声振检测技术等。其中超声相控阵技术已有近20 多年的发展历史。初期主要应用于医疗领域,医学超声成像中用相控阵换能器快速移动声束对被检器官成像利用其可控聚焦特性局部升温热疗治癌,使目标组织升温并减少非目标组织的功率吸收。最初,系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限。然而随着电子技术和计算机技术的快速发展,超声相控阵技术逐渐应用于工业无损检测,特别是在核工业及航空工业等领域。如核电站主泵隔热板的检测;核废料罐电子束环焊缝的全自动检测及薄铝板摩擦焊焊缝热疲劳裂纹的检测。 近几年,超声相控阵技术发展尤为迅速,在第15 届世界无损检测会议中,关于超声相控阵技术的文献有17 篇之多。在相控阵系统设计、系统仿真、生产与测试和应用等方面已取得一系列进展,如采用新的复合材料压电换能器改善电声性能;奥氏体焊缝、混凝土和复合材料等的超声相控阵检测;R/ D TECH ,SIEMENS 及IMA2SONIC 等公司已生产超声相控阵检测系统及相控阵换能器。而动态聚焦相控阵系统[10 ],二维阵列、自适应聚焦相控阵系统,表面波及板波相控阵换能器和基于相控阵的数字成像系统等的研制、开发、应用及完善已成为研究重点。其中,自适应聚焦相控阵技术尤为突出,它利用接收到的缺陷回波信息调整下一次激发规则,实现声束的优化控制,提高缺陷(如厚大钛锭中的小缺陷或埋藏较深的大缺陷)的检出率。目前,国内在超声相控阵技术上的研究应用尚处于起步阶段,主要集中于医疗领域。

小径管对接焊接接头的相控阵超声检测

小径管对接焊接接头的相控阵超声检测 摘要:对小径管对接焊接接头中的裂缝、密集气孔、未焊透等缺陷进行相控阵超声波检测和射线检测,通过将两者的检测结果进行分析和比较,对两者的检测效果进行评价。本文主要是对相控阵超声波检测手段的优势和其在小管径检测中的应用进行了一定的分析,旨在推动相控阵超声波检测技术的广泛应用。 关键词:小径管对接焊接;接头;相控阵超声检测 引言 相控阵超声检测可以获取实时的检测结果,能够对工件的缺陷进行多种方式的扫描,是一种可以记录的无损检测方式。相控阵超声检测的主要优势就是声束角度和聚焦深度精确可控,声束可达性强,检测精度高,缺陷显示直观,检测速度快,是具有较高可靠性的检测技术,在工业领域有着颇为广泛的应用。笔者对小径管对接焊接接头中的缺陷进行了相控阵超声波检测,并且与射线检测结果进行了一定的比较分析。 一、相控阵超声检测技术 (一)相控阵超声检测技术的原理 相控阵超声检测方法主要是通过对换能器阵列中的单个阵元进行分别控制,以特定的时序法则进行激发和接收,进而实现声束在工件中的偏转和聚焦。采用自聚焦传感器能进一步增强聚焦能力和分辨力,有效的改善了小径管中波型畸变和杂波干扰的情况。 (二)试样管的焊制 小径管的试样管采用的是与广东省某电厂机组锅炉受热面管同规格同材质的管件,其中对接接头存在着一定的裂纹、未熔合、密集气孔有缺陷等问题,具体的示意图可以如下图1所示,焊接的方法主要是钨极氩弧焊。 图1 焊接接头简图 (三)相控阵检测系统 1、相控阵检测仪器 本次研究主要采用的仪器是phascan 32/128相控阵检测仪,Cobra16阵元自聚焦传感器,一次性激发16阵元。 2、相控阵检测探头和楔块 对于相控阵超声探头来说,它主要是阵列探头,在进行现场检测的时候要根据小径管的尺寸来对探头和楔块的型号和大小进行选择。一般来说,探头在进行使用的过程中,因为小径管的曲率过大,要将其和探头之间的耦合损失降低,就需要使用能够与小径管进行紧密切合的楔块,选择曲率相近的曲面。 (四)声束覆盖范围设置 在对小径管焊缝进行相控阵超声扇形扫查的时候,要对探头前沿到焊缝中心线的距离进行正确的选择,要保证在进行扇形扫查的时候大角度声束能够对焊缝的下面部分进行覆盖,小角度声束可以覆盖到焊缝的上面部分,进而达到对焊接接头的全面检测,避免出现遗漏。在对小径管对接接头进行检测的时候,还可以通过使用专业的软件来对声束覆盖范围进行模拟,然后对的不同角度的波束覆盖情况的进行模拟现实,通过这样的模拟结果可以找到适当的探头前沿距离和波束角度范围等等。 (五)相控阵检测校准设置

超声相控阵相关知识

相控阵的概念起源于雷达天线电磁波技术,超声相控阵最早仅用于医疗领 域。近年来,随着微电子、计算机等新技术的快速发展,超声相控阵逐渐被应用 于工业无损检测领域。 超声相控阵通过各阵元发出声束的有序叠加可以灵活地生成偏转及聚焦声 束,不需更换探头即可完成对关心区域的高分辨率检测,且其特有的线性扫查、 扇形扫查、动态聚焦等工作方式可在不移动或少移动探头的情况下对零件进行高效率检测。因此,较传统的单晶片超声检测,超声相控阵的声束更灵活、检测速度更快、分辨率更高、更适用于形状复杂的零部件检测。 超声相控阵探头是将若干个独立的压电晶片按照一定的排列组合成一个阵 列,通过控制压电晶片的激励顺序及延时,来实现声束的偏转以及聚焦。 超声相控阵是基于Huygens-Fresnel原理,由各个阵元发出的超声波经过干涉形成预期的声束。以同一频率的脉冲激发各个阵元,并对各个阵元的激发时间施加一定的延迟,于是各阵元的发射声波产生了相位差,从而影响干涉结果,即可以形成偏转及聚焦声束。各阵元的激发延时一般被称为聚焦法则或延时法则。

&恤I hit IJI Itic fuiniiiiion of beam 聚焦点 崖焦百虫形處示豈 (b*i l he torm&twri of tu^using buMi 图2超声相控阵偏转疑聚焦声束的形成 与传统单晶片换能器的超声检测不同,超声相控阵不同的阵元组合与不同的聚焦法则相结合,形成了3种特有的工作方式,即线性扫查,扇形扫查和动态聚焦。 线性扫查 线性扫查,又称为电子扫查,具体步骤为: 1)假设相控阵阵元总数为N,令其中相邻的n( 1v* N)个阵元为一组,对每一组阵元施加相同的聚焦法则 2)以设定的聚焦法则激发第一组阵元; 3)沿阵列长度方向向前移动一个步进值(一般为一个阵元晶片),以同样的 聚 焦法则激发第2组阵元。以此类推,直至最后一个阵元。一般将上述的一组阵元称 为一个序列。这样扫查完成后会得到N-n+1个序列回波信号,在不移动探头 的情况下就可以检测到较大区域。线性扫查的示意图如图3( a)所示

相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

文件编号:TP-AR-L2243 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

相控阵超声新技术在电站设备无损 检测中的实践思路探索(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 超声相控阵检测技术20世纪60年代就已经出 现,被应用于医疗领域。但是由于固体中波动传播复 杂性、系统复杂性和成本费用高等因素存在,限制了 超声相控阵检测技术在无损检测中的运用。而电子技 术和计算机技术以及压电复合材料等高新技术被广泛 综合应用,促进了超声相控阵技术发展,并且渐渐应 用到工业无损检测中。 现代技术飞速发展,带动了很多高新技术在超声 相控阵技术中被综合应用,从而降低了相控阵系统复 杂性与制作费用[1]

。而且相控阵技术具有比传统超声波检测更加明显的优势,使得超声相控阵检测技术被广泛应用于工业无损检测领域,并且日渐得到人们重视,迎来了很大的发展空间。 超声相控阵检测技术 超声相控阵检测技术建立在惠更斯原理上,其探头由许多个晶片组成。要应用时,则需要按照相关规则以及时序激活探头中一组或全部晶片,其中相控阵仪器的控制能力与检测需要决定着晶片激活数量。晶片被激活后,发出的超声波即为次波。每一个晶片的次波会彼此干涉,形成新波阵面并传播开来,从而形成超声波束检测工件。 无损检测技术 无损检测就是在不损坏被检测设备的基础上,根据物理特性将被检对象的内外部缺陷的位置、形状、

1-第一章 超声相控阵技术基本概念

第一章超声相控阵技术的基本概念 本章描述超声波原理、相控阵延时(或聚焦定律)概念,并介绍R/D公司研制的相控阵仪器设备。 1.1 原理 超声波是由电压激励压电晶片探头在弹性介质(试件)中产生的机械振动。典型的超声频率范围为0.1MHz~50MHz。大多数工业应用要求使用0.5MHz~15MHz的超声频率。 常规超声检测多用声束扩散的单晶探头,超声场以单一折射角沿声束轴线传播。其声束扩散是唯一的“附加”角度,这对检测有方向性的小裂纹可能有利。 假设将整个压电晶片分割成许多相同的小晶片,令小晶片宽度e远小于其长度W。每个小晶片均可视为辐射柱面波的线状波源,这些线状波源的波阵面会产生波的干涉,形成整体波阵面。 这些小波阵面可被延时并与相位和振幅同步,由此产生可调向的超声聚焦波束。 超声相控阵技术的主要特点是多晶片探头中各晶片的激励(振幅和延时)均由计算机控制。压电复合晶片受激励后能产生超声聚焦波束,声束参数如角度、焦距和焦点尺寸等均可通过软件调整。扫描声束是聚焦的,能以镜面反射方式检出不同方位的裂纹。这些裂纹可能随机分布在远离声束轴线的位置上。用普通单晶探头,因移动范围和声束角度有限,对方向不利的裂纹或远离声束轴线位置的裂纹,漏检率很高(见图1)。 图﹡ ﹡常规

图1-2 脉冲发生和回波接收时的声束形成和时间延迟(同相位、同振幅) 图1-3 超声波垂直(a )和倾斜(b )入射时声束聚焦原理 发射 接收 超声波探伤仪 超声波探伤仪 触发 相控阵控制器 相控阵控制器 脉冲激励 阵列探头 缺陷 缺陷 入射波阵面 反射波阵面 回波信号 Σ 接收延时 延时 [ns] 延时 [ns] 转角 产生的波阵面 产生的波阵面 阵列探头 阵列探头

全自动相控阵超声检测技术dzlt_4

全自动相控阵超声检测技术 及在环焊缝检测中的应用 江苏徐州东方工程检测公司曹健 摘要:全自动相控阵超声检测系统是在断裂力学(ECA)的基础上,采用区域划分法,将焊缝分成垂直方向上的若干个区,再由电子系统控制相控阵探头对其进行分区扫查。检测结果以双门带状图的形式显示,在辅以TOFD(衍射时差法)和B扫描功能,对焊缝进行分析、判断。全自动相控阵超声仪在国外已被广泛应用于管道环焊缝的检测。 主题词:全自动超声波区域划分法相控阵带状显示TOFD 全自动超声波在国外已被大量应用于长输管线的环焊缝检测,且越来越成为一种趋势。与传统手动超声检测和射线检测相比,其在检测速度、缺陷定量准确性、减少环境污染、降低作业强度等方面有着明显的优越。加拿大R/D Tech公司生产的Pipe WIZARD相控阵超声检测系统是专用于长输管线环焊缝的检测设备。该系统由数据采集单元、脉冲发生单元、电机驱动单元、相控阵探头、工业计算机、显示器等组成。系统在Windows NT界面下运行Pipe WIZARD操作软件,完成对焊缝的线性扫查、实时显示、结果评判。对其基本原理,笔者根据自己在实际工作中的体会和经验在此作一简单介绍。 本文使用的焊缝参数如下。坡口形式CRC;壁厚T=16.4mm;焊接方法:全自动焊接。 一、基本原理 1.区域划分法 采用全自动超声检测的关键是“区域划分法”。根据壁厚、坡口形式、填充次数将焊缝分成几个垂直的区。每个分区的高度一般为1-3mm,每个区都由一组独立的晶片进行扫查(这种分区的扫查被称为A扫)。检测主声束的角度按照主要缺陷的方向来设定(在自动焊中主要是未熔合,即将波束尽量垂直于熔合线)。A扫采用聚焦声束进行扫查,焦点尺寸一般为2mm或更小。它们可以有效的检测各自的区域,而且临近区域反射体上的重叠最小。每个分区以焊缝中心线为界,分为上游、下游两个通道,其检测结果在带状图上以相对应的通道显示出。图1.1为CRC坡口、壁厚为14.6mm焊缝的区域划分图。从根部依次为:根焊区、钝边区(LCP)、热焊1区、热焊2区、热焊3区、填充1区、填区2区、填充3区。

TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝方面具有很大的优势,下面是小编搜集的一篇探究TOFD与超声波相控阵检测技术特点的论文范文,欢迎阅读查看。目前我国无损检领域应用最广泛的是TOFD技术,业界人士已经普遍认可了TOFD技术,这项技术在我国的工业领域已经有了数不胜数的成功案例。21世纪初,我国引入了Isonic系列便携式超声波成像检测系统(以色列的IsonotronNDT公司出品),经由一系列的实际的对比以及验证加之不断改进和创新了的扫查器系统,TOFD技术被更多的应用到各工业现场检测中。TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝及直径大于500mm的纵缝中厚板检测方面具有很大的优势,但是该技术也存在一些弊端,比如对于复杂几何形状的结构件、焊缝检测盲区等束手无策。到目前为止超声相控阵技术已经在我国发展了20年,在早期主要应用在医疗领域,利用该技术可以在实际的医学超声成像中对被检器官进行成像,有益于医学的不断发展和进步,但是由于很多客观因素的限制,比如系统的复杂性、固体中波动传播的复杂性及成本费用高等,使得该技术的应用面受限。在这种情况下,在超声相控阵成像领域应用压电复合材料、数据处理分析等高新技术是大势所趋,未来超声相控阵检测技术一定会得到更加广泛的应用。超声相控阵是采用多晶片控制声束聚焦技术,探头可以在同一位置实现很大声

束及角度范围内的电子扫查,适用于复杂几何形状结构件的检测。 下面对TOFD和相控阵的检测技术做简要对比。 1、TOFD的技术特点 1.1 TOFD的优点 TOFD技术不仅具有很强的缺陷检出能力,还具有很高的缺陷定量精度,除此之外还具有很高的时效性和安全性,可永久保存其检测数据。 ①效率高:该技术只需要做线性扫查就可以对焊缝完成扫查,很大程度上扩大了单组探头检测对焊缝的覆盖范围大,远远超过了传统的检测方法。 ②灵敏度高:由于该技术的衍射波信号具有很高的灵敏度,很大程度上保证了检出率。 ③精度高:利用衍射时差计算方法,缺陷的高度可以得到精确的计算。 ④影响小:该技术不会因焊缝结构或缺陷的方向性就左右最后的检测结果,其检测结果具有很高的稳定性,几乎不受其他因素的影响。 ⑤漏检少:衍射波具有高灵敏度,通过图像记录完整检测数据,重复性好。 ⑥数据全:检测结果的时效性很强,并且相关数据和资料会以存盘、打印出来等形式永久的保留下来,以便随时进行分析处理。 ⑦更安全:采用该技术不会对相关人员造成人身伤害。

超声相控阵技术的发展及应用

超声相控阵技术的发展及应用 钟志民,梅德松 (核工业无损检测中心,上海200233) 摘要:扼要介绍超声相控阵技术的发展历史、原理及特点。着重介绍其最新研究动态及其在核工业无损检测与评价中的典型应用。指出将相控阵技术同其它诸如纵波一发一收(TRL) 、声时衍射(TOFD) 技术、数字信号处理(DSP) 及成像等技术结合起来,将有助于充分发挥其特点,提高其检测能力,促进无损检测与评价的发展及应用。 关键词: 超声检验; 相控阵技术; 换能器; 核电站 中图分类号:TG115. 28 + 5 文献标识码:A 文章编号:100026656 (2002) 022******* DEVELOPMENT AND APPLICATION OF ULTRASONIC PHASED ARRAY TECHNIQUE ZHONG Zhimin , MEI Desong (Nuclear Non2Destructive Testing Center , Shanghai 200233 , China) Abstract : The development history , theory and characterization of ultrasonic phased array technique , especially the state2of2the2arts and applications of the technique in nuclear industry nondestructive testing and evaluation (NDT & E) are https://www.doczj.com/doc/0017291182.html,bining phased array technique with TRL ( the transmitter2receiver technique for longitudinal waves) , TOFD ( time of flightdiffraction) , DSP(digital signal processing) and imaging technique will improve detectability and promote NDT&E developmentand application. Keywords :Ultrasonic testing ; Phased array technique ; Transducer ; Nuclear power station 超声相控阵技术已有近20 多年的发展历史。初期主要应用于医疗领域,医学超声成像中用相控阵换能器快速移动声束对被检器官成像[1 ];利用其可控聚焦特性局部升温热疗治癌,使目标组织升温并减少非目标组织的功率吸收[2 ]。最初,系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限。然而随着电子技术和计算机技术的快速发展,超声相控阵技术逐渐应用于工业无损检测,特别是在核工业及航空工业等领域。如核电站主泵隔热板的检测[3 ];核废料罐电子束环焊缝的全自动检测[4 ]及薄铝板摩擦焊焊缝热疲劳裂纹的检测[5 ]。近几年,超声相控阵技术发展尤为迅速,在第15 届世界无损检测会议中,关于超声相控阵技术的文献有17 篇之多。在相控阵系统设计、系统仿真、生产与测试和应用等方面已取得一系列进展,如采用新的复合材料压电换能器改善电声性能[6 ];奥氏体焊缝、混凝土和复合材料等的超声相控阵检测[7-9 ] ;R/ D TECH ,SIEMENS 及IMA2SONIC 等公司已生产超声相控阵检测系统及相控阵换能器。而动态聚焦相控阵系统[10 ] ,二维阵列、自适应聚焦相控阵系统[11 ] ,表面波及板波相控阵换能器[12 ]和基于相控阵的数字成像系统等的研制、开发、应用及完善已成为研究重点。其中,自适应聚焦相控阵技术尤为突出,它利用接收到的缺陷回波信息调整下一次激发规则,实现声束的优化控制,提高缺陷(如厚大钛锭中的小缺陷或埋藏较深的大缺陷)的检出率。目前,国内在超声相控阵技术上的研究应用尚处于起步阶段,主要集中于医疗领域。 1 原理及特点 超声相控阵换能器的设计基于惠更斯原理。换能器由多个相互独立的压电晶片组成阵列,每个晶片称为一个单元,按一定的规则和时序用电子系统控制激发各个单元,使阵列中各单元发射的超声波叠加形成一个新的波阵面。同样,在反射波的接收过程中,按一定规则和时序控制接收单元的接收并进行信号合成,再将合成结果以适当形式显示[13 ]。 由其原理可知,相控阵换能器最显著的特点是可以灵活、便捷而有效地控制声束形状和声压分布。其声束角度、焦柱位置、焦点尺寸及位置在一定范围内连续、动态可调;而且探头内可快速平移

基于超声波相控阵无损检测技术在小口径无缝钢管上的应用研究

基于超声波相控阵无损检测技术在小口径无缝钢管上的应 用研究 摘 要:本文介绍了超声波相控阵技术原理,分析该 技术的独特优势对小口径无缝钢管的检测更具针对性,可以 明显提高缺陷检出率与检测速度。重点研究 89 机组在线 2# 线美国GE 公司生产的ROWA240-6WT PAT 型相控阵超声波钢 管自动分层测厚系统在小口径无缝钢管检测上的应用。 关键词: 超声波相控阵; 分层;测厚;小口径无缝钢管; 探伤 0. 概述 超声波相控阵检测技术的应用始于 20 世纪 60 年代,目 前已广泛应用于医学超声成像领域。由于该系统复杂且制作 成本高,因而在工业无损检测方面的应用受到限制。 近年来, 超声相控阵技术以其灵活的声束偏转及聚焦性能越来越引 起人们的重视。由于压电复合材料、纳秒级脉冲信号控制、 数据处理分析、软件技术及计算机模拟等多种高新技术在超 声相控阵成像领域中的综合应用,使得超声波相控阵技术得 到快速发展,逐渐应用于工业无损检测。 1. ROWA240-6WT PAT 型GE 相控阵超声波钢管自动分层 中图分类 口 号: TB559 文献标识码: A

测厚设备简介 89机组在线2#线管体超声分层测厚设备是美国 GE 公司 生产的ROWA240-6WT PAT 型相控阵超声波钢管自动分层测 厚系统。本套设备包含测厚分层检测主机、主机进 /出平台、 中心线导向装置、 6 组相控阵探头、前端电子、后端电子、 供水系统、导套及橡胶密封、控制系统等。 1.1 探头布置及主要参数 1.1.1 探头布置 该系统共有 6 个相控阵探头阵列,成环状布置,分为 2 列, 2 列的探头交错布置。探头阵列其布置如图 1 所示。 1.1.2 探头阵列主要参数 晶片组成,每个晶片尺寸为1.15 X 12.5mm 。每个虚拟探头最 多由 16个晶片组成, 每个虚拟探头的最大重复频率为 1.2 检测能力 检测外径: 32mm ?115mm 壁厚范围: 3mm ?16mm 壁厚静态测量精度:± 0.03mm 壁厚动态测量精度:± 0.05mm 壁厚减薄: 25mm (L )X 25mm (W )X 12.5%WT (D ) 夹层缺陷:①6.3mm 平底孔,当壁厚大于等于 6mm 时, 夹层缺陷深度介于1/4?1/2壁厚深度,夹层最小深度为2mm 。 探头阵列含 6 组相控阵探头,每个相控阵探头由 126 个 20kHz 。

超声相控阵技术在工业上的应用

龙源期刊网 https://www.doczj.com/doc/0017291182.html, 超声相控阵技术在工业上的应用 作者:刘晓睿刘斯以吴斌斌 来源:《硅谷》2012年第17期 摘要: 超声相控阵技术最早应用在医疗领域,从上个世纪80年代起,超声相控阵技术开始应用到核电领域。20多年以来,超声相控阵技术在工业上的应用范围越来越广泛,在电力、航空、航天、石化等行业都能够看到它的身影。相信随着相控阵设备价格的不断下降、人员培训规模的日益扩大以及相关标准的逐步建立与完善,工业相控阵技术的应用会越来越普及。 关键词: 超声相控阵;工业应用;线性扫查;扇形扫查 1 超声相控阵技术简介 普通超声探头通常由一个晶片来产生超声波,其声束的传播角度是唯一的,在实际检测中,为了防止漏检,通常需要进行不同角度的扫查。相控阵探头是由许多独立的晶片构成的,每个晶片都能被单独激发。这些探头由特殊的装置驱动,能够在每个通道独立的、同步的发射和接收信号。超声相控阵的一个重要特性就是可以通过软件来改变超声波束的特性。根据系统软件设置,每个晶片都能通过不同的时间延时来激活,并发射和接收超声信号。另外扫查角度范围、聚焦 深度和焦点尺寸等也都能通过软件控制。因而在一定程度上克服了常规超声由于声束的方向性造成的在缺陷检出和定量上的限制。 超声相控阵的两个重要特性是偏转和聚焦,这些特性在理论上的实现都是基于波的叠加和 干涉以及惠更斯原理。相控阵探头根据晶片的排布可以分成环阵、一维线阵、扇形环阵、二维矩阵、曲率线阵等。超声相控阵技术在扫查方式上主要分为线性扫查、扇形扫查、动态深度聚焦等,在显示方式上分为A显示、B显示、C显示、D显示、S显示等。 上世纪80年代,出现了工业用相控阵系统,这种系统非常的大,需要把数据传入电脑来进行 数据处理和图像展示,至少需要两个人来操作。这类设备大部分都是用在在役电站的检查中,特别是核电领域。上世纪90年代以来,随着电子和软件技术的发展,依靠低功率的电子元件、低能耗的结构,结合微处理器技术,使得电池驱动的相控阵设备的产生成为可能。1997年,RD/TECH 公司发布了便携式的相控阵设备Tomoscan FOCUS,它使得相控阵信号产生、数据处理、显示和分析都能在一台仪器上完成,从此相控阵技术的应用领域更加广阔。下面将介绍一些国外相控 阵应用的实例。 2 电力 Figure 1 Example of blade root inspection 超声相控阵技术可以检测电站汽轮机叶根的应力腐蚀裂纹。汽轮机的几何形状比较复杂, 被检工件的接触面有限,在检测时需要保证缺陷漏检率越小越好,利用超声相控阵技术可以根据

超声相控阵技术原理、应用及研究现状

超声相控阵技术原理、应用及研究现状 摘要:简述超声相控阵检测技术的发展、原理、特点及相控阵换能器的分类。超声相控阵技术通过对超声阵列换能器各阵元进行相位控制,能获得灵活可控的合成波束,进行动态聚焦、成像检测,能够提高检测灵敏度、分辨力和信噪比。介绍了国外超声相控阵检测成像技术在焊缝和火车轮轴检测方面的应用。超声相控阵检测技术较常规超声波检测具有高速、高效、适合复杂结构件以及能实时成像等优点,在压力容器、核电站和海洋平台结构等工业无损检测领域具有良好的应用前景。 关键词:焊接;缺陷检测;相控阵;焊缝;超声检测 0 前言 超声相控阵检测技术的应用始于20世纪60年代,目前已广泛应用于医学超声成像领域。由于该系统复杂且制作成本高,因而在工业无损检测方面的应用受到限制。近年来,超声相控阵技术以其灵活的声束偏转及聚焦性能越来越引起人们的重视。在国外,相控阵技术发展十分迅速,尤其在医学诊断和工业检测方面的研究非常活跃。一些公司如R/D TECH 、SIMENS 及IMASONIC 还推出了商品化相控阵超声工业检测系统。由于压电复合材料、纳秒级脉冲信号控制、数据处理分析、软件技术和计算机模拟等多种高新技术在超声相控阵成像领域中的综合应用,使得超声相控阵检测技术得以快速发展,逐渐应用于工业无损检测,如对气轮机叶片检测、和涡轮圆盘的检测、石油天然气管道焊缝检测、火车轮轴检测、核电站检测和航空材料的检测等领域。 而在国内,超声相控阵技术上的研究应用尚处于起步阶段,主要集中于医疗领域,在工业检测方面还非常落后,主要的设备都依赖于进口, 2001 年首先引入相控阵系统 PIPEWIZARD 全自动超声检测系统,成功应用于国家重点工程——西气东输。 1 超声相控阵技术原理

超声波相控阵技术在无损检测中的应用

超声波相控阵技术在无损检测中的应用 早在1959 年,Tom Brown和Hughes在Kelvin注册了一项超声波环形动态聚焦探头的专利技术,后来这项技术称为相控阵。 在上世纪60年代,关于超声波相控阵的研究主要局限于实验室;60年代末70年代初期,医学研究者已将相控阵技术成功运用到人体超声成像方面。然而超声相控阵技术在工业方面的应用发展缓慢,主要是因为相控阵系统复杂而当时的计算机能力弱,缺乏对多晶片探头进行快速激发以及无法对扫查产生的大量数据文件进行处理的能力;另一个原因就是仪器费用高昂,很少有公司愿意在这方面花费巨额费用。 随着计算机技术的快速发展,相控阵系统的复杂性和费用都大为降低。且相控阵技术相对于普通超声波检测有着明显的优势,令相控阵超声检测技术在工业领域逐渐兴起。已在多种材料的检测上进行了应用并取得了较满意的检测结果。 1 原理简介 相控阵超声波检测技术基于惠更斯原理,所用探头由多个晶片组成,应用时按照一定的规则和时序对探头中的一组或者全部晶片进行激活(晶片的激活数量取决于相控阵仪器控制能力和检测需要),每个激活晶片发出的超声波为次波,次波相互干涉,形成所需的新的波阵面传播开去成为超声波束对工件进行检测。 对于相控阵检测仪器而言,基本上由两部分组成,一部分是普通的超声波检测部分,一部分是相控阵部分,其中普通的超声部分负

责发出压电脉冲信号,并对相控阵返回的信号进行显示处理;相控阵部分将压电脉冲信号根据预置规则进行不同的延时施加到要被激活的晶片上,从而产生出不同的波束,见图1。 对晶片进行激活时所遵循的规则(即进行何种方式的延时的触发)称之为聚焦法则(focal law),不同的延时能发射出不同的超声波束,使超声波束具有相应的波形。并且聚焦在不同的深度(根据干涉原理仅能在近场区范围内聚焦),线性扫查无需聚焦。在一次扫查过程中,可以设置多组聚焦法则,也就是说可以设置多组波束进行扫查,提高扫查效率和保证扫查部位。这也是相控阵的一个显著优点。 比较明显的优势是检测数据完整,可通过对原生数据进行成像来分析工件内部缺陷,定位定量准确,定性方面降低了对人员经验的依赖性,降低了人为因素的误差。另一方面相控阵利用时分复用技术

相关主题
文本预览
相关文档 最新文档