当前位置:文档之家› 天津市2017届高三数学理一轮复习专题突破训练:导数及其应用

天津市2017届高三数学理一轮复习专题突破训练:导数及其应用

天津市2017届高三数学理一轮复习专题突破训练:导数及其应用
天津市2017届高三数学理一轮复习专题突破训练:导数及其应用

天津市2017届高三数学理一轮复习专题突破训练

导数及其应用

一、选择、填空题

1、若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = .

2、设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数x 0,使得0()

f x 0,则a

的取值范围是( )

3、曲线()2

3f x x x

=

+在点()()1,1f 处的切线方程为 . 4、设定义在(0,)+∞上的函数()f x 满足()()ln xf x f x x x '-=,11

()f e

e

=,则()f x ( ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值,又有极小值 D .既无极大值,也无极小值

5、已知()y f x =为R 上的连续可导函数,且()()0xf x f x '+>,则函数()()1g x xf x =+()0x >的零点个数为__________

6、曲线

处的切线方程是

A 、x =1

B 、y =

1

2

C 、x +y =1

D 、x -y =1 7、已知定义在R 上的函数()f x 的图象如图,则

的解集为

8、若过曲线上的点P 的切线的斜率为2,则点P 的坐标是

二、解答题

1、(2016年天津市高考)(2016年天津高考)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,

(I)求)(x f 的单调区间;

(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...4

1

.

2、(2015年天津市高考)已知函数()n ,n

f x x x x R =-∈,其中*

n ,n 2N ∈≥. (I)讨论()f x 的单调性;

(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;

(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21a

x x n

<+-

3、(天津市八校2016届高三12月联考)已知函数()2ln p

f x px x x

=--. (Ⅰ) 若2p =,求曲线)(x f y =在点))1(,1(f 处的切线;

(Ⅱ) 若函数)(x f 在其定义域内为增函数,求正实数p 的取值范围; (Ⅲ) 设函数2()e

g x x

= ,若在[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.

4、(和平区2016届高三第四次模拟)已知函数()2

2

ln 2,f x x x ax a a R =+-+∈.

(Ⅰ)若0a =,求函数()f x 在[]1,e 上的最小值;

(Ⅱ)若函数()f x 在1,22??????

上存在单调递增区间,求实数a 的取值范围;

(Ⅲ)根据a 的不同取值,讨论函数()f x 的极值点情况.

5、(河北区2016届高三总复习质量检测(三)) 已知函数1

()()ln f x a x x x

=--,其中a ∈R .

(Ⅰ)若1a =,求曲线)(x f y =在点(1(1))f ,处的切线方程; (Ⅱ)若函数()f x 在其定义域内为增函数,求a 的取值范围;

(Ⅲ)设函数e

()g x x

=,若在[1e],上至少存在一点0x ,使得00()()f x g x ≥成立, 求实数a 的取值范围.

6、(河北区2016届高三总复习质量检测(一)) 已知函数2()=(1)ln 1f x a x x -++,()()g x =f x x -,其中a ∈R .

(Ⅰ)当1

4

a =-时,求函数()f x 的极值;

(Ⅱ)当0a >时,求函数()g x 的单调区间;

(Ⅲ)当[1)x ∈+∞,

时,若=()y f x 图象上的点都在1x y x ???

≥,

≤ 所表示的平面区域内, 求实数a 的取值范围.

7、(河东区2016届高三第二次模拟)已知函数x x ae x ae x f x

x

+--=2

2

12)(. (1)求函数)(x f 在))2(,2(f 处切线方程; (2)讨论函数)(x f 的单调区间;

(3)对任意[]1,0,21∈x x ,1)()(12+≤-a x f x f 恒成立,求a 的范围.

8、(河西区2016届高三第二次模拟) 已知函数x m x x x f ln 12)(2++-=(R m ∈). (Ⅰ)当1=m 时,求过点0(P ,)1-且与曲线2)1()(--=x x f y 相切的切线方程; (Ⅱ)求函数)(x f y =的单调递增区间;

(Ⅲ)若函数)(x f y =的两个极值点a ,b ,且b a <,记][x 表示不大于x 的最大 整数,试比较)]

([)]

([sin b f a f 与)])()][(cos([b f a f 的大小.

9、(河西区2016届高三下学期总复习质量调查(一))已知函数ax x x f -=2)((0≠a ),x x g ln )(=,

)(x f 图象与x 轴异于原点的交点M 处的切线为1l ,)1(-x g 与x 轴的交点N 处的切线为2l ,并且1l 与

2l 平行.

(Ⅰ)求)2(f 的值;

(Ⅱ)已知实数R t ∈,求x x ln =μ,1[∈x ,]e 的取值范围及函数])([t x xg f y +=, 1[∈x ,]e 的最小值;

(Ⅲ)令)(')()(x g x g x F +=,给定1x ,1(2∈x ,)∞+,21x x <,对于两个大于1的 正数α,β,存在实数m 满足21)1(x m mx -+=α,21)1(mx x m +-=β,并且 使得不等式)()()()(21x F x F F F -<-βα恒成立,求实数m 的取值范围.

10、(红桥区2016届高三上学期期末考试)已知函数2

()(1)ln 1f x a x ax =+++. (Ⅰ)若函数()f x 在1x =处切线的斜率1

2

k =-,求实数a 的值;

(Ⅱ)讨论函数()f x 的单调性;

(Ⅲ)若2()1xf x x x '++≥,求a 的取值范围.

11、(天津市六校2016届高三上学期期末联考)已知函数x ax x h ln 2)(+-= (Ⅰ)当1=a 时,求)(x h 在))2(,2(h 处的切线方程; (Ⅱ)令)(2)(2x h x a x f +=

,已知函数)(x f 有两个极值点21,x x ,且2

1

21>?x x ,求实数a 的取值范围;

(Ⅲ)在(Ⅱ)的条件下,若存在]2,2

2

1[0+

∈x ,使不等式2ln 2)1()1()1ln()(20++-->++a a m a x f 对任意a (取值范围内的值)恒成立,求实

数m 的取值范围.

12、(天津市十二区县重点高中2016届高三毕业班第一次联考)已知函数1

()ln f x x x

=-

,()g x ax b =+.

(Ⅰ)若函数()()()h x f x g x =-在(0,)+∞上单调递增,求实数a 的取值范围; (Ⅱ)若直线()g x ax b =+是函数1

()ln f x x x

=-

图象的切线,求a b +的最小值; (Ⅲ)当0b =时,若()f x 与()g x 的图象有两个交点1122(,),(,)A x y B x y ,试比较12x x 与2

2e 的大小.(取e 为2.8,取ln 2为0.7,取2为1.4)

13、(天津市十二区县重点学校2016届高三下学期毕业班联考(二))已知直线1

y e

=

是函数()x ax

f x e

=

的切线(其中 2.71828e =L ). (I)求实数a 的值;

(II)若对任意的(0,2)x ∈,都有2

()2m

f x x x <

-成立,求实数m 的取值范围;

(Ⅲ)若函数()ln ()g x f x b =-的两个零点为12,x x ,证明:1()g x '+2()g x '12

()2

x x g +'>.

14、(武清区2016届高三5月质量调查(三))已知函数()a x e x f x +-=,()2a x e x g x ++=-,R a ∈.

(1)求函数()x f 的单调区间;

(2)若存在[]2,0∈x ,使得()()0<-x g x f 成立,求a 的取值范围; (3)设()2121,x x x x ≠是函数()x f 的两个零点,求证021<+x x .

15、(天津市和平区2016届高三下学期第二次质量调查)已知函数x x

a

ax x f ln 24)(--

=. (Ⅰ)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程; (Ⅱ)若函数)(x f 在其定义域内为增函数,求实数a 的取值范围; (Ⅲ)设函数x

e

x g 6)(=,若在区间],1[e 上至少存在一点0x ,使得)()(00x g x f >成立,求实数a 的取值范围.

参考答案

一、填空、选择题 1、【解析】 1ln 2-

ln 2y x =+的切线为:11

1

ln 1y x x x =

?++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()2

2221ln 111x y x x x x =++-++ ∴()122

12

21

11

ln 1ln 11x

x x x x x ?=?+??

?+=+-?+?

解得112x = 21

2

x =-

∴1ln 11ln 2b x =+=-.

2、【答案】D

【解析】

试题分析:设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.

因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当1

2

x >-时,()g x '>0,所以当

1

2

x =-时,max [()]g x =1

2-2e -,

当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得

3

2e

≤a <1,故选

D.

考点:导数的综合应用 3、40x y -+=

高考数学导数解法知识分享

高考中数学导数的解法 1、导数的背景: (1)切线的斜率;(2)瞬时速度. 如一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____(答:5米/秒) 2、导函数的概念:如果函数()f x 在开区间(a,b )内可导,对于开区间(a,b )内的每一个0x ,都对应着一个导数 ()0f x ' ,这样()f x 在开区间(a,b )内构成一个新的函数,这一新的函数叫做()f x 在开区间(a,b )内的导函数, 记作 ()0 lim x y f x y x ?→?'='=?()() lim x f x x f x x ?→+?-=?, 导函数也简称为导数。 提醒:导数的另一种形式0 0x x 0)()(lim )(0 x x x f x f x f y x x --='='→= 如(1)*?? ?>+≤== 1 1)(2 x b ax x x x f y 在1=x 处可导,则=a =b 解:?? ?>+≤==1 1)(2 x b ax x x x f y 在1=x 处可导,必连续1)(lim 1 =-→x f x b a x f x +=+ →)(lim 1 1)1(=f ∴ 1=+b a 2lim 0 =??- →?x y x a x y x =??+→?0lim ∴ 2=a 1-=b (2)*已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2) ()3(lim --+→?; (2)h a f h a f h ) ()(lim 20-+→? 分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。利用函数f(x)在a x =处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。 解:(1)h h a f h a f h 2) ()3(lim --+→

2014年高三数学选择题专题训练(12套)有答案

高三数学选择题专题训练(一) 1.已知集合{}1),(≤+=y x y x P ,{ }1),(22≤+=y x y x Q ,则有 ( ) A .Q P ?≠ B .Q P = C .P Q P = D .Q Q P = 2.函数11)(+-=x x e e x f 的反函数是( ) A .)11( 11)(1<<-+-=-x x x Ln x f B .)11(11)(1-<>+-=-x x x x Ln x f 或 C .)11( 11)(1 <<--+=-x x x Ln x f D .)11(11)(1-<>-+=-x x x x Ln x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =, 则6b 的值 ( ) A .24 B .24- C .24± D .无法确定 4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要 条件是 ( ) A . αα??m 且 ∥β m ∥β B .βα??m 且 ∥m C .βα⊥⊥m 且 ∥m D . ∥α m ∥β 且 ∥m 5.已知n n n x a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-509121,则n 的 值 ( ) A .7 B .8 C .9 D .10 6.已知O ,A ,M ,B 为平面上四点,则)1(λλ-+=,)2,1(∈λ,则( ) A .点M 在线段A B 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,M ,B 四点共线 7.若A 为抛物线24 1x y = 的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则AC AB ?等于 ( ) A .31- B .3- C .3 D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色, 则共有涂色方法 ( ) A .24种 B .72种 C .96种 D .48种 9.若函数x x a y 2cos 2sin -=的图象关于直线π8 7=x 对称,那么a 的值 ( ) A .2 B .2- C .1 D .1-

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高三数学小题训练(10)(附答案)

高三数学小题训练(10) 一、选择题:本大题共10小题,每小题5分;共50分. 1.已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π =x 处取 得最小值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 2.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? -???? 上的最小值是2-,则ω的最小值等于 ( ) (A )23 (B )3 2 (C )2 (D )3 3.将函数sin (0)y x ωω=>的图象按向量,06a π?? =- ??? 平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6y x π =- C .sin(2)3y x π=+ D .sin(2)3 y x π =- 4.设0a >,对于函数()sin (0)sin x a f x x x π+= <<,下列结论正确的是( ) A .有最大值而无最小值 B .有最小值而无最大值 C .有最大值且有最小值 D .既无最大值又无最小值 5.已知1,3,.0,OA OB OAOB ===点C 在AOC ∠30o =。 设(,)OC mOA nOB m n R =+∈,则 m n 等于 ( )

(A ) 1 3 (B )3 (C )33 (D 3 6.与向量a =71,,22b ?? = ??? ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,3 22或??? ??-31,322 7.如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( ) (A )1213,PP PP (B )1214,PP PP (C )1215,PP PP (D ) 1216,PP PP 8.如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 9.已知不等式1 ()()9a x y x y ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 ( ) (A)8 (B)6 (C )4 (D )2 10.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 ( ) (A )3-1 (B) 3+1 (C) 23+2 (D) 23-2 二、填空题(本大题共6小题,每小题5分,共30分) 11.cos 43cos77sin 43cos167o o o o +的值为 12.已知βα,??? ??∈ππ,43,sin(βα+)=-,53 sin ,13124=??? ??-πβ则os ??? ? ? +4πα=___.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

连云港市田家炳中学高三数学小题训练(1)

一、填空题: 1.已知集合{|3,},{1,2,3,4}A x x x R B =>∈=,则()R A B = e . 2.已知复数1(1) a z i =+ -,若复数z 为纯虚数,则实数a 的值为 . 3.已知角α的终边经过点(2,1)P --,则cos()3 π α+ 的值为 . 4.已知数据a ,4,2,5,3的平均数为b ,其中a ,b 是方程2430x x -+=的两个根,则这组数据的标准差是 . 5.已知函数()f x 是以5为周期的奇函数,且(3)2f -=,则(2)f -= . 6.以下程序运行后结果是__________. 1i ← 8While i < 2 233 i i S i i i ←+←?+←+ End While Pr int S 7.如图,一个正四面体的展开图是边长为22的正三角形ABC ,则该四面体的外接球 的表面积为 . 8.已知||1,(1,3)==-a b ,||3+=a b ,则a 与b 的夹角为 . 9.已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数)则数列{}n a 的通项公式为 . 10.命题:“存在实数x ,满足不等式2(1)10m x mx m +-+-≤”是假命题,则实数m 的取值范围是 . 11.已知直线20ax by --=(,)a b R ∈与曲线3 y x =过点(1,1)的切线垂直,则 b a = . 12.如果椭圆)0(122 22>>=+b a b y a x 上存在一点P ,使得点P 到左准线的距离等于 它到右焦点的距离的两倍,那么椭圆的离心率的取值范围为 . 13、(已知函数2()2sin 23sin cos 13f x x x x =--+的定义域为0, 2π?? ???? ,求函数()y f x =的值域和零点. C B A (第7题)

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高三数学专项训练:函数值的大小比较

高三数学专项训练:函数值的大小比较 一、选择题1.设112 4 50.5,0.9,log 0.3a b c ,则c b a ,,的大小关系是(). A. b c a B. b a c C. c b a D. c a b 2.设2 lg ,(lg ),lg ,a e b e c e 则( ) A .a b c B .a c b C .c a b D .c b a 3.设 a b c ,,分别是方程1122 2 11 2=log ,() log ,() log ,2 2x x x x x x 的实数根, 则有( ) A. a b c B.c b a C.b a c D.c a b 4.若1 3 (1)ln 2ln ln x e a x b x c x ,,,,,则( ) A . a < b < c B .c

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高三数学数列专题训练(含解析)

数列 20.(本小题满分12分) 已知等差数列{}n a 满足:22,5642=+=a a a ,数列{}n b 满足n n n na b b b =+++-12122 ,设数列{}n b 的前n 项和为n S 。 (Ⅰ)求数列{}{}n n b a ,的通项公式; (Ⅱ)求满足1413<

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率; (2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ. 18.解:(1)设QQ 先生能吃到的鱼的条数为ξ QQ 先生要想吃到7条鱼就必须在第一天吃掉黑鱼,()177 P ξ== ……………2分 QQ 先生要想吃到6条鱼就必须在第二天吃掉黑鱼,()61667535 P ξ==?= ……4分 故QQ 先生至少吃掉6条鱼的概率是()()()1166735P P P ξξξ≥==+== ……6分 (2)QQ 先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条青鱼,其余3条青鱼被黑鱼吃掉,第4天QQ 先生吃掉黑鱼,其概率为 64216(4)75335P ξ==??= ………8分 ()6418575335 P ξ==??=………10分 所以ξ的分布列为(必须写出分布列, 否则扣1分) ……………………11分 故416586675535353535 E ξ????= +++=,所求期望值为5. (12) 20.∵a 2=5,a 4+a 6=22,∴a 1+d=5,(a 1+3d )+(a 1+5d )=22, 解得:a 1=3,d=2. ∴12+=n a n …………2分 在n n n na b b b =+++-1212 2 中令n=1得:b 1=a 1=3, 又b 1+2b 2+…+2n b n+1=(n+1)a n+1, ∴2n b n+1=(n+1)a n+1一na n . ∴2n b n+1=(n+1)(2n+3)-n (2n+1)=4n+3,

高三数学小题训练(学生用)(14)

数学小题训练(14) 班级 姓名 1.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若, A+C=2B,则sinC= . 2.函数()(sin )(cos )f x x a x a =++(0<a )的最大值为 . 3.已知22()53196196f x x x x x =-++| -53+ |,则(1)(2)(50)......f f f +++= . 4.设()x f 定义在正整数集上,且(1)()()()1,x y x y f f f f xy +==++,则()x f = . 5.边长为1的正五边形的对角线长= . 6.已知函数f(x)=3sin(x-)(>0)6π ωω和g(x)=2cos(2x+)+1?的图象的对称轴完全相同。若 x [0,]2π ∈,则f(x)的取值范围是 . 7.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---,则()'0f = . 8.直线x+2y-3=0与ax+4y+b=0关于点(1,0)对称,则b= . 9.在区间(-1,1)上任意取两点a 、b,方程2x +ax +b=0的两根均为实数的概率为p,则p 的值为 . 10.设0<x <2 π,则“x sin 2x <1”是“x sinx <1”的 条件. 11.定义平面向量之间的一种运算“ ”如下: 对任意的(,)a m n =,(,)b p q =,令a b mq np =-,下面说法正确的是 . (A)若a 与b 共线,则0a b = (B)a b b a = (C)对任意的R λ∈,有() ()a b a b λλ= (D)2222()()||||a b a b a b +?= 12.设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈,则A ?B 成立的充要条件是 .

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

相关主题
文本预览
相关文档 最新文档