当前位置:文档之家› 轮胎振动噪声结构传递路径分析-彭为-2010

轮胎振动噪声结构传递路径分析-彭为-2010

轮胎振动噪声结构传递路径分析-彭为-2010
轮胎振动噪声结构传递路径分析-彭为-2010

轮胎路面噪声及其测量

收稿日期!"###$#%$#"&修订日期!"###$#’$#"作者简介!俞悟周()*+"$,- 女-博士-讲师.文章编号!)###$%/%#("###,#"$*#$#0 轮胎1路面噪声及其测量 俞悟周-毛东兴-王佐民 (同济大学声学研究所-上海"###*", 摘要!轮胎1路面噪声是道路交通噪声的重要噪声源-其产生的机理相当复杂-影响的因素也很 多.本文介绍了产生轮胎1 路面噪声的主要机理及影响因素-同时介绍了目前轮胎1路面噪声几种主要的测量方法-及各自的特点.关键词!轮胎1路面噪声&声学测量 中图分类号!230%%4 "文献标识码!5 678918:;<=:7>9;=<7?>@9;>A 89@9=? B C DE $F G H E -I5J K H L M $N O L M -D5P Q R E H $S O L (T L U V O V E V W H X 5Y H E U V O Y U -2H L M Z O C L O [W \U O V ]-^G _L M G _O "###*"-‘G O L _ ,a b >?8;c ?!Q W L W \_V O H LS W Y G _L O U S H X V O \W 1\H _dL H O U W -e G O Y GO U H L WH X V G WS H U V O S f H \V _L V Y H L V \O g E V H \H X V \_X X O Y L H O U W -O U [W \]Y H S f h W N i 2G W \W W N O U V h H V U H X X _Y V H \U O L X h E W L Y O L MV O \W 1\H _dL H O U W i T LV G O U f _f W \-S _O LU H E \Y W U _L d _X X W Y V O L MX _Y V H \U H X V O \W 1\H _dL H O U W _\W f \W U W L V W d i IW _L e G O h W -V G W _E V G H \_h U HW N f h _O L U V G W S _O LS W _U E \W S W L V S W V G H d U H X V O \W 1\H _dL H O U W i 5d [_L V _M W U _L dd O U _d [_L V _M W U H X V G W S W V G H d U _\W Y H S f _\W d i j 9kl :8<>!V O \W 1\H _dL H O U W &_Y H E U V O Y _h S W _U E \W S W L V )引 言 许多民意调查表明-城市中的道路交通噪声是困扰人们生活的主要环境污染源之一-在各种交通噪声中-汽车噪声问题最为显著.轮胎1 路面噪声是汽车噪声的三大噪声源之一-尤其是对中速行驶的轿车(/0m S 1G $)##m S 1G ,-轮胎1路面噪声的贡献最大.随着各国环境保护立法机构对车辆辐射噪声的规定日趋严格-轮胎1路面噪声的降低在近"#年里越来越受到汽车制造商及轮胎生产厂家的重视-投入大量人力物力-采用了各种先进的测试手段进行探索研究-如激光n 多普勒振动测量仪及多种相关分析等-以寻求降低轮胎噪声的途径. 尽管有一些文献报道利用各种模型和计算方法进行轮胎1路面噪声的预测-但由于其机理的复杂性-目前还难以对轮胎1路面噪声进行准确的定量估计-实测是研究轮胎噪声 特性的重要手段. "轮胎1 路面噪声的形成机理o i p 产生机理 一般认为-轮胎1路面噪声的产生主要有以下几个途径! (),轮胎振动 当运动的轮胎与路面接触时-一方面外胎结构的不均匀性及路面的粗糙性引起轮胎振动&另一方面-轮胎和路面的接触区产生切向力-部分切向力导致轮胎在路面上的滑移. 引起轮胎外胎形变的摩擦粘滞力以及外胎的 滑移导致轮胎表面的振动-从而产生可听声. 轮胎振动主要包括外胎面和轮胎侧壁的振动-这两部分区域振动的幅度q 频率及产生 原因并不一样-由此辐射的噪声也不同.图) (_,为某轮胎在"##m r _的轮胎气压下的振 动实验结果s )t - 激振源位于外胎中心.在0##u F $v ##u F 频率范围内-轮胎侧壁的振动比外胎面稍强-而在v ##u F 以上的频率范围内-外胎面的振动远强于侧壁的振动.而且在 n #*n )*卷"期("###,

土壤冲击特性的实验研究

振 动 与 冲 击 第22卷第3期 JOURNA L OF VI BRATION AND SHOCK V ol.22N o.32003  土壤冲击特性的实验研究 Ξ 皮爱如 沈兆武 王肖钧  (中国科学技术大学力学与机械工程系,合肥 230026) 摘 要 本文利用分离式H opkins on 压杆研究了土体在不同应变率条件下的冲击动态力学性能,发现土体有明显 的应变率效应,与静载相比,冲击荷载下土的动强度和动模量均有很大的提高。 关键词:土,H opkins on 压杆,应变率效应中图分类号:O33,T U4 0 引 言 建筑物地基和土工建筑物在动荷载作用下发生振动,土的强度和变形特性都要受到影响。引起土体振动的振源分天然振源和人工振源两种。地震、波浪力、风力都是天然振源,交通荷载、爆炸、打桩、机器基础都是人工振源。冲击荷载作用下土动力学问题的 应变范围很大,从精密设备基础振幅很小的振动到强烈地震、炸药爆炸或核爆炸的震害,剪应变从10-6到10 -2 ,在这样广阔应变范围内的土动力计算中所用的 特性参数,需要用不同的测试方法来确定。早在1948 年,美国学者卡萨格兰德(Cassagrande A )就设计了多种冲击试验仪[1],以测定冲击荷载作用下土的动力特性,以后各国学者继续对这一问题进行了研究。土动力测试和其他土工测试一样,原位测试能得到代表实际土层性质的试验资料。但是限于原位试验的条件和较大的试验费用,一般在原位只做小应变试验,在实验室内则可以做从小应变到大应变的试验。室内常用的测试方法有超声波脉冲试验、共振柱试验、周期加荷的三轴试验,单剪试验和扭剪试验。本文则采用分离式(<37mm )H opkins on 压杆来研究土壤在冲击荷载下的动力学特性。 1 冲击实验 分离式H opkins on 压杆(简称SPH B )装置是研究材料应变率在102/s ~104/s 下的动态力学性能的重要装置,如图1所示。它通常采用贴于金属压杆中部的应变片作为测量传感器,记录输入杆上的入射应变波εi 、反射应变波εr 和输出杆上的透射应变波εt ,然后根据一维应力波理论计算出试件上的动态平均应力、应变和应变率[2]。SPH B 实验技术通过测量压杆上的应变来反推试件材料的应力应变关系,是建立在两个基 本假定基础上的。一个是一维假定(又称平面假定), 另一个是均匀性假定。根据一维假定,可直接利用一 维应力波理论确定试件材料的应变率 ε(t )、应变 ε(t )和应力σ(t ): ε(t )=C l 0 (εi -εr -εt ) ε(t )=C l 0 ∫ t (εi -εr -εt )dt σ(t )=A 2A 0 E (εi +εr +εt )(1) 进而可得到试件材料的动态应力应变关系。式中的应力、应变均以压为正,E 、C 和A 分别为压杆的弹性模量、波速和横截面积,A 0和l 0分别为试件的初始横截面积和试件长度。根据均匀性假定,可得εi +εr =εt ,代入(1)式后可得到更简单的形式: ε(t )=-2C l 0εr ε(t )=- 2C l 0 ∫ t εr dt σ(t )=A A 0 E εt (2) 有关该装置的详细介绍及其工作原理可参考文献[2、3] 。 图1 H opkins on 压杆装置简图 本文所用的试件尺寸为<37×18mm 的圆柱形原 状土体,土壤是密度为2056.99kg/m 3的干性黄土。土体用特制的环切刀取得,保证土体尺寸的准确及尽可 Ξ收稿日期:2002-11-06 第一作者 皮爱如 男,博士研究生,1973年5月生

LMS https://www.doczj.com/doc/0717289212.html,b 传递路径分析

传递路径分析 探究振动噪声问题的根源 LMS https://www.doczj.com/doc/0717289212.html,b 传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA 有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.doczj.com/doc/0717289212.html,b 提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。

从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.doczj.com/doc/0717289212.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。 完整的解决方案 LMS https://www.doczj.com/doc/0717289212.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.doczj.com/doc/0717289212.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.doczj.com/doc/0717289212.html,b TPA综合了一系列TPA

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

简谐振动特性研究实验

实验一、简谐振动特性研究与弹簧劲度系数测量【实验目的】 1. 胡克定律的验证与弹簧劲度系数的测量; 2. 测量弹簧的简谐振动周期,求得弹簧的劲度系数; 3. 测量两个不同弹簧的劲度系数,加深对弹簧的劲度系数与它的线径、外径关系的了解。 4. 了解并掌握集成霍耳开关传感器的基本工作原理和应用方法。 【实验原理】 1. 弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力和它的变形量成正比,即: (1) (1)式中,为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量和的对应关系,就可由(1)式推算出弹簧的劲度系数。 2. 将质量为的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: (2) 式中是待定系数,它的值近似为,可由实验测得,是弹簧本身的质量,而被称为弹簧的有效质量。通过测量弹簧振子的振动周期,就可由(2)式计算出弹簧的劲度系数。 3. 磁开关(磁场控制开关): 如图1所示,集成霍耳传感器是一种磁敏开关。在“1脚”和“2 脚”间加直流电压,“1脚”接电源正极、“2脚”接电源负极。当垂直于该传感器的磁感应强度大于某值时,该传感器处于“导通”状 态,这时处于“”脚和“”脚之间输出电压极小,近似为零,当磁感

强度小于某值时,输出电压等于“1脚”、“2脚”端所加的电源电压,利用集成霍耳开关这个特性,可以将传感器输出信号输入周期测定仪,测量物体转动的周期或物体移动所经时间。 【实验仪器】 FB737新型焦利氏秤实验仪1台,FB213A型数显计时计数毫秒仪 【实验步骤】 1. 用拉伸法测定弹簧劲度系数:(不使用毫秒仪) (1)按图2,调节底板的三个水平调节螺丝,使重锤尖端对准重锤基准的尖端。 (2)在主尺顶部安装弹簧,再依次挂入带配重的指针吊钩、砝码托盘,松开顶端挂钩锁紧螺钉,旋转顶端弹簧挂钩,使小指针正好轻轻靠在平面镜上(注意:力度要适当,若靠得太紧,可能会因摩擦太大带来附加的系统误差),以便准确读数。这时因初始砝码等已使弹簧被拉伸了一段距离。(可参考说明书中的装置图)

传递路径分析法

传递路径分析法 对复杂的汽车系统来说,如何找到一种既能较好地表征整车振动噪声特性,而其实现起来又较为简明、迅速的方法,一直是汽车NVH 研究人员孜孜以求的目标。近年来,基于频率响应函数(FRF )的车内噪声传递路径分析方法成为各大汽车公司和汽车研发中心的主要研究方向之一,这种方法从子结构传递函数的角度出发,在频域上描述了系统的振动噪声特性,为汽车噪声预测、振动噪声快速诊断等工作提供了一种快捷、精准的有利工具。此方法建立的模型中,一般把整个系统划分为几个较为独立的子结构,每个子结构都以频响函数来表征其结构特性,各子结构之间通过各种弹性元件相联结来传递信息。图2.1即为一个由动力总成和车身组成的简单汽车模型,在这模型里,汽车被划分成两个子结构,一个是车身子结构(以子结构A 表示),另一个是动力总成子结构(以子结构B 表示),二者之间通过动力总成悬置相联结。在研究过程中,可将此系统进一步理论化,把各子结构简化成一个个结构块,把联结子结构的各弹性元件(如动力总成悬置)简化成各个标量弹簧。这样,系统就以“结构块-弹簧”的形式表征出来,本章的主要工作即是研究这种“结构块-弹簧”与系统之间的关系,推导相关函数,建立基于频率响应函数的车内噪声传递路径分析方法[15][27~40]。 2.1、系统响应 假设一辆汽车受m 个激励力作用,每一个激励力都有x,y,z 三个方向分量(下面分别用k=1,2,3表示),每一个激励理分量都对应n 个特定的传递路径,那么这个激励理分量和对应的某个传递路径就产生一个系统的响应分量。以车内噪声声压作为系统响应,这个声压分量可以表示为: 其中,是传递函数,是激励力的频谱。 车内噪声声压受某个激励力作用,传递过来的所有声压成分之和可表示为: 车内噪声受所用激励力作用,传递过来的所有声压成分之和可表示为: 在式(2.1)中,激励力如果直接作用在车身,所对应的传递函数就是车身传递函数;激励力如果直接作用在车轴,所对应的传递函数就是从车轴到车身,再到车内声场的传递函数。传递路径分析中首先需要明确所需分析的激励点,这根据不同性质的问题而定。例如,车身问题只需考虑底盘与车身耦合处的力激励;整车问题就需考虑车轴处、发动机悬置减振器处、空气压缩机悬置鉴真处、甚至活塞和汽缸缸壁之间的力激励。明确所需分析系统的耦合点后,下步就需要估计各种耦合激励力和各种传递函数,工作量常常很大。本文只考虑了动力总成与车()() mnk mnk nk p H F ωω=?mnk H nk F ,3,3 1,11,1()() N N m mnk mnk nk n k n k p p H F ωω===== =?∑∑m m p p =∑

Manatee振动噪声分析

Manatee软件电磁振动噪声分析 北京天源博通科技有限公司 褚占宇

利用Manatee软件分析丰田Prius2004电机电磁及振动噪声 Manatee软件是由法国EOMYS公司研发的,可以计算电机的电磁振动噪声的软件。北京天源博通科技有限公司是该软件在中国的代理商。 本文主要是利用Manatee软件分析丰田Prius2004款电机的电磁及振动噪声。 表1是丰田Prius2004电机的主要尺寸参数。 表1电机主要的参数 名称数据 定子外径/mm269.24 定子内径/mm161.9 气隙长度/mm0.75 铁心长度/mm83.82 转轴外径/mm110.64 极数/槽数8/48 1建模流程 首先打开Manatee软件。如下图所示。 选择电机类型,点击New Machine按钮,选择要编辑的电机类型。

在电机类型里面选择BPMSM,为内置式的永磁电机类型。P中输入极对数为4(注意这里是极对数不是极数)。 接着设置Machine Dimensions选项,在这里设置电机的定子外半径为134.62mm,定子内半径为80.95mm,转子外半径80.2mm,转子内半径为55.32mm。

计算出气隙长度为0.75mm。 设置定子轴向长度,定子硅钢片轴向长度为83.82,硅钢片的叠压系数设置为0.95。没有径向通风道和轴向通风口。 设置定子槽型,软件提供了多种槽型,选择相应的槽型进行设置。在这里选择槽型11,以下为具体的槽型尺寸参数。

当设置好后,可以点击Preview按钮,生成如下图所示。

定子绕组设置,Prius2004为3相双层,分布短距,绕线间距为5,并绕根数13,并联之路数1,每线圈的串联匝数9。 点击next按钮,选择3相双层,绕组跨距为5。 点击Preview按钮,生成如下图所示。 点击next按钮,设置并联之路数1,每线圈的串联匝数9。

电动工具噪音与振动分析

电动工具噪音与振动分析 电动工具电机中 串激式电机使用的比较多 而串激电机的转速非常高 只要任何一部份处理不好 振动及噪音的情形就比较多 电机产生的振动噪音 1、机械振动噪音,为转子的不平衡重量,产生相当转数的振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的噪音。 4、流体噪音,风扇或转子引起通风噪音对电动机很难避免,很多情形左右电动机整体的噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之噪音,又磁通密度饱和或气隙偏心引起磁的噪音。 机械性振动原因与对策 1、转子的不平衡振动 原因分析: ①制造时的残留不平衡。 ②长期间运转产生尘埃的多量附着。 ③运转时热应力引起轴弯曲。 ④转子配件的热位移引起不平衡载重。 ⑤转子配件的离心力引起变形或偏心。 ⑥外力(皮带、齿轮、直结不良等)引起轴弯曲。 ⑦轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 处理对策: ①抑制转子不平衡量。 ②维护到容许不平衡量以内。 ③轴与铁心过度紧配的改善。 ④对热膨胀的异方性,设计改善。

⑤强度设计或装配的改善。 ⑥轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ⑦轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常振动与噪音 原因分析: ①轴承内部的伤。 ②轴承的轴方向异常振动,轴方向弹簧常数与转子质量组成振动系统的激振。 ③摩擦音:圆柱滚动轴承或大径高速滚珠轴承产生润滑不良与轴承间隙起因。 处理对策: ①轴承的替换。 ②适当轴方向弹簧预压给轴承间隙的变动。 ③选择软的滑脂或低温性优秀的滑脂,残留间隙使小(须注意温升问题)。 3、电刷滑动音 原因分析: 整流子与电刷的滑动时的振动电刷保持器激振产生 处理对策: 握刷的弹性支持、选择电刷材质与形状、抑制侧压引起的电刷振动及提高整流子的精度等。

液压噪声分析

液压设备在给人们带来诸多方便同时,液压系统的泄漏,振动和噪声,不易维修等缺点,也为液压系统的应用造成了障碍。尤其在现今随着技术水平不断提高,液压系统的噪声和振动也随之加剧,已经成为了限制液压传动技术发展的重要因数,因此,研究液压系统的噪声和振动有着积极的意义。 1,振动和噪声的危害 液压系统中的振动和噪声是两种并存的有害现像,从本质上说,它们是同一个物理现象的两个方面,两者互相依存,共同作用。随着液压传动的运动速度不断增加和压力不断提高,振动和噪声也势必加剧,振动容易破坏液压元件,损害机械的工作性能,影响到设备的使用寿命,而噪声则可能影响操作者的健康和情绪,增加操作者的疲劳度。 2,振动和噪声的来源 造成液压系统中的振动和噪声来源很多,大致有机械系统,液压泵,液压阀及管路等几方面。 机械系统的振动和噪声 机械系统的振动和噪声,主要是由驱动液压泵的机械传动系统引起的,主要有以下几方面。 1,回转体的不平衡在实际应用中,电机大都通过联轴节驱动液压泵工作,要使这些回转体做到完全的动平衡是非常困难的,如果不平衡力太大,就会在回转时产生较大的转轴的弯曲振动而产生噪声。 2,安装不当液压系统常因安装上存在问题,而引起振动和噪声。如系统管道支承不良及基础的缺陷或液压泵与电机轴不同心,以及联轴节松动,这些都会引起较大的振动和噪声。 2.2液压泵(液压马达)通常是整个液压系统中产生振动和噪声的最主要的液压元件. 液压泵产生振动和噪声的原因,一方面是由于机械的振动,另一方面是由于液体压力流量积聚变化引起的. 1,液压泵压力和流量的周期变化 液压泵的齿轮,叶片及拄塞在吸油,压油的过程中,使相应的工作产生周期性的流量和压力的过程中,使相应的工作腔产生周期的流量和压力的变化,进而引起泵的流量和压力脉动,造成液压泵的构件产生振动,而构件的振动又引起了与其相接触的空气产生疏密变化的振动,进而产生噪声的声压波传播出去. 2,液压泵的空穴现象液压泵在工作时,如果液压油吸入管道的阻力过大,此时,液压油来不及充满泵的吸油腔,造成吸油腔内局部真空,形成负压.如果这个压力恰好达到了油的空气分离

PCB结构振动特性的实验研究

PCB结构振动特性的实验研究 摘要:选用带有BGA封装的PCB结构,进行0~1000Hz内的的动态振动测试,确定结构的固有频率;将实验结果和有限元模拟相结合,采用反演分析方法求解了PCB板的弹性模量,并通过实验和模拟的验证了计算结果。 关键词:PCB结构,BGA,振动特性,固有频率 引言 近年来,随着电子工业得到了迅猛发展,与之密切相关的电子封装业的重要性越来越突出,各种先进的封装技术不断涌现。球栅阵列BGA(Ball Grid Array)封装技术是近年来国内外迅速发展起来的一种新型封装技术,它采用一种全新的设计思维方式,有效消除了精细间距器件中由于引线而引起的共平面、翘曲的问题,成为20世纪发展最快、应用最广的封装技术之一[1,2]。 早在二十世纪六、七十年代,IBM和Bell实验室进行了大量疲劳实验,研究表明电子工业中焊点失效,焊点低周热疲劳一直成为国内外学者的主要研究对象[3]。但是当电子设备处于严重的振动、冲击环境中时,电子设备的可靠性将受到很大的影响,动态载荷与热载荷相互作用,大大降低封装结构的可靠性。近年来,随着封装结构在动载荷(振动、冲击等)下的可靠性问题日益突出,中外不少学者进行了相应的研究。Intel公司的Wong S W等[4]提出了通过测试PBGA 基板的应变来推断焊点应力应变的方法,证明了在振动条件下焊点与基板的应变的线性关系,并给出了实验方法。Pang H L等[5]对倒装芯片在固有频率处施加不同量级的正弦激励,给出了振动特性的测试方法。Chen Y S等[6]用有限元模拟和振动测试相结合的方法,得出了较好的结果。Wang等[7]对封装结构振动载荷下的失效问题进行了实验研究,采用多种方法观测了焊点中振动裂纹的萌生、扩展及失效的过程,分析了焊点高周疲劳的原因。这些研究都为焊点振动条件下的使用提供了有力的支持。但由于实际使用中的PCB结构都不尽相同,这些研究都具有一定的特定性。 本文选用带有BGA结构的PCB主控板,对其进行了0-1000Hz范围内的振动动态实验,测得该结构的固有频率;与有限元模拟相结合,采用反演分析确定了PCB板的弹性模量,并通过配重试件的振动实验和模拟分析验证了结果的可靠性。 二、印刷电路板(PCB)结构的振动实验 在本文的振动测试实验中所使用的PCB结构主要有三个部分:印刷电路板、芯片和连接芯片与电路板的BGA焊球列阵,该BGA焊球阵列为16×16正方形阵列。实验所用振动设备主要有STI D-100-1振动台、YE7600动态应变仪、SD1403传感器等;两种加载试件:无配重的试件1和自由端添加51.6g配重的试件2。

振动噪声分析论文

汽车噪声主动及被动控制方法简述1前言 随着汽车工业的发展,汽车给人类的出行带来极大的便利,但同时也带来了噪声污染等社会问题。汽车噪声过大会影响汽车的舒适性、语言清晰度,甚至影响驾驶员和乘客的心理、生理健康,如果驾驶员长期处于噪声环境中容易引起疲劳造成交通事故和生命危险;同时,汽车噪声过大也会影响路人的身心健康,人们长时间接触噪音,会耳鸣、多梦、心慌及烦躁,或直接引起听力下降甚至失聪,其中由车辆噪音间接引发的交通事故,也并不鲜见。因此对汽车噪声进行控制就显得非常必要了。 为了治理汽车噪声污染,各国均制定有关标准,我国国家环境保护总局和国家质量监督检验检疫总局于2002年1月4 日联合发布了GB 1495—2002《汽车加速行驶车外噪声限值及测量方法》强制性标准,代替GB 1495—1979,并于2002年10 月1日实施。 表1 国内外车辆行驶噪声限值标准的比较(单位:dBA) 新标准是在参考ECE RS1《关于在噪声方面汽车(至少有4个车轮)型式认证的统一规定》基础上制定的。新标准的出台,改变了过去标准不科学、测试项目不完整的局面,为治理汽车噪声污染提供了有效的控制手段,对完善我国的汽车

噪声标准体系将起到积极的推动作用。 2汽车噪声来源 汽车是一个包括各种不同性质噪声的综合噪声源,按噪声产生的部位,主要分为与发动机有关的噪声和与排气系统有关的噪声以及与传动系统和轮胎有关的噪声。 (1)发动机发动机噪声包括燃烧、机械、进气、排气、冷却风扇及其他部件发出的噪声。在发动机各类噪声中,发动机燃烧噪声和机械噪声占主要成分。燃烧噪声产生于四冲程发动机工作循环中进气、压缩、做功和排气四个行程,快速燃烧冲击和燃烧压力振荡构成了气缸内压力谱的中高频分量。燃烧噪声是具有一定带宽的连续频率成份,在总噪声的中高频段占有相当比重。 表2 发动机机械噪声类型 机械噪声是指发动机工作时,各零件相对运动引起的撞击,以及机件内部周期性变化的机械作用力在零部件上产生的弹性变形所导致的表面振动而引起的噪声,包括活塞敲击声、气门机构声、正时齿轮声。燃烧噪声和机械噪声都是有发动机本体发出的,并且随着发动机转速的增加,噪声也增加。一般情况下,低转速时燃烧噪声占主导地位,高转速时机械噪声占主导地位。空气动力噪声是指汽车行驶中,由于气体扰动以及气体和其他物体相互作用而产生的噪声。在发动机中,它包括进气噪声、排气噪声和风扇噪声。实践表明,减少振动是降低噪声的根本措施。增加发动机结构的刚度和阻尼,是减少表面振动的办法,从而达到

32_路面噪声传递路径分析与优化

路面噪声传递路径分析与优化 Transfer Path Analysis and Optimization of Road Noise 李朕王亮高亚丽王伟东 (泛亚汽车技术中心有限公司上海201209) 摘要:本文介绍了传递路径分析在路面噪声优化中的应用。借助HyperGraph的NVH分析模块,在纯仿真的环境下应用传递路径分析,在开发更早阶段找到问题根本原因。从本文的优化结果来看,基于纯仿真的传递路径分析周期短,优化效果好。 关键词:汽车NVH 路噪传递路径HyperGraph Abstract: Transfer path analysis was applied in road noise analysis. It is possible to find noise root cause in early stages of vehicle development process by using HyperGraph transfer path analysis in virtual environment. CAE based TPA is more efficient than test based TPA. Key Words: vehicle, NVH, road noise, TPA, HyperGraph 1 介绍 路面噪声是车辆NVH性能开发过程中控制的一个重要指标。它作为车内主要声源影响乘员舒适性。按照传递路径不同,路噪可分为结构传递声与空气传递声。本文介绍传递路径法(下文简称TPA)在结构传递声分析与优化中的应用。 结构传递路噪典型递路径如下。路面激励通过轮胎传递到轮心,轮心传入悬架,再通过悬架传递到车身。其中悬架与车身界面有多条传递路径。使用TPA方法能识别出噪声传递的主要路径和次要路径。随着建模、求解以及后处理的进步,基于仿真的TPA方法能够在早期快速准确的分析问题。 2 分析方法 影响路噪的主要因素有轮胎、悬架形式、衬套刚度以及车身侧底盘连接点的噪声传递函数。越软的衬套和轮胎隔振效果越好,对路噪越有利。但衬套过软会影响车辆的操控稳定性。为了不影响操控稳定性,本文重点关注车身噪声传递函数的优化。受限于燃油经济性的限制,传递函数优化不能以牺牲重量为代价。使用TPA方法识别出关键路径,能在不牺牲重量的情况下满足整车振动噪声的要求。

(完整版)第二章噪声与振动的评价及其量度

第二章 噪声与振动的评价及其量度 第一节 噪声及其物理量度 一、 声压、声功率、声强 1. 声压 ● 发声体的振动使周围的空气形成周期性的疏密相间层状态,在空气中由声 源向外传播,形成空气中的声波。当声波通过时,可用声扰动所产生的逾量压强来表述状态, 0P P p -=(逾量压强就是声压) ● 声场:存在声压的空间。 ● 瞬时声压:声场中某一瞬时的声压值。

● 峰值声压:在一定时间间隔内最大的瞬时声压值。 ● 有效声压:当声波传入人耳时,由于鼓膜的惯性作用,无法辨别声压的 起伏,起作用的不是瞬时声压值,而是一个稳定的有效声压。 ● 有效声压是在一定的时间间隔内瞬时声压对时间的圴方根值。 ? = T e dt t p T p 0 2)(1 ● 人们习惯指的声压,往往是指有效声压,一般的声学测量仪器测量到的 声压就是有效声压。 ● 在实际使用中,如没有特别说明,声压就是有效声压的简称。 ● 人耳对1000Hz 声音的可听阈(即刚刚能觉察到它存在的声压)约为 5102-?Pa ;微风轻轻吹动树叶的声音约为4102-?Pa ;普通谈话声(相距

1m 处)约为2 2- ?Pa;交响乐演奏声(相距5~10m处)约为0.3Pa; 10 大型球磨机(相距2m处)约为20Pa(痛阈,即正常人耳感觉为痛)。 2.声功率 ●声波传播到原先静止的介质中,一方面使介质质点在平衡位置附近做来 回的振动,获得扰动动能,同时,在介质中产生了压缩和膨胀的疏密过程,使介质具有形变的热能,两部分能量之和就是由于声扰动使介质得到的声能能量,以声的波动形式传递出去。 ●可见,声波的传播过程实际上伴随着声能能量的转移,或者说声波的传 播过程就是声能能量的传播过程。 声压作用在体积元上的瞬时声功率为 W= Spu

噪声与振动监测

第五章噪声与振动监测 本章基本要求 1. 声波的产生、传播、反射、折射、衍射、干涉、吸收概念。 2. 噪声的物理定义和主观定义。 3. 噪声的危害。 4. 描述声波的基本参量、频率、波长、周期、声速的定义,相互关系和计算方法。 5. 响度、频率计权、听力损失的概念。 6. 常用的噪声评价参量L10、L50、L90、L eq、L dn的定义和计算方法;平均值的计算方法。 7. 国家标准《城市区域环境噪声标准》和《环境监测技术规范(噪声部分)》的有关内容。 8. 常用噪声监测仪器的工作原理、使用方法和维护保养知识。 9. 环境振动的产生、传播概念、振动与声的关系。 10. 位移、速度、加速度、振级、速度级、加速度级的概念及计算方法。 11. 国家标准《城市区域环境振动标准》的有关内容、环境振动测量的基本要求和一般规定。 12. 环境振动监测仪的工作原理、使用方法和维护保养知识。 A类试题及答案 一、填空题 1. 在常温空气中,频率为500Hz的声音其波长为。 答案:0.68m(波长=声速/频率) 2. 测量噪声时,要求风力。 答案:小于5.5m/s(或小于4级) 3. 从物理学观点噪声是;从环境保护的观点,噪 声是指。 答案:频率上和统计上完全无规律的振动人们所不需要的声音 4.噪声污染属于污染,污染特点是其具有、、。 答案:能量可感受性瞬时性局部性 5. 环境噪声是指,城市环境噪声按来源可分为、、、 、。 答案:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声其它噪声

6. 声压级常用公式L p 表示,单位 。 答案:0 20p p L g dB(分贝) 7. 声级计按其精度可分为四种类型:0型声级计,是 ;I 型声级计,为 ;Ⅱ型声级计为 ;Ⅲ型声级计为 ,一般 用于环境噪声监测。 答案:作为实验室用的标准声级计 精密声级计 普通声级计 调查声级计 不得 8. 等响曲线是人耳听觉频率范围内一系列 与 关系的曲线;曲线簇表明,任何强度的声音, Hz 频率下的声压级值就是响度级值。 答案:响度相等的声压级 频率 1000 9. A 计权是模拟 方纯音等响曲线反转加权的;当声音信号通过A 计权网格时,低频声得到较大的 ,而对高频声则 。A 声级基本上与人耳的听觉特性相 ,是一个 量,记作 。 答案:55 衰减 略有放大 吻合 模拟 dB(A) 10. D 计权是对 的模拟,专用于 噪声的测量。 答案:噪声参量 飞机 11. 用A 声级与C 声级一起对照,可以粗略差别噪声信号的频谱特性;若A 声级比C 声级小 得多时,噪声呈 性;若A 声级与C 声级接近,噪声呈 性;如果A 声级比C 声级还高出1~2dB ,则说明该噪声信号在 Hz 范围内必定有峰值。 答案:低频 高频 2000~5000 12. 倍频程的每个频带的上限频率与下限频率之比为 。1/3倍频程的每个频带的上限频 率与下限频率之比为 ;工程频谱测量常用的八个倍频程段是 Hz 。 答案:2 2~31 63、125、250、500、1k 、2k 、4k 、8k 13. 由于噪声的存在,通常会降低人耳对其它声音的 ,并使听阈 ,这种现象称为掩蔽。 答案:听觉灵敏度 推移 14. 声级计校准方式分为 校准和 校准两种;当两种校准方式校准结果不吻合时, 以 校准结果为准。 答案:电 声 声 15. 我国规定的环境噪声常规监测项目为 、 和 ; 选测项目有 、 和 。 答案:昼间区域环境噪声 昼间道路交通噪声 功能区噪声 夜间区域环境噪声 夜间道路交通噪声 高空噪声 16. 扰民噪声监测点应设在 。 答案:受影响的居民户外lm 处 17. 建筑施工场界噪声测量应在 、 、 、 四个施工阶段进 行。 答案:土石方 打桩 结构 装修 18. 在环境问题中,振动测量包括两类:一类是 振动测量;另一类是 。 造成人 称环境振动。

资料-基于LMS https://www.doczj.com/doc/0717289212.html,b的破壁机振动噪声研究

1 引言 随着豆浆机使用的日益普及,作为豆浆机升级产品的破壁机因转速高破碎效果好等因素而受到市场的青睐,而噪声问题成为影响破壁机性能体验的关键因素。而振动噪声问题的解决不仅需要信号的采集,同时需要对信号处理分析等要求。 LMS https://www.doczj.com/doc/0717289212.html,b是一整套的振动噪声试验解决方案,是高速多通道数据采集与 试验、分析、电子报告工具的完美结合,包括数据采集、数字信号处理、结构试验、旋转机械分析、声学和环境试验。 通过LMS https://www.doczj.com/doc/0717289212.html,b的采集分析系统可以获得破壁机实际的模态振型和ODS振型,与CAE振动响应仿真结合,从而为得出了有益的结论。为破壁机的振动噪声研究提供了一个新的思路和方法。 2 传递路径分析与声源识别 2.1 破壁机噪声传递路径分析 破壁机主要由机头(含电机,控制板,刀架等)、机壳(盛装食材)、底座(支撑机身)三部分构成,工作时电机超高速运转(14900rpm),带动不锈钢刀片,在杯体内对食材进行超高速切割和粉碎,从而打破食材中细胞的细胞壁,将细胞 噪声主要来源和传递路径分析 2.2

声压全息法测试: 对破壁机采用近场声压测试,用麦克风测试距离被测物体表面10mm处的声压,获得各个点的频谱,然后按照频段将各个点的值画成等高线,数值大小用颜色表示。 图2 声压全息法声源识别(250HZ) 声压全息法测试结果显示:转速基频250Hz异音为主要异音频率,主要集中在杯座和底座,其中底座主要是3个侧面辐射出去,基座底部基频噪声较高,靠近后排风口处最高。 3仿真模型与测试的对比及分析 3.1 建立结构有限元模型和模态几何模型 仿真边界条件设置:整个破壁机采用重力作用下的预应力分析,底座胶垫底面和地面采用固定支撑,转子表面添加频率为250Hz的旋转离心力2.167N,杯中的水用质量点等效,绑定在杯子中部。将偏心力加载到电机结构有限元模型中,进行振动响应分析,获得各倍频下的振动响应(重点为基频)。

排气系统的噪声与振动分析

第五章排气系统的噪声与振动分析 第一节排气系统概述 1.排气系统的结构与种类 排气系统一般是指与从发动机排气多支管到排气尾管各个部件组合。图5?1为一个V型发动机的排气系统图。排气系统包括:Y型管、催化器、柔性管、前置消音器、后置消音器、中间连接管、尾管、挂钩、挂钩隔振器等部件。 图5?1排气系统的组成 排气系统的一端通过排气多支管与发动机相连,而另一端是通过挂钩与车体相连。图5?2 表示排气系统与发动机与车体的连接示意图。排气系统可以按照温度高低分成热端与冷端,如图5.2所示。离发动机近的部分叫著热端,一般包括排气多支管.催化器等。当气体离发动机越远,温度就越低。冷端包括前置消音器、后置消音器、中间管道和尾管等。一般情况下,柔性连接管是热端和冷端的分界点,但是也有例外,如有些结构的柔性管安装在Y型管上或者有的结构中没有柔性管。 图5.2排气系统与发动机与车体的连接图

Y型管是针对V型发动机的。对4四缸发动机來说,一般来说没有Y型管。对丁?发动机是东-西方向放置的,一般都会有柔性管或者是球型连接器,因为发动机曲轴的转动方向与排气系统垂直,从而引起很大的弯曲与扭转振动。而对于南-北方向放置的发动机來说,一般没有柔性管,因为发动机曲轴的转动方向与排气系统平行,只引起扭转振动而没有弯曲振动。一般來说,弯曲振动通过挂钩传到车体上的力比扭转振动传递的力耍大些。 排气系统的类型有下面儿种:单入口单出口(图5.3(A)),单入口双出口(图5.3(B)),双入口单出口(图5.3(0),双入口双出口(图5. 3(D))和两个独立的排气系统(图5. 3(E))O单入口用在四缸发动机上,双入口用在V型发动机上。单岀口和双出口在四缸发动机和V型发动机上都有应用。独立系统是用在V 型发动机上。 2.排气系统的功能 空气与燃油在发动机内燃烧后,废气要排入到大气中。由於燃烧不彻底,这些废气中含有氮氧化合物、一氧化碳等有害物质。这些有害物质必须经过处理后才能排放到大气中,否则就会造成空气污染。排气系统主要有两大功能: 1)废气处理。排气系统中都安装有催化器,有的系统中安装有多个催化器。当发动机排出的废气经过催化器时,废气在催化器内发生化学反应,将废气转换为无害气体,然后经过管道排入到大气。催化器一般要尽可能地离发动机近些,这样温度高,有利于化学反应。 2)降低噪声。发动机燃烧时发出乜大的噪声,气体和声波在管道中摩擦也会产生噪声。排气系统中通常安装两个消音器:前置消音器和后置消音器。前置消音器基本上是抗性消音器, 主要是针对一些特定的频率。后置消音器可以是抗性消音器也可以是复合消音器,它用來消除较宽频带的噪声。 3.排气系统设计耍考虑的问题

传递路径分析法(TPA)进行车内噪声优化的应用研究

传递路径分析法(TPA)进行车内噪声优化的应用研究 作者:李传兵 摘要:本文基于传递路径分析方法并使用LMS 公司的相关软件,对开发中的某车型的车内轰鸣噪声问题进行了分析,找出了对车内轰鸣声贡献最大的传递路径,并通过有针对性地结构改进,有效地消除了该转速下的轰鸣声问题。 关键词:NVH 传递路径分析法(TPA,Transfer path analysis)贡献量分析 车内振动噪声可以看成是由多个激励经过多条传递路径到达目标点叠加而成的,如果能准确地判断出各主要激励源和传递路径的贡献量,并针对贡献量大的激励源和传递路径作相应的优化改进,则NVH 改进工作效率能得到大大的提高。为此,在汽车的NVH 性能分析中,常常将汽车简化为由激励源(振动源、噪声源)、传递路径和响应点组成的动态系统。能同时考虑激励源和传递路径的传递路径分析法在汽车NVH 性能开发中得到了广泛关注,各专业公司都纷纷开发专门的商业化测试分析系统,LMS 的TPA 分析软件无疑是其中的杰出代表,已成为在汽车领域应用最广泛的商业系统之一。 传递路径分析方法可以用于结构传播噪声和空气传播噪声问题的诊断、分析和优化,本文将以某车型的结构传播噪声优化为例,详细阐述LMS 传递路径分析方法的实际应用过程和效果。 一、(结构)传递路径分析法基本原理 假设汽车受m 个激励力作用,每一激励力都有x、y、z 三个方向分量,每一激励力分量都对应着n 个特定的传递路径,那么这个激励力分量和对应的某个传递路径就产生一个系统响应分量。以车内噪声声压作为系统响应,在线性系统的假设基础上,这个由于结构力输入产生的声压则可以表示为: 上式中,(ω) mnk H 是传递函数,(ω) nk F 是激励力。 由上式所知,激励力和频响函数是TPA 分析的输入量,因此进行TPA 分析需要做的工作

相关主题
文本预览
相关文档 最新文档