当前位置:文档之家› 26黄酮类化合物习题.doc.doc

26黄酮类化合物习题.doc.doc

26黄酮类化合物习题.doc.doc
26黄酮类化合物习题.doc.doc

黄酮类化合物习题

1.常见黄酮类化合物的结构类型可分为哪几类。

2. 试述黄酮类化合物的广义概念及分类依据。写出黄酮、黄酮醇、二氢黄酮、异黄酮、查耳酮、橙酮的基本结构。

3. 试述黄酮(醇)、查耳酮难溶于水的原因。

4. 试述二氢黄酮、异黄酮、花色素水溶性比黄酮大的原因。

5. 如何检识药材中含有黄酮类化合物。

6. 为什么同一类型黄酮苷进行PC,以2%~6%醋酸溶液为展开剂,Rf 值大小依次为三糖苷>双糖苷>单糖苷>苷元。

7. 为什么用碱溶酸沉法提取黄酮类化合物时应注意pH的调节。

8. 简述用碱溶酸沉法从槐米中提取芸香苷加石灰乳及硼砂的目的。

判断题

1.黄酮类化合物广泛分布于植物界,大部分以游离形式存在,一部分以苷的形式存在。

2. 黄酮分子中引入7,4′位羟基,促使电子位移和重排,使颜色加深。

3. 以BAW系统进行PC检识黄酮苷与其苷元,展层后苷元的Rf值大于苷。

4. 用2%~6%醋酸/水溶液为展开剂,对黄酮苷与其苷元进行PC,展层后苷元的Rf值大于苷。

提取与分离

中药黄芩中有下列一组化合物,经下述流程分离后,各出现在何部位?简述理由。

A. 黄芩苷(黄芩素-7-O-葡萄糖醛酸苷)

B. 黄芩素(5,6,7-三OH黄酮)

C. 汉黄芩苷(汉黄芩苷-7-O-葡萄糖醛酸苷)

D. 汉黄芩素(5,7-二OH,

8-OCH3黄酮)

E. 5,8,2-三OH,7-OCH3黄酮

F. 5,8,2-三OH,6,7-二-OCH3黄酮

G. 5,7,4′-三OH,6-OCH3二氢黄酮)H. 3,5,7,2′,6′-五OH二氢黄酮

结构鉴定题

从某中药中得一黄色结晶Ⅰ,分子式C21H21O11,HCl-Mg粉反应呈淡粉红色,FeCl3反应及α-萘酚-浓H2SO4反应均为阳性,氨性氯化锶反应阴性,二氢氧锆反应呈黄色,加枸橼酸后黄色不退.晶Ⅰ的光谱数据如下:

UV λmax nm

MeOH 267 348

NaOMe 275 326 398(强度不降)

AlCl3274 301 352

AlCl3/HCl 276 303 352

NaOAc 275 305(sh) 372

NaOAc/H3BO3 266 300 353

IR:V KBr max cm-1 3401, 1655, 1606, 1504

1HNMR (DMSD-d6,TMS) δppm

3.2~3.9 (6H, m) 3.9~5.1 (4H, 加D2O后消失)

5.68(1H,d,J=8.0)

6.12 (1H, d, J=2.0)

6.42 (1H, d, J=2.0) 6.86 (2H, d, J=9.0)

8.08 (2H, d, J=9.0)

请根据以上提供的信息填空,写出结晶Ⅰ的结构式,并指出

苷键的构型。

习题答案

简答题

1.1.黄酮及黄酮醇类2.二氢黄酮及二氢黄酮醇类3.双黄酮类4.查尔酮类5.异黄酮类6.橙酮类(噢哢类)7.花色素类8.黄烷醇类9.其他类如酮类、苯色原酮类、呋喃色原酮类。

2. ①黄酮类化合物(flavonoids) 原来特指基本母核为2-苯基色原酮(2-phenylchromone) 的一类化合物,现在则是泛指具有C6-C3-C6基本母核的一类成分,即两个苯环(A环与B环,常具有酚羟基) 通过中央三碳原子相互连接而成的一系列化合物。②根据中央三碳原子(即C3部分) 的氧化程度、是否成环以及B-环连接位置(2-或3-位)等进行分类。③

黄酮类:黄酮醇:

二氢黄酮:异黄酮:

查尔酮:橙酮:

3. 一般游离苷元难溶于或不溶于水,易溶于甲醇,乙醇,醋酸乙酯,乙醚等有机溶剂,含有游离羟基的化合物可溶于稀碱水溶液。一般游离苷元水溶性差,其中黄酮、黄酮醇、查尔酮的分子结构的平面性较强,分子排列紧密,分子间引力较大故更难溶于水。

4.相比于黄酮二氢黄酮及异黄酮等分子结构为非平面性,分子排列不紧密,分子间引力较低,有利于水分子进入,故水溶度相对较大。花青素类具有平面结构,但是其以离子形式存在,具有盐的通性,故亲水性较强,水浓度较大。

5.可采用(1)盐酸-镁粉反应:多数黄酮产生红~紫红色。(2)三氯化铝试剂

反应:在滤纸上显黄色斑点,紫外光下有黄绿色荧光。(3)碱性试剂反应,在滤纸片上显黄~橙色斑点。

6.黄酮苷元中,黄酮、黄酮醇、查尔酮等为平面分子,用含水类溶剂如2%~6%醋酸溶液为展开剂,几乎停留在原点,因为其不易溶于水。黄酮成苷后,极性随之增大,黄酮苷中糖链越长,极性越大,在上述展开系统中Rf值越大。所以Rf 值大小依次为三糖苷>双糖苷>单糖苷>苷元

7.黄酮苷类化合物有一定的酸性,更易溶于碱水,较难溶于酸水,所以PH值对于用碱溶酸沉方法提取黄酮类化合物有重要作用,碱溶酸沉就是先用碱水从植物中提取,再将提取液酸化,即可析出黄酮苷类化合物沉淀。但是碱液浓度过高,特别是加热时,强碱破坏黄酮母核。加酸时,酸性也不易过大,以免生成钅羊盐,致使析出的黄酮类化合物又重新溶解。所以要注意PH的调节。

8.1加入石灰乳既可达到碱溶解提取芸香苷的目的,又能使槐米中含存的大量粘液质生成钙盐沉淀除去。但应严格控制在pH8~9,又不得超过10(芸香苷分子中因含有邻二酚羟基的结构,暴露在空气中可被缓慢氧化变为暗褐色,在碱性条件下更易氧化分解)。pH过高,在加热提取过程中可促使芸香苷水解破坏,造成产率明显下降,酸沉淀时加浓盐酸调pH3~4,不宜过低,否则会使芸香苷生成羊盐溶于水,也会降低收率。2 加入硼沙(学名四硼酸钠Na2B4O77H2O)的目的是:芸香苷分子中因含有邻二酚羟基的结构,暴露在空气中可被缓慢氧化变为暗褐色,加入硼沙使其与芸香苷邻二酚羟基络和,这样既保护邻二酚羟基不被氧化破坏,亦保护邻二酚羟基不与钙离子络和,使芸香苷不受损失。同时还有调节碱性水溶液pH值的作用。

判断题

1.这个说法不正确,黄酮类是广泛存在于植物中,但是黄酮苷在植物中也是广泛存在的,并且由于其糖的种类、数量、连接位置和方式的不同,形成了种类丰富的黄酮苷类化合物。

2.这个说法正确的,因为7,4′位引入羟基,羟基上氧的孤对电子,可以使电子位移和重排,存在更多的交叉共轭体系,因而化合物的颜色会加深。

3. 这个说法是正确的,展开剂是BAW系统时,PC是以水为固定相的分配色谱,

黄酮苷在水相中的分配系数大,在有机相中分配系数小,Rf值小,而苷元者相反,故其Rf值大于苷。

4. 这个说法是错的,展开剂是2%~6%醋酸/水溶液时,黄酮苷元极性小,在水溶液中溶解性小,几乎停留在原点或Rf值很小,而黄酮苷极性大,Rf值较大。提取与分离

I是C汉黄芩苷,II是A黄芩苷。

这是因为:A和C都是糖醛苷类,极性大,水溶性也大,不在乙醚层,而留在水层,同时聚酰胺层析原理是形成氢键而被吸附,游离羟基越多形成氢键越多,吸附越牢,越难洗脱,汉黄芩苷C的游离羟基比黄芩苷A少,形成氢键的能力弱,吸附相对较弱,所以C先被洗脱下来,A后被洗脱下来。

III是D汉黄芩素,IV是F,V是E,VI是G,VII是H。

这是因为:硅胶柱层析,氯仿-甲醇洗脱的时候,是吸附原理,按照极性小到大的顺序洗脱下来的,黄酮类的极性小于二氢黄酮的,从而黄酮类先被洗脱,二氢黄酮次之。D含的羟基最少,极性最小,最先被洗脱,其次是F,E次之,G比H少了2个羟基,所以H最后被洗脱下来。

VIII是B黄芩素。

这是因为:黄芩素有邻二酚羟基,能和硼酸反应形成易溶于水的硼酸络合物,可与不含邻二酚羟基的黄酮分离,再酸化就破坏络合物,从而析出。

结构鉴定题

HCl-Mg粉反应淡粉红色,说明是黄酮类化合物;FeCl3反应阳性说明有酚羟基;α-萘酚-浓H2SO4反应阳性说明是苷;氨性氯化锶反应阴性,说明没有邻二酚羟基;二氯氧锆-枸橼酸反应黄色减退,说明有5-OH,没有3-OH;水解产物有葡萄糖和化合物a,化合物a分子式为C15H10O6,α-萘酚-浓H2SO4反应阴性,二氯氧锆-枸橼酸反应黄色不退,说明结构中只有一份子葡萄糖,且连接位置为3位。

MeOH中有348nm吸收带为黄酮或者黄酮醇3位成苷;甲醇钠比甲醇中带Ⅰ红移50nm,说明结构中有4’-OH;乙酸钠比甲醇中带Ⅱ红移8nm,说明结构中有7-OH;氯化铝和甲醇中数据比较,带都红移,说明结构中有5-OH;氯化铝和氯化铝盐酸数据基本一致,说明结构中没有邻二酚羟基。

黄酮类化合物

黄酮测定的研究进展 简要:黄酮类化合物(Flavonoids),又称生物黄酮(Bioflavon-oids)或植物黄酮,是植物在长期自然选择过程中产生的一些次级代谢产物,黄酮类化合物有着广泛的生物活性和多种药理活性,比如抗氧化、抗炎、抗诱变、抗肿瘤形成与生长等,特别是近年来关于黄酮在心血管、脑血管、肿瘤等方面的研究已经比较深入,此外黄酮类物质还有低毒性的特点,因此长期以来一直是天然药物和功能性食品研究开发的热点[1]。 关键词:黄铜,含量,测定方法,研究进展 前言:黄酮类物质是植物光合作用产生的一种天然有机物。植物界中分布广泛,主要分布于芸香料、唇形科、豆科、伞形科、银杏科、菊科等。根据化学方法定义黄酮类物质为含一个共同的苯基苯并二氢吡喃环结构,有一个或多个羟基取代基,包括其衍生物。在食物中,黄酮类物质一般以酯类、醚类或配糖类衍生物及混合物的形式存在,共有5000 多种化合物。对于哺乳动物,只能通过饮食获取黄酮物质,这些食物包括水果、蔬菜、谷物、坚果、茶及红酒。在日常膳食中,黄酮类物质通常表现为具有抗氧化性的羟基衍生物形态,显示出多种生物活性,对于一些疾病,例如癌症和心血管疾病,胃和十二指肠的病理性失调,以及病毒和细菌感染的预防和治疗。此外,类黄酮还被发现有广泛的药物特性,包括抗氧化性、抗过敏、抗病毒及预防糖尿病,对肝和胃的保护,抗病原体及抗瘤活性。除在医药工业上已广泛应用其生理活性外,目前也将黄酮类物质作为功能食品的添加剂[2] 。 (一)测定黄铜的几种方法 1 紫外分光光度法 紫外分光光度法具有重复性好、准确、简便、易掌握、不需要复杂的仪器设备, 加之所需试剂便宜易得, 因此该方法应用于测定植物中黄酮含量最为广泛[ 3]。 1.1 直接测定法 大多数黄酮类化合物分子中存在桂皮酰基和苯甲酰基组成的交叉共轭体系, 其MeOH 谱200 nm~400 nm的区域内存在两个主要的紫外吸收带, 峰带I(300 nm~400nm)和峰带Ⅱ( 220 nm~280 nm)[ 4]。 1.2 比色法 向供试样品中加入显色剂后测定吸光度以测定其含量, 这种方法称为比色法。黄酮类化合物分子中若具有3- 羟基、5- 羟基或邻二酚羟基, 易于与金属盐类如铝盐、锆盐、锶盐、镁盐等反应, 生成有色金属络合物。常用于黄酮类化合物含量测定的金属盐试剂有Al(NO3)3、A1Cl3等,这些络合物作用在光

黄酮类化合物

黄酮类化合物 黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化 合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。此外,它还常与糖结合成苷。多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。黄酮类化合物不同的颜色为天然色素家族添加

了更多色彩。这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。糖链越长则水溶度越大。黄酮类化合物因分子中多具有酚羟基,故显酸性。酸性强弱因酚羟基数目、位置而异。3、显色:1.盐酸-镁粉(或锌粉) 反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。而与其它黄酮类化合物均不显色。3. 黄酮类化合分子中常含有下列结构单元,故常可与铝盐、铅盐、锆盐、镁盐、锶盐、铁盐等试剂反应,生成有色络合物。与1%三氯化铝 或硝酸铝溶液反应,生成的络合物多为黄色(λmax=415nm),并有荧光,可用于定性及定量分析。4、黄酮对身体的好处黄酮广泛存在自然界的某些植物和浆果中,总数大约有4千 多种,其分子结构不尽相同,如芸香苷、橘皮苷、栎素、绿茶 多酚、花色糖苷、花色苷酸等都属黄酮。不同分子结构的黄酮可作用于身体不同的器官,如山楂--心血管系统,兰梅-- 眼睛,酸果--尿路系统,葡萄--淋巴、肝脏,接骨木果--免疫系统,平时我们可以通过多食葡萄、洋葱、花椰莱、喝红酒、多饮绿茶等方式来获得黄酮,作为身体的一种补充。 黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清

黄酮类化合物

第五章黄酮类化合物 一、选择题 (一)单项选择题(在每小题的五个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.黄酮类化合物的颜色与下列哪项因素有关() A. 具有色原酮 B. 具有色原酮和助色团 C. 具有2-苯基色原酮 D. 具有2-苯基色原酮和助色团 E.结构中具有邻二酚羟基 3.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 4.黄酮类化合物的颜色加深,与助色团取代位置与数目有关,尤其在()位置上。 A. 6,7位引入助色团 B. 7,4/-位引入助色团 C. 3/,4/位引入助色团 D. 5-位引入羟基 E. 引入甲基 5.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 6.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮

D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 7.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 8.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 9.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮A.(1)>(2)>(3) B.(2)>(3)>(1) C.(3)>(2)>(1)D.(2)>(1)>(3) E.(1)>(3)>(2) 10.下列黄酮类化合物酸性最弱的是() A. 6-OH黄酮 B. 5-OH黄酮 C. 7-OH黄酮 D. 4/-OH黄酮-二OH黄酮 11.某中药提取液只加盐酸不加镁粉,即产生红色的是() A. 黄酮 B. 黄酮醇 C. 二氢黄酮 D. 异黄酮 E. 花色素 12.可用于区别3-OH黄酮和5-OH黄酮的反应试剂是() A. 盐酸-镁粉试剂 B. NaBH4试剂 C.α-萘酚-浓硫酸试剂 D. 锆-枸橼酸试剂 E .三氯化铝试剂 13.四氢硼钠试剂反应用于鉴别() A. 黄酮醇 B. 二氢黄酮 C. 异黄酮

黄酮类化合物的生理功能

黄酮类化合物的生理功能 黄酮类化合物广泛存在于植物中,实际上存在于植物的所有部分,包括根、心材、树皮、叶、果实和花中,光全作用中约有2%的碳源被转化成类黄酮。早在30年代人们就发现了黄酮类化合物具有维生素C样的活性,曾一度被视为是维生素P。至今法国与俄罗斯仍继续称黄酮类化合物为维生素P。Pratt等人研究了黄酮类化合物的抗氧化性质,认为黄酮是作为一级抗氧化剂而起作用的,它们具有显著的抗氧化性能。黄酮抗油脂过氧化的作用早在60年代就已经被证实了。80年代以来,对黄酮类化合物的研究逐渐转向其清除自由基的能力、抗衰老及对老年病的防治功效上。 黄酮类化合物中含有消炎、抑制异常的毛细血管通透性增加及阻力下降、扩张冠状动脉、增加冠脉流量、影响血压、改变体内酶活性、改善微循环、解痉、抑菌、抗肝炎病毒、抗肿瘤具有重要生物活性的化合物,有很高的药用价值。中草药含黄酮类化合物的很多,已经证明类黄酮是许多中草药的有效成份。例如满山红中的杜鹃素、小叶枇杷中的小叶枇杷素、矮地茶中的槲皮苷、铁包金中的芦丁、白毛夏枯草和青兰中的木犀草素、红管药中的槲皮素、葛根中的黄豆苷与葛根素、毛冬青与银杏叶中的黄酮醇苷、黄芩中的抗菌成分黄芩素和解热有效成分黄芩苷等。此外,还有很多中草药富含黄酮类成分,如槐米、陈皮、射干、红花、甘草、蒲黄、枳实、芫花、金银花、菊花、山楂、淫羊藿、桎木和地锦等。除了药用价值外,其中的部分黄酮类化合物(特别是来源自药食两用的中草药)显然可应用在功能性食品。 黄酮和黄酮醇是植物界分布最广的黄酮类化合物,广泛存在于食用蔬菜及水果中,在沙棘、山楂、洋葱等中含量较高,茶叶、蜂蜜、果汁、葡萄酒中含量丰富。椐估计人体每天从食物中摄入这类物质可达1g,产生有益的生理作用。黄酮类化合物无显著毒性,大鼠对槲皮素的经口LD50为10~50g/kg ,小鼠一次口服15g/kg,观察7d无一死亡。临床病人摄取芦丁2.25g持续7d或60mg/d连续5年,均无任何副反应。在其他一系列大剂量、长时间的动物试验中,均未发现有致癌性。显性致死试验、细胞姐妹染色体试验、微核试验证明槲皮素类衍生物无致突变作用。 黄酮类化合物的生理功能可概括为: ⑴调节毛细血管的脆性与渗透性。 ⑵是一种有效的自由基清除剂,其作用仅次于维生素E。 ⑶具有金属螯合的能力,可影响酶与膜的活性。 ⑷对维生素C有增效作用,似乎有稳定人体组织内维生素C的作用。 ⑸具有抑制细菌和抗生素的作用,这种作用使普通食物抵抗传染病的能力相当高。 ⑹在两方面表现有抗癌作用,一方面是对恶性细胞的抑制(即停止或抑制细胞的增长),另一方面是从生化方面保护细胞免受致癌物的损害。 尽管对黄酮类化合物的看法尚有矛盾的方面,但它目前仍被应用来防治下列一些疾病: ⑴毛细血管的脆性和出血。 ⑵牙龈出血。 ⑶眼的视网膜内出血。

黄酮类化合物提取分离纯化及其活性的研究进展

黄酮类化合物提取分离纯化及其活性的研究进展姓名常姣专业微生物学 摘要文章综述了黄酮类化合物的结构特征及提取、分离纯化技术介绍了黄酮类化合物的生物活性,并对其开发利用进行了展望。旨在为黄酮类化合物的研究、开发以及应用提供参考。 关键词黄酮;提取;分离纯化;生物活性 民以黄酮类化合物也称黄碱素, 是广泛存在于自然界的一大类化合物, 在植物体内大多与糖结合成甙的形式存在, 也有部分以游离状态的甙元存在。由于最先发现的黄酮类化合物都具有一个酮式羰基 结构, 又呈黄色或淡黄色, 故称黄酮[ 1]。 目前对天然黄酮类化合物的提取方法较多,如溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法及半仿生提取法等, 每种方法都有它各自的优点和点。用上述方法提取的黄酮类化合物仍然是一个混合物, 不仅是含有其它杂质的粗品, 而且是几种黄酮类成分的混合物, 需进一步分离纯化, 常用的方法有柱层析法、重结晶法、铅盐沉淀法和高效液相色谱法等。 黄酮类化合物具有降低血管脆性及异常的通透性、降血脂、降血压、抑制血小板聚集及血栓形成、抗肝脏病毒、抗炎、抗菌、解栓、抗氧化、清除自由基、抗衰老、抗癌、防癌、降血糖、镇痛和免疫等生理活性[ 2-5]。这些生理活性已被关注,对该类化合物的研究成为医药界的热门课题。人体自身不能合成黄酮类化合物而只能从食物中摄取,因此多年来科学家都在积极研究探讨从植物体中分离 纯度高、活性强的黄酮类化合物[6]。 1黄酮类化合物的理化性质 黄酮类化合物是以2-苯基色原酮为母核而衍生的一类通过三碳链相互连接而成的大多具有基本碳 架的一系列化合物,且母核上常有羟基、甲氧基、甲基、异戊烯基等助色取代基团。黄酮类化合物多为晶体固体,多数具有颜色,少数(如黄酮苷类)为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,其余则无旋光性) 黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有很大差异) 一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂) 其中,黄酮、黄酮醇、查儿酮等平面型分子,因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等,因系非平面型分子,故排列不紧密,分子间引力降低,有利于水分子进入,水中溶解度稍大。 2黄酮类化合物的提取分离及纯化 黄酮类化合物在花、叶、果等组织中多以苷元的形式存在,而在根部坚硬组织中,则多以游离苷元形式存在。因此,不同来源、部位、种类黄酮提取所采取的方法不同[6]。分离黄酮类化合物的方法很多,根据黄酮类化合物与混入其他化合物的极性不同可采用溶剂萃取法,根据黄酮化合物在酸性水中难溶、碱性水中易溶的特点可采用碱提酸沉法等。 2.1溶剂法 2.1.1 热水提取法

(整理)天然药物化学第4章黄酮类化合物.

第4章黄酮类化合物一、选择题 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 3.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 4.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮 D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 5.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 6.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 7.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮 A.(1)>(2)>(3) B.(2)>(3)>(1) 精品文档

C.(3)>(2)>(1) D.(2)>(1)>(3) E.(1)>(3)>(2) 8.色原酮环C2、C3间为单键,B环连接在C2位的黄酮类化合物是 A.黄酮醇 B.异黄酮 C.查耳酮 D.二氢黄酮 E.黄烷醇 9.银杏叶中含有的特征成分类型为 A.黄酮醇 B.二氢黄酮 C.异黄酮 D.查耳酮 E.双黄酮 10.黄酮类化合物大多呈色的最主要原因是 A.具酚羟基 B.具交叉共轭体系 C.具羰基 D.具苯环 E.为离子型 11.二氢黄酮醇类化合物的颜色多是 A.黄色 B.淡黄色 C.红色 D.紫色 E.无色 12.二氢黄酮、二氢黄酮醇类苷元在水中溶解度稍大是因为 A.羟基多 B.有羧基 C.离子型 D.C环为平面型 E. C环为非平面型 13.黄酮苷和黄酮苷元一般均能溶解的溶剂为 A.乙醚 B.氯仿 C.乙醇 D.水 E.酸水 14.下列黄酮类酸性最强的是 A.7-OH黄酮 B.4′-OH黄酮 C.3′,4′-二OH黄酮 D.7,4′-二OH黄酮 E.6,8-二OH黄酮 精品文档

(整理)黄酮类化合物-

第七章 黄酮类化合物 黄酮类化合物(flavonoids )是广泛存在于自然界的一大类化合物,大多具有颜色。这一类化合物主要存在于双子叶植物和裸子植物中,在菌类、藻类、地衣类等低等植物中较少见。此类化合物在植物体中大部分与糖结合成苷,一部分以游离状态存在。 黄酮类化合物有多方面的生物活性。例如在心血管系统方面,槐米中的芸香苷和陈皮中的橙皮苷等成分有调节血管通透性和维生素P 样作用,可用作防治高血压及动脉硬化的辅助药物;银杏中的银杏黄酮、葛根中的葛根素等成分有明显的扩张冠状动脉作用。在抗肝脏毒方面,水飞蓟素有护肝的作用,可用作治疗急慢性肝炎、肝硬化及多种中毒性肝损伤。在抗菌作用方面,黄芩中的黄芩苷、黄芩素等成分有一定程度的抗菌作用。此外,黄酮类化合物在镇咳、祛痰、解痉等方面也有一定治疗作用。因此黄酮类化合物是天然药物中的一类重要的有效成分。 第一节 黄酮类化合物的结构与分类 以前,黄酮类化合物主要是指基本母核为2-苯基色原酮类化合物,现在则是泛指两个苯环(A 环与B 环)通过中央三碳链相互连接而成,具有6C-3C-6C 基本骨架的一系列化合物。 O O O O H 1 234 5 6 78A B C 1 / 2/ 3/4/ 5/ 6/ 根据中央三碳链的氧化程度、三碳链是否成环及B 环连接位置等特点,可将黄酮类化合物进行分类(表7-1)。 色原酮(苯并-γ-吡喃酮) 2-苯基色原酮(黄酮)

黄酮类化合物多为上述基本母核的衍生物,在A环和B环上常有羟基、甲氧基、异戊烯基等取代基。组成苷的糖类常有D-葡萄糖、D-半乳糖、L-鼠李糖、L-阿拉伯糖、D-木糖及D-葡萄糖醛酸等。也有双糖和三糖,如芸香糖、龙胆二糖、龙胆三糖等。糖多结合在C3、C5、C7位,其它位置也有连接。 下面将黄酮类化合物的主要类型举例如下: 一、黄酮和黄酮醇类 基本结构: O R O R=H 黄酮R=OH 黄酮醇

黄酮类化合物

黄酮类化合物 黄酮类化合物是自然界存在的最大类别的酚类化合物之一,它广泛存在于植物的各个部位,尤其是花叶部位,主要存在于芸香科、唇形科、豆科、伞形科、银杏科、与菊科等。有文献记载约有20%药中含有黄酮类化合物,可见其资源之丰富。许多研究已表明黄酮类化合物具有多种生物活性,除利用其抗菌、消炎、抗突变、降压、清热解毒、镇静、利尿等f乍佣外,在抗氧化、抗癌、防癌、抑制脂肪氧化酶等方面也有显著效果。他是大多数氧自由基的清除剂,因而能提高SOD(过氧化物歧化酶)的活力,减少MDA(脂质过氧化物丙二醛)及OX —LDL(氧化低密度脂蛋白)的生成。他可以增加冠脉流量:对实验性心肌梗塞有对抗作用,对急性心肌缺血有保护作用,对治疗冠心病、心绞痛、高血压等有显著效果,对降低舒张压,防治心律失常、心血管病和活血化瘀也起重要作用。由于黄酮类化合物的这些生物活性使他的研究进入了—个新的阶段,掀起了黄酮类化合物研究、开发;f0用热潮,促使其在化妆品、医药、食品等工业中有广泛的应用。目前发现的黄酮类化合物已达5000多种,但研究亦发现,在这众多的黄酮类化合物中却因其结构的不同,有的表现出生物活性,有的却没有生物活性,而且生物活性亦因其结构的差异而不同。所以提取分离出具有较高生物活性的黄酮类化合物对医药及食品工业是十分重要的。 一、国内外研究现状 邢秀芳研究了纤维素酶在葛根总黄酮提取中的应用,结果显示在纤维素的作用下,葛根总黄酮的收率提高了130/0。廖亮研究了银杏叶中总黄酮提取方法结果表明乙醇提取较好。方桂珍正交实验研究仙鹤草中总黄酮的提取工艺,考察浸提液浓度、浸提温度、浸提时间、浸提次数、液科比等5个因素对f山鹤草总黄酮含量的影响,确立了仙鹤草总黄酮最佳提取条件为:浸提液体积分数40%,液料比10:1,浸提温度7d℃,回流提取3次,每次0.5h。 高红宁采用紫外分光光度法测定苦参中总黄酮的含量,研究大孔树脂AB一8对苦参总黄酮的吸附性能及原液浓度、pH、流速、洗脱剂的种类对树脂吸附性的影响,结果表明原液浓度为0285mg/ml,pH值为4,流速为3BVm洗脱剂用50%乙醇时,AB一8树脂,吸效果较好。康纯研究了微乳薄层色谱对黄酮类层分分离鉴定,以6种SDS一正丁醇一正庚烷一水徽乳液作为展开剂,通过聚酰胺薄层层析,分离和检测14种中药材、饮片及中成

银杏叶中黄酮类化合物的含量测定

江苏畜牧兽医职业技术学院 毕业论文(设计) 专业药品质量检测技术班级药检071 学号200703123124 论文 (设计) 题目:银杏叶中黄酮类化合物的含量测定 学生姓名:刘江南 设计地点:江苏畜牧业兽医职业技术学院 指导教师:赵丽职称讲师 论文完成时间: 2010年5月20日

银杏叶中黄酮类化合物的含量测定 刘江南 药品质量检测技术 摘要:黄酮类化合物是银杏叶的主要药用成分,其黄酮含量在很大程度上决定着银杏叶的利用价值。以十二烷基硫酸钠(SDS)一正丁醇一正庚烷一水 微乳系统为流动相,预制聚酰胺薄层板为固定相,通过调节微乳系统的 极性,较好地分离出十几种银杏叶黄酮。与传统的流动相系统—有机溶 液系统相比,微乳系统显示出较强的分离优势。通过对大龄银杏叶不同 生长时期黄酮含量的测定与比较,分析银杏叶中黄酮含量随生长期的变 化规律,揭示出大龄银杏树采摘叶片的最佳时期。试验结果表明:不同 生长时期的银杏叶黄酮含量变化幅度较大,在1年中黄酮含量出现2次峰 值,8月份出现第1个峰值,黄酮含量为0.884%, 以后下降较快,10月叶 色发黄后又上升到最高值 0.977%。 关键词:银杏叶黄酮含量薄层色谱生长时期高效液相色谱 Title:In Gingko leaf flavonoid content determination Liujiangnan Drug quality testing technology Abstract:Flavonoids are the main medicinal components of ginkgo biloba,its flavonoid content to a large extent determines the value of ginkgo biloba use. Sodium dodecyl sulfate (SDS) 1-butanol 1-heptane microemulsion system of water as the mobile phase, pre-polyamide thin-layer plate as the stationary phase, by adjusting the polarity of the microemulsion system, well separated a dozen of flavonoids. Mobile phase with the traditional system - the organic solution systems, the microemulsion system showed strong separation advantage.Leaves of Ginkgo biloba on older growth and flavonoids content during the comparison, analysis of flavonoids of Ginkgo biloba in the variation with growth phase, revealing the older leaves of ginkgo trees picking the best time. The results showed that: different growth stages of the content of flavonoids in a significant reduction in 1 year in the flavonoid content of 2 times the

天然产物:黄酮类化合物

黄酮类化合物 摘要:绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及 抗菌防病等方起着重要的作用,更为重要的是,它有很多药理活性,如心血管系统活性、抗菌及抗病毒活性、抗肿瘤活性、抗氧化自由基活性、抗炎、镇痛活性、保肝活性等。随着生活水平的提高和生活节奏的改变,不管是癌症还是心血管疾病都已成为人类死亡病因的重大杀手,也是人们健康的“无声凶煞”!而抗衰老则是更古至今不变的话题。因此近几年对该类物质的研究如火如荼,并取得重大突破。本文主要阐述几种提取和测定黄酮类化合物的方法及其功能,为工业中从植物中提取黄酮类化合物提供依据。 关键字:黄酮类化合物提取方法功能 正文:黄酮类化合物(flavonoids)泛指两个具有酚羟基的苯环(A-与B-环)通过中央三 碳原子相互连结而成的一系列化合物,以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素。其中包括黄酮的同分异构体及其氢化的还原产物,也即以C6-C3-C6为基本碳架的一系列化合物。黄酮类化合物在植物界分布很广,在植物体内大部分与糖结合成苷类或碳糖基的形式存在,也有以游离形式存在的。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。在了解黄酮类化合物化学结构的基础上,科研工作者创造了多种黄酮类化合物提取和测定方法。 1提取方法 1.1碱液提取法 黄酮类化合物大多具有酚羟基,易溶于碱水,酸化后又可沉淀析出其原因一是由于黄酮酚羟基的酸性,二是由于黄酮母核在碱性条件下开环形成 2 -羟基查耳酮,极性增大而溶解因此可用碱性水( 碳酸钠氢氧化钠氢氧化钙水溶液) 或碱性稀醇( 50%乙醇) 浸出,浸出液经酸化后析出黄酮类化合物氢氧化钠水溶液的浸出能力高,但杂质较多,不利于纯化当植物材料( 如花和果实) 含有较多的果胶黏液质及水溶性杂质时,宜采用石灰水,使它们与氢氧化钙生成钙盐沉淀滤除但浸出效果不如氢氧化钠水溶液好,同时有些黄酮类化合物能与钙结合成不溶性物质被滤除,一般可以根据不同的原料使用不同碱性溶液在用碱酸法提取纯化时,但应避免用强碱,用强碱尤其在加热时易破坏黄酮母核在加酸酸化时,酸性也不宜过强,以免生成盐使析出的黄酮类化合物重新溶解影响产率,pH 值为 10的氢氧化钠溶液从菊花中提取黄酮类物质时,效果较好 1.2水提法 水提法适于黄酮贰物质提取该法成本低对环境及人类无毒害设备简单,适合工业化大生产,但提取率低,提取物中杂质较多( 如无机盐蛋白质糖类等),后续分离麻烦,但如果直接用提取液作原料生产制剂或饮料等,因消耗溶剂的费用比其他方法低,仍为一种可取的提取方法胡敏等[4]研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法结果表明: 以水为提取剂,在 90℃水溶回流浸提银杏叶 2 次, 4 h /次,经沉淀过滤浓缩后,用树脂精制,冷冻干燥后,制得总黄酮苷含量高的提取物,产品得率为银杏叶干重1. 2% ~ 1. 5% 1.3酶解法

黄酮类化合物

天然黄酮类化合物分离纯化及鉴定研究概况 摘 要 黄酮类化合物是一类在植物中分布广泛、具有多种生物活性的多酚类化合物。在人类的营养、健康和疾病防治有着广阔的应用前景。本文介绍了天然黄酮类化合物的结构特点、提取分离、纯化及鉴定研究方法,综述了部分国内外近年来分离纯化鉴定黄酮类化合物的文献报道,并对其研究和应用前景进行展望。 关键词 黄酮类化合物 分离纯化 鉴定 研究方法 研究概况 黄酮类化合物又称黄碱素或黄酮体,是一类存在于植物中的天然产物,在自然界中广泛分布,属于植物次级代谢产物,在植物的叶子和果实中少部分以游离形式存在,大部分与蔗糖合成苷类,以配基的形式存在。到目前为止,已经发现5000多种植物中含有黄酮类化合物,黄酮类化合物主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科等植物中。许多研究已表明黄酮类化合物具有显著的生理药理活性,除具有抗菌、消炎、抗突变、降压、清热解毒、镇静、利尿等作用外,在抗氧化、抗癌、防癌、抑制脂肪酶等方面也有显著效果。它是大多数氧自由基的清除剂,对冠心病、心绞痛等疾病的治疗效果显著[1]。黄酮类化合物安全、无毒,即是药品又是食品,在医药、食品加工等方面已被广泛应用。此外,黄酮类化合物还具有保鲜和护肤美容等作用。因此,黄酮类化合物的功用引起了人们的广泛重视,对该类化合物的研究已成为国内外研究的热门课题。 1 黄酮类化合物的结构和种类 黄酮类化合物,又名生物类黄酮化合物,是色原酮或色原烷的衍生物。黄酮类化合物以前主要是指基本母核结构为2- 苯基色原酮类化合物,目前则泛指 2 个具有酚羟基的苯环(A 和 B ) 通过中央三碳链相互连结而成的一系列化合物。它们一般是由二个苯环(A -环与B -环)通过中央三碳链(C -链)相互连接而成,即具有C6-C3-C6基本骨架。黄酮类化合物的基本结构见图1。 O O O O A C 23456 7 8B 1' 2'3'4'5'6'O 原酮C 6C 3C 612-苯基色原酮 根据三碳链氧化程度、B 环 (苯基) 联结位置(2 位或 3 位) 以及三碳链是否呈环状等特点,可将黄酮类化合物大致分为:黄酮类、黄酮醇类、二氢黄酮类、二氢黄酮醇类、异黄酮类、二氢异黄酮类、黄烷- 3-醇、查尔酮类 、黄图1 黄酮类化合物的基本结构

黄酮类化合物

黄酮类化合物1.分类

几种重要黄酮类化合物: 黄芩苷甘草素 O O 876 5 4 3 25'1'6' 2'4'3' 1 OH HO O O COOH OH OH OH O O 8 6 5 4 325' 1'6' 2'4'3'1 HO OH 7 牡荆素葛根素 O 7 6 54 325'1'6' 2'4'3'1 OH HO 8 O HO HO CH 2OH HO O O 6 5 425' 1' 6' 2' 3'1 3 OH HO O HO HO CH 2OH HO 78 4' 槲皮素(+)-儿茶素 O O 8 7 6 54 325'1'6' 2'4'3' 1 OH HO OH OH OH 2. UV 谱 1)黄酮类化合物在甲醇溶液中的UV 谱

识别诀窍: 1.单纯黄酮在带Ⅱ最大吸收波长为250nm,如红移将近20nm考虑 5位有羟基取代,一旦红移不超过10nm,则一定5位无羟基取代,如果稍稍红移,则6、7、8位可能有羟基取代; 2.带Ⅱ强,带Ⅰ弱(肩峰),考虑异黄酮、二氢黄酮和二氢黄酮 醇,二氢黄酮和二氢黄酮醇最大吸收波长比异黄酮大; 3.带Ⅱ弱(近乎肩峰),带Ⅰ强,考虑查耳酮和橙酮,橙酮最大 吸收波长比查耳酮大; 4.带Ⅱ带Ⅰ都有一定程度的峰(此时可能带Ⅱ弱,带Ⅰ强,但不同于 查耳酮和橙酮,不是肩峰),此时考虑黄酮和黄酮醇,黄酮醇带Ⅰ最大吸收波长比黄酮大(还是由于羟基的影响而红移);当带Ⅰ>350

nm,则多为黄酮醇或其苷类; 5.如果带Ⅰ最大吸收波长超过了400nm,极少可能为上述黄酮类, 有可能为橙酮类或花青素类; 6.3-OH甲基化或苷化使带Ⅰ(328—357nm)与黄酮的带Ⅰ波长范 围重叠,5-OH甲基化使带Ⅰ和带Ⅱ紫移5—15nm,4’-OH甲基化或苷化使带Ⅰ紫移3—10nm。 2)加入诊断试剂的黄酮类化合物在甲醇溶液中的UV谱 因黄酮及其苷类均可溶于甲醇(MeOH)和乙醇,而乙醇中含有的痕迹量水 分可以抑制诊断试剂三氯化铝(AlCl3)与黄酮上邻二酚羟基(OH)形成络合物,故多选用MeOH做紫外-可见光谱测定用的溶剂;然后在溶有样品的MeOH溶液中,分别加入五种诊断试剂:甲醇钠(NaOMe)、醋酸钠(NaOAc)、醋酸钠/硼酸(NaOAc/H3BO3)、三氯化铝(AlCl3)、三氯化铝/盐酸(AlCl3/HCl),将测得的各种谱图进行对比分析,解析该类化合物的结构。 1加入NaOMe后立即测定。 如带Ⅰ红移40—60 nm,且强度不降,示有4’-OH;如带Ⅰ红移50—60 nm,强度下降,示有3-OH而无4’-OH;如5 min后测得的图谱带Ⅰ、带Ⅱ均衰减,示有对碱敏感的取代图式,如3’,4’-、3,3’,4’-、5,6,7-、5,7,8-、3’,4’,5’-OH取代等。 原因:母核上的所有酚OH在NaOMe强碱性下均可解离,故可引起相应峰带大幅度红移。 2加入NaOAc(未熔融)。 带Ⅱ红移5—20 nm时,示有7-OH;如带Ⅰ在长波一侧有明显肩峰时,示有4’-OH,但无3-及/或7-OH。

黄酮类化合物生物活性的研究进展_王慧

黄酮类化合物生物活性的研究进展 王 慧 (山东博士伦福瑞达制药有限公司,山东 济南 250101) 摘 要:黄酮类化合物是广泛存在于自然界的一类多酚化合物,有许多潜在的药用价值。现就黄酮类化合物抗肿瘤、抗心血管疾病、抗氧化抗衰老、抗菌抗病毒、免疫调节等作用的研究进展作一综述,以期为开发利用该类药物提供参考。关键词:黄酮类化合物;生物活性;综述文献 中图分类号:R282.71 文献标识码:A 文章编号:1672-979X (2010)09-0347-04 收稿日期:2010-05-31 作者简介: 王慧(1974-),女,山东临沭人,主管药师,从事质量控制工作 E-mail : wanghui0602@https://www.doczj.com/doc/0e3787645.html, Progress in Bioactivity of Flavonoids WANG Hui (Shandong Bausch & Lomb Freda Phar. Co., Ltd., Jinan 250101, China ) Abstract: Flavonoids are polyphenols widely found in nature and they have many potential medicinal values. This paper reviews the progress in anti-tumor, anti-cardiovascular disease, anti-oxidation and anti-aging, antibacterial and antivirus, immunological regulation of flavonoids, which can provide the references for the development and utilization of flavonoids. Key Words: flavonoids; bioactivity; review 黄酮类化合物是一类低分子植物成分,具有C6-C3-C6 基本构型,为植物体多酚类代谢物。主要分为黄酮及黄酮醇类、二氢黄酮及二氢黄酮醇类、黄烷醇类、异黄酮及二氢异黄酮类、双黄酮类,以及查尔酮、花色苷等[1]。黄酮类化合物独特的化学结构使其对哺乳动物和其它类型的细胞有重要的生物活性。黄酮类化合物有高度的化学反应性,例如清除生物体内的自由基;又有抑制酶活性、抗肿瘤、抗菌、抗病毒、抗炎症、抗过敏、抗衰老、抗心血管疾病糖尿病并发症等药理作用,且无毒无害。黄酮类化合物还是茶及黄芩、银杏、沙棘等众多中草药的活性成分。因此受到广泛关注,研究进展很快。1 黄酮类化合物的理化性质 黄酮类化合物多为晶体且有颜色,少数如黄酮苷类为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,余者则无。黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有差异,一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂。其中,黄酮、黄酮醇、查儿酮等平面型分子因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等系非平面型分子,排列不紧密,分子间引力较小,有利于水分子进入,水溶解度稍大[2]。 2 黄酮类化合物的生物活性2.1 抗肿瘤活性 黄酮类对多种肿瘤细胞有明显的抑制作用,主要表现在抑制细胞增殖、诱导细胞凋亡、干预信号转导、影响细胞 [11] Denyer S P, Baird R M. Guide to microbiological control in pharmaceuticals and medical devices[M].2nd ed. Boca Raton: CRC Press, 2006: 325-326. [12] Mao k, Masafumi U, Takeshi K, et al Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo [J].Cornea , 2010, 29(1): 80-85. [13] Noecker R. Effects of common ophthalmic preservatives on ocular health[J]. Adv Ther , 2001, 18: 205-215. [14] Kostenbauder H B. Physical factors influencing the activity of antimicrobial agents// Block S S. Disinfection, Sterilization and Preservation[M]. 3rd ed. PhiladelpHia: Lea and Febiger, 1983: 811-828. [15] Berry H, Michaels I. The evaluation of the bactericidal activity of ethylene glycol and some of its monoalkyl ethers against Bacterium coli [J]. J Pharm Pharmacol , 1950, 2: 243-249.

黄酮类化合物的研究概况

黄酮类化合物的研究概况 XiXi 黄酮类化合物是广泛存在于自然界的一大类化合物,是色原烷的衍生物,其 特点是具有C 6—C 3 —C 6 的基本骨架,并可根据中间吡喃环的不同氧化水平和两侧 A、B环上连接的各种取代基,而分为不同的黄酮类型,属于植物在长期自然选择过程中产生的一些次级代谢产物。黄酮类化合物可以分为10多个类别:黄酮、黄烷醇、异黄酮、双氢黄酮、双氢黄酮醇、噢弄、黄烷酮、花色素、查耳酮、色原酮等,现已发现约4 000余种黄酮类化合物,主要存在于植物的叶、果实、根、皮中,实验证明其具有广泛的生理和药理活性(包括抗病毒、抗癌、抗氧化、抗炎、抗衰老等),因此对该化合物的研究已成为国内外医药界研究的热门话题,是一类具有广泛开发前景的天然药物,在医药、食品等领域均有巨大的应用前景。 1. 黄酮类化合物的功能作用 1.1 抗氧化、清除氧自由基作用 自由基被认为与炎症、自身免疫病、肿瘤、衰老等疾病的成因有直接关系。黄酮类化合物具有清除自由基和抗氧化的能力,有人研究了从4种大麦麦叶中提取的黄酮类化合物对超氧阴离子自由基、羟自由基的清除作用,得出随着黄酮浓度的增加,清除率呈上升趋势的结论。还有用化学荧光法对不同黄酮类化合物进行了分析测定,确定了它们的强抗氧化性。 1.2 调节心血管系统作用 在心脏功能调节方面黄酮类化合物主要体现在抗心律失常和改善冠脉循环方面。在血管功能的调节方面,芦丁能协同增效维生素C一起降低毛细血管脆性和通透性,维持毛细血管稳定性。在调节血脂 血压方面,山楂黄酮、大豆异黄酮等能降低高脂血症人群中的血清总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)含量,并使高密度脂蛋白胆固醇(HDL-C)含量有一定程度的升高;黄酮类化合物降低血压主要表现在促进一氧化氮(NO)的生成和对血管平滑肌细胞异常凋亡的双向调节作用上。在抗血栓方面,黄酮类化合物能改善血液流变性,以及对内皮细胞和黏附分子表达的影响。黄酮类化合物在调节心血管作用方面与其具有良好的抗氧化性是分不开的。 1.3 抗癌、防癌作用 黄酮类化合物抗癌、防癌的作用,主要是通过其抗自由基作用、直接抑制癌细胞生长、抗致癌因子、抑制血管生长、提高机体免疫力而实现。由于生物类黄酮的抗氧化和清除自由基能力,它能有效地阻止脂质过氧化引起的细胞破坏。田爽等对染料木黄酮在人卵巢癌细胞系抑制增殖和诱导凋亡发生中的作用进行了研究。 1.4 抗炎免疫及抗衰老作用

黄酮类化合物

黄酮类化合物的提取、分离、纯化研究进展 摘要:本文对黄酮类化合物的提取、分离、纯化研究进展进行综述。本文介绍了黄酮类化合物的提取、分离、纯化的最新方法。 关键词:黄酮类化合物提取分离纯化 黄酮类化合物又名生物类黄酮化合物,是色原酮或色原烷的衍生物,黄酮类化合物是自然界中以C6-C3-C6的方式构成的三环天然有机物,其化学结构中C3部分可以是脂链,或与C6部分形成六元或五元环,黄酮类化合物泛指这种两个苯环通过中央三碳链相互连接而成的一系列化合物。一般黄酮类化合物可根据母核基本结构的不同进行分类,主要有黄酮醇、黄酮、黄烷酮、黄烷醇、花色素、异黄酮、二氢黄酮醇以及查尔酮等八类。黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方面起着重要的作用。许多研究已表明黄酮类化合物具有显著的生理药理活性,除具有抗菌、消炎、抗突变、降压、清热解毒、镇静、利尿等作用外在抗氧化、抗癌、防癌、抑制等方面也有显著效果。黄酮类化合物在治疗心脑血管等疾病效果显著[1]。本文介绍黄酮类化合物的提取、分离、纯化的研究进展。 1、黄酮类化合物的提取方法 1.1有机溶剂萃取法这是目前国内外使用最广泛的方法,很容易实现工业化生成。其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同极性的溶剂萃取。常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。高浓度的醇(90%~95%)适用于提取黄酮甙元类化合物,而低浓度的醇(60%~70%)更适合提取黄酮甙类化合物[2]。提取次数一般为2~4次,提取方法有热回流提取和冷浸提取两种方式。刘兰英等以70%乙醇对枸杞叶进行回流提取,并通过正交试验确定了提取工艺条件为70%乙醇、料液比1∶8、提取时间3h、提取3~8nm碎粒,黄酮得率为3.72%[3]。 用石油醚、乙酸乙酯等极性较小的有机溶剂,主要是提取黄酮苷元部分。虽然有机溶剂对黄酮的提取率较高,而且冷浸提取也避免了黄酮类物质的受热分解,然而还是存在一些缺点:石油醚、乙酸乙酯等有机溶剂易燃易爆;试剂有毒和具强烈刺激性,危害人体、污染环境;提取周期较长,试剂成本较高。

黄酮类化合物

题目:第五章黄酮类化合物(一) 黄酮类化合物的结构类型及理化性质(1) 教学目的与要求: 掌握黄酮类化合物的结构类型及理化性质 内容与时间分配:(2学时) 一、掌握黄酮类化合物的定义、基本结构、分类和代表化合物 二、掌握黄酮类化合物的颜色、旋光性、溶解度的特性及与结构之间的关系 三、掌握黄酮类化合物酸碱性,酸性强弱与结构之间的关系及在提取分离中的应用 重点与难点: 重点:黄酮类化合物的结构分类及理化性质 难点:黄酮类化合物的颜色、溶解性、及酸性 §5 第五章黄酮类化合物 §5-1 概述(55分钟) 一、名称来源 二、生源途径 三、结构与分类 (一)苷元黄酮、黄酮醇 二氢黄酮、二氢黄酮醇 异黄酮、二氢异黄酮 查耳酮、二氢查耳酮 黄色素、橙酮 黄烷3-醇、黄烷3、4-醇 双苯吡酮类、高异黄酮类 (二)苷类——1、糖的种类2、糖的连接位置3、苷原子 (三)常见黄酮类化合物(见投影胶片) 四、黄酮类化合物的生物活性(15分钟)

§5-2 理化性质及显色反应(30分钟) 一、形状1、形态 2、旋光性 3、颜色 二、溶解性1、苷元——共性、水溶度的差异 2、苷——共性、水溶度的差异 三、酸碱性 (一)酸性:7、4’-OH 最强;5-OH 最弱 以黄酮为例酸性强弱顺序: 7、4’-OH > 7或4’-OH >一般酚OH > 5-OH (二)碱性: 因黄酮的1位O原子含未共用电子对,显弱碱性,可溶于浓酸成垟盐 题目:第五章黄酮类化合物(二) 黄酮类化合物的理化性质(2)与提取分离 教学目的与要求: 掌握黄酮类化合物的理化性质与提取分离 内容与时间分配:(2学时) 一、掌握黄酮类化合物的显色反应及与结构之间的关系和应用 二、掌握黄酮类化合物的梯度PH分离法与结构之间的关系 三、掌握黄酮类化合物聚酰胺柱层析法、硅胶柱层析法和凝胶过滤法的原理 以及它们与结构之间的关系 重点与难点: 重点:黄酮类化合物的理化性质及分离方法 难点:黄酮类化合物各分离方法尤其是层析法的原理及规律

相关主题
相关文档 最新文档