当前位置:文档之家› 第8章 多元函数微分法及其应用习题

第8章 多元函数微分法及其应用习题

第8章  多元函数微分法及其应用习题
第8章  多元函数微分法及其应用习题

第八章多元函数微分法及其应用

一、填空题

1.函数的定义域为;

2.设,则;

3.若对于任意给定的正数,总存在一个正数,当

时,有,则常数称为;

4.设函数,则;

5.函数的定义域为;

6.;

7.函数的定义域为;

8.设,则,;

9.;

10.设,且当时,,则函数为,函数;

11.;

12.若,则;;

13.若函数,则对的偏增量;;

14.设,则;

15.设,则= ;

16.设,则;

17.若函数,则当时,函数的全增量= ;全微分;

18.利用全微分近似计算公式,可得;

19.设,而,则;;

20.设,其中具有一阶连续偏导数,则;

21.设,而,则关于的一阶全导数为;22.已知,其中为任意可微函数,则;

23.设,则;

24.设为由方程所确定的函数,则;

25.设为由方程所确定的函数,则;

26.椭球面在点处的切平面方程为;

法线方程为;

27.当时,曲线在点处的切线方程为

;法平面方程为;

28.设旋转面上某点处的切平面为,若平面过曲线:

上对应于处的切线,则平面的方程为;

29.向量场在点处的梯度;它与在点处沿的方向导数

的关系式为;

30.已知场,则沿场的梯度方向的方向导数为;31.设点的坐标为,,则;

在方向上,方向导数有最大值;在方向上,方向导数有最小值;

32.函数在驻点处,;

;;;

由此可以断定函数在点处有值;

33.函数在区域上的最大值为;最小值为;

34.函数在条件的极值为;

35.函数在条件及下的极值是;

36.抛物线到直线的最短距离是;

37.椭圆上的点处的法线与原点的距离为最远;

38.函数的定义域为;

39.曲面在点处的切平面方程为;

40.设,则;

41.函数在点处沿点指向方向的方向导数为

42.设,具有二阶连续偏导数,则;43.设,则;

44.设,可导,则;

45.设,则;

二、单项选择题

1.函数(其中),则()。

2.()。

等于1 等于0 等于不存在

3.()。

3 6 不存在

4.()。

1 0 不存在

5.()。

1 0

6.设函数,则()。

极限存在,但函数在点处不连续;

极限存在,且函数在点处连续;

极限不存在,故函数在点处不连续;

极限不存在,但函数在点处连续;

7.函数在点处()。

无定义无极限有极限但不连续连续

8.函数在点的偏导数存在是在该点连续的()。

充分但不必要的条件必要但不充分的条件

充分必要条件既不是充分条件也不是必要条件

9.设则()。

10.设,则()。

0 1 2 不存在

11.设,则()。

1 2 0

12.设,则()。

0 不存在 1

13.设,则()。

0 1 2 不存在

14.设是由方程所确定的隐函数,其中是变量

的任意可微函数,为常数,则必有()。

15.设,则( )。

1

16.曲线在点处的切线一定平行于()。

平面平面平面平面

17.曲面在点处的切平面方程为()。

18.曲线与平面在点处的夹角为()。

19.曲面在点处的切平面方程为()。

20.曲面的切平面与三个坐标所围成的四面体的体积()。

21.曲面上点处的法线方程是()。

22.曲线在点处的切线与横轴的正向所成的角度是()。

23.平面是曲面在点处的切平面,则的值是

()。

24.有数量场,点,则()。

25.设函数在点的某邻域内可微分,为基本单位向量,则函数在点处的梯度()。

26.设函数在点的某邻域内可微分,则函数在该点沿方向导数

(其中为的方向角)的方向导数为()。

27.设函数在点处可微,且,则函数

在点处()。

必有极值,可能是极大,也可能是极小可能有极值,也可能没有极值

必有极大值必有极小值

28.记,那么当函数在点处满足()条件时,函数在点处取得极大值。

29.函数满足的条件极值是()。

1 0

30.在下列诸点中,()为函数的极大值点。

31.函数在闭区域上的最大值是

()。

2 4 1

32.已知矩形的周长为,将它绕其一边旋转而形成一个旋转体,当此旋转体的体积最大时,矩形两边的长分别为()。

33.设函数,在点处方向导数的最大值为()。

4 6

34.点到平面的最短距离是()。

35.设为平面上的一点,且该点到两个定点

的距离平方之和为最小,则此点的坐标为()。

36.二元函数的定义域是平面上的区域()。

37.二元函数在点处的两个偏导数存在是

在该点连续的()。

充分而非必要条件必要而非充分条件充要条件无关条件

38.已知为某函数的全微分,则等于()。

0 1 2

39.函数的极值点是()。

驻点不可微点间断点其他

40.可使成立的函数是()。

41.点()是二元函数的极值点。

三、解答题

1.求二元极限。

2.求函数的,,。

3.设z=x ln(xy),求及。

4.计算的近似值。

5.计算(1.97)1.05的近似值(ln2=0.693)。

6.设有一无盖圆柱形容器,容器的壁与底的厚度均为0.1cm,内高为20cm,内半径为4厘米,求容器外壳体积的近似值。

7.设z=u2ln v,而,v=3x-2y,求,。

8.设z=arcsin(x-y),而x+3t,y=4t3,求。

9.设,而y=a sin x,z=cos x,求。

10.求函数的一阶偏导数(其中f具有一阶连续偏导数)。11.求函数u=f(x,xy,xyz)的一阶偏导数(其中f具有一阶连续偏导数)。

12.设z=f(x2+y2),其中f具有二阶导数,求,,。

13.设,求。

14.设,求及。

15.设,求及。

16.设e z-xyz=0,求。

17.设z3-3xyz=a3,求。

18.设,求,。

19.设,求,。

20.设,其中f,g具有一阶连续偏导数,求,。

21.求曲线x=t-sin t,y=1-cos t,在点处的切线及法平面方程。

22.求曲线,,z=t2在对应于t=1的点处的切线及法平面方程。23.求曲线在点(1, 1, 1)处的切线及法平面方程。

24.求出曲线x=t,y=t2,z=t3上的点,使在该点的切线平行于平面x+2y+z=4。25.求曲面ax2+by2+cz2=1在点(x0,y0,z0)处的切平面及法线方程。

26.求函数z=x2+y2在点(1, 2)处沿从点(1, 2)到点的方向的方向导数。

27.求函数u=xy2+z3-xyz在点(1, 1, 2)处沿方向角为,,的方向的方向导数。

28.求函数在点处沿曲线在这点的内法线方向的方向导数。

29.求函数z=ln(x+y)在抛物线y2=4x上点(1, 2)处,沿这抛物线在该点处偏向x轴正向的切线方向的方向导数。

30.设f(x,y,z)=x2+2y2+3z2+xy+3x-2y-6z,求grad f(0, 0, 0)及grad f(1, 1, 1)。

31.问函数u=xy2z在点p(1,-1, 2)处沿什么方向的方向导数最大? 并求此方向导数的最大值。

32.求函数f(x,y)=4(x-y)-x2-y2的极值。

33.求函数f(x,y)=(6x-x2)(4y-y2)的极值。

34.求函数f(x,y)=e2x(x+y2+2y)的极值。

35.求函数z=xy在适合附加条件x+y=1下的极大值。

36.在平面xOy上求一点,使它到x=0,y=0及x+2y-16=0三直线距离平方之和为最小。

37.将周长为2p的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少时,才可使圆柱体的体积为最大?

38.抛物面z=x2+y2被平面x+y+z=1截成一椭圆,求原点到这椭圆的最长与最短距离。

39.设z=f(u,x,y),u=xe y,其中f具有连续的二阶偏导数,求。40.设x=e u cos v,y=e u sin v,z=uv,试求和。

41.在曲面z=xy上求一点,使这点处的法线垂直于平面x+3y+z+9=0,并写出这法线的方程。

42.求函数u=x2+y2+z2在椭球面上点M0(x0,y0,z0)处沿外法线方向的方向导数。

43.求平面和柱面x2+y2=1的交线上与xOy平面距离最短的点。四、应用题

1.将周长为2p的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少时,才可使圆柱体的体积为最大?

2.求内接于半径为a的球且有最大体积的长方体。

3.在第一卦限内作椭球面的切平面,使该切平面与三坐标面所围成的四面体的体积最小,求这切平面的切点,并求此最小体积。

五、证明题

1.设,求证。

2.设,试证。

3.证明函数满足。

4.证明函数满足。

5.设z=xy+xF(u),而,F(u)为可导函数,证明

6.设u=f(x,y)的所有二阶偏导数连续,而,,

证明:及。

7.设2sin(x+2y-3z )=x+2y-3z,证明。

8.设?(u,v)具有连续偏导数,证明由方程?(cx-az,cy-bz)=0 所确定的函数z =f(x,y)满足

9.设y=f(x,t),而t是由方程F(x,y,t)=0所确定的x,y的函数,其中f,F 都具有一阶连续偏导数,试证明:

多元函数微分学复习题

多元函数微分学补充题 1.已知函数(,)z z x y =满足222z z x y z x y ??+=??,设1111u x v y x z x ?? ?=? ?=-?? ?=- ?? ,对函数(,)u v ??=, 求证 0u ? ?=?。 2.设(,,)u f x y z =,f 是可微函数,若y x z f f f x y z '''==,证明u 仅为r 的函数, 其中r = 3.设)(2 2 y x u u +=具有二阶连续偏导数,且满足2222221y x u x u x y u x u +=+??-??+??, 试求函数u 的表达式。 4.设一元函数()u f r =当0r <<+∞时有连续的二阶导数,且0)1(=f ,(1)1f '= ,又 u f =满足0222222=??+??+??z u y u x u ,试求)(r f 的表达式。 5.函数),(y x f 具有二阶连续偏导数,满足 02=???y x f ,且在极坐标系下可表成(,)()f x y h r = ,其中r =),(y x f 。 6.若1)1(,0)0(),(='==f f xyz f u 且 )(2223xyz f z y x z y x u '''=????,求u . 7.设函数)(ln 22y x f u +=满足23 2 22222)(y x y u x u +=??+??,试求函数f 的表达式. 8.设二元函数(,)||(,)f x y x y x y ?=-,其中(,)x y ?在点(0,0)的一个邻域内连续。

试证明函数(,)f x y 在(0,0)点处可微的充要条件是(0,0)0?=。 9.已知点)2,1,Q(3),1,0,1(与-P ,在平面122=+-z y x 上求一点M ,使得 ||||PQ PM +最小. 10.过椭圆13232 2 =++y xy x 上任意点作椭圆的切线, 试求诸切线与坐标轴所围三角形面积的最小值. 11.从已知ABC ?的内部的点P 向三边作三条垂线,求使此三条垂线长的乘积为最大的点P 的位置. 12.设函数)(x f 在),1[+∞内有二阶连续导数,1)1(,0)1(='=f f 且 )()(2 2 2 2 y x f y x z ++=满足02222=??+??y z x z ,求)(x f 在),1[+∞上的最大值. 13.在椭球面122222=++z y x 求一点,使函数2 22),,(z y x z y x f ++=在该点沿方向 j i l -=的方向导数最大. 14.设向量j i v j i u 34,43+=-=,且二元可微函数在点P 处有 6-=??p u f ,17=??p v f ,求p df . 15.设函数),(y x z z =由方程)(2 z xyf z y x =++所确定,其中f 可微,试计算 y z y x z x ??+??并化简. 16.设函数),(y x f z =具有二阶连续偏导数,且 0≠??y f ,证明对任意常数C , C y x f =),(为一直线的充分必要条件是0222='''+''''-'''x xy xy y x xx y f f f f f f f . 证: 因为C y x f =),(为一直线的充分必要条件为:由C y x f =),(所确定的隐函数

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

多元函数微分学习题课

多元函数微分学习题课 1.已知)(),(22y x y x y x y x f ++-=-+?,且x x f =)0,(,求出),(y x f 的表达式。 2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→x y y x 原式;解法2:令kx y =,01lim 0=+=→k k x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。 (2)证明极限 y x xy y x +→→0 0lim 不存在。 3.证明 ?????=≠+=00 )1ln(),(x y x x xy y x f 在其定义域上处处连续。 4. 试确定 α 的范围,使 0|)||(|lim 22)0,0(),(=++→y x y x y x α 。 5. 设 ?? ???=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论 (1)),(y x f 在)0,0(处是否连续? (2)),(y x f 在)0,0(处是否可微? 6. 设F ( x , y )具有连续偏导数, 已知方程0),(=z y z x F ,求dz 。 7. 设),,(z y x f u =有二阶连续偏导数, 且t x z sin 2=,)ln(y x t +=,求x u ??,y x u ???2。 8. 设)(u f z =,方程?+ =x y t d t p u u )()(?确定u 是y x ,的函数,其中)(),(u u f ?可微,)(),(u t p ?'连续,且 1)(≠'u ?,求 y z x p x z y p ??+??)()(。 9. 设22v u x +=,uv y 2=,v u z ln 2=,求y z x z ????,。 10.设),,(z y x f u =有连续的一阶偏导数 , 又函数)(x y y =及)(x z z =分别由下两式确定: 2=-xy e xy ,dt t t e z x x ?-=0sin ,求dx du 。 11. 若可微函数 ),(y x f z = 满足方程 y z x z y x '=',证明:),(y x f 在极坐标系里只是ρ的函数。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

多元函数微分学习题

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线 ?? ?=+--=+++0 31020 123:z y x z y x L 及平面0 224: =-+-z y x π, 则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(2 2y x y x y x xy y x f 在点 ) 0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ? ?+=+=2 2 v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y -

答:B 4.设),(y x f 是一二元函数,),(0 y x 是其定义域内的 一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(0 y x 连续,则),(y x f 在点),(0 y x 可 导。 (B) 若),(y x f 在点),(0 y x 的两个偏导数都存在,则 ) ,(y x f 在点),(0 y x 连续。 (C) 若),(y x f 在点),(0 y x 的两个偏导数都存在,则 ) ,(y x f 在点),(0 y x 可微。 (D) 若),(y x f 在点),(0 y x 可微,则),(y x f 在点),(0 y x 连续。 答:D 5.函数2 223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是 ( ) (A) )3 2 ,31,31(- (B) )32,31,31(2- (C) )9 2 ,91,91(- (D) )9 2 ,91,91(2- 答:A 6.函数z f x y =(.)在点(,)x y 0 处具有两个偏导数 f x y f x y x y (,),(,) 0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件

多元函数微分学习题

6 .函数 在点 处具有两个偏导数 是函数存在全 第五部分 多元函数微分学( 1) (x,y) (0,0) 在点 (0,0)处 ( ) (x,y) (0,0) xuv 3.设函数 u u(x, y), v v(x, y) 由方程组 2 2 确定,则当 u y u 2 v 2 4.设 f (x, y)是一二元函数, (x 0,y 0) 是其定义域的一点, 则下列命题中一定正确的是 ( ) (A) 若 f (x,y)在点 (x 0,y 0) 连续,则 f (x,y)在点(x 0,y 0)可导。 (B) 若 f(x,y)在点 (x 0,y 0)的两个偏导数都存在,则 f(x,y)在点 (x 0,y 0)连续。 (C) 若 f(x,y)在点 (x 0,y 0)的两个偏导数都存在,则 f(x,y)在点 (x 0,y 0)可微。 (D) 若 f (x,y)在点 (x 0,y 0) 可微,则 f (x,y)在点(x 0,y 0)连续。 答:D 3 x 2 y 2 z 2 在点 (1, 1,2) 处的梯度是 ( ) 1 1 2 1 1 2 1 1 2 (A) ( , , ) (B) 2( , , ) (C) ( , , ) (D) 3 3 3 3 3 3 9 9 9 答:A [ 选择题 ] x 3y 2z 1 0 1 .设有直线 及平面 2x y 10z 3 0 容易题 1— 36,中等题 37—87,难题 88— 99。 。 (C) 垂直于 4x 2y z 2 0 ,则直线 L ( ) (A) 平行于 。 (B) 在上 答:C (D) 与 斜交。 (A) 连续,偏导数存在 (B) (C) 不连续,偏导数存在 (D) 答:C 连续,偏导数不存在 不连续,偏导数不存在 (A) x (B) v (C) u (D) uv uv uv 答:B y uv 2.二元函数 f (x,y) xy , 2 2 , xy 0, 5.函数 f(x,y,z) x ( )

多元函数微分学复习题及答案

多元函数微分学复习题及 答案 Last revision on 21 December 2020

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????11000,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = ,2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

《多元函数微分学》练习题参考答案

多元微分学 P85-练习1 设)cos(2z y e w x +=,而3x y =,1+=x z ,求 dx dw . 解: dw w w dy w dz dx x y dx z dx ???=+?+???? 2222cos()[sin()(3x x e y z e y z x =++-+? 23232cos((3x e x x x ?? =-+???? P86-练习2 设函数20 sin (,)1xy t F x y dt t = +? ,则22 2 x y F x ==?=? . (2011) 解: 2222222222 sin cos (1)2sin ,1(1)F y xy F y xy x y xy xy y x x y x x y ??+-==??+?+, 故 22 02 4x y F x ==?=? P86-练习3 设)(2 2 y x f z +=,其中f 有二阶导数,求22x z ?? ,22y z ??.(2006) 解:z f x ?'=?; 2223222222).(z x y f f x x y x y ?'''=?+??++ 同理可求 222 222222 () z y x f f y x y x y ?'''=?+??++. P87-练习4 设)(), (x y g y x xy f z +=,其中f 有二阶连续偏导数,g 有二阶导数,求y x z ???2. (2000) 解: 根据复合函数求偏导公式 1221()z y f y f g x y x ?'''=?+?+?-?,

122111122212222211122223323221()111 [()][()]11 z y f y f g y x y y x x x y f y f x f f f z x y x y f xyf f f g g y y x x f g g y y y y x x x ?? ?????'''==????''+?+?- ? ???????? '''''''''''''=''''''' +---++?--++?--?-?-= P87-练习5 设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可 导且在1x =处取得极值(1)1g =,求 211 x y z x y ==???. (2011) 解:由题意(1)0g '=。因为 12()z yf yg x f x ?'''=+?, 21111222122()()()()z f y xf g x f g x f yg x xf g x f x y ?????''''''''''''=+++++??????, 所以 211 12111 (1,1)(1,1)(1,1)x y z f f f x y ==?'''''=++?? P88-练习6 设),,(xy y x y x f z -+=,其中f 具有二阶连续偏导数,求dz , y x z ???2. (2009) 解: 123123,z z f f yf f f xf x y ??''''''=++=-+?? 123123()()z z dz dx dy f f yf dx f f xf dy x y ??''''''= +=+++-+?? () 1231112132122233313233211132223333(1)(1)(1()())f f yf y z x y f x y f f x y f xyf f f f x f f f x f f f y f f x ?'''=++???'''''''''''''???'''''''''''=+?-+?++?-+'''''' =++-+-+?+++?-+???+

多元函数微分法word版

§5.3 多元函数微分法 一、复合函数微分法――链式法则 模型1. ()()()z f u v u u x y v v x y ==,,,,=, z z u z z z u z x u x x y u y y νννν??????????=?+?=?+???????????; 模型2. ()()u f x y z x y =,,,z=z , x z y z u z f f x x u z f f y y ???''=+????? ???''=+???? 模型3. ()()()u f x y z y y x z x ===,,,,z ()()x y z du f f y x f z x dx '''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,, u v u v u v w u v f f x x x w u v f f y y y w u v f f z z z ????''=+????? ????''=+? ????????''=+????? 还有其他模型可以类似处理。 【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由 下列两式确定2xy e xy -=和0sin x z x t e dt t -= ?,求du dx 。 解 根据模型3. x y z du dy dz f f f dx dx dx '''=++

由2xy e xy -=两边对x 求导,得0xy dy dy e y x y x dx dx ???? +-+= ??????? 解出 dy y dx x =-(分子和分母消去公因子()1xy e -) 由0 sin x z x t e dt t -= ? 两边对x 求导,得()()sin 1x x z dz e x z dx -??=- ?-?? 解出 ()() 1sin x e x z dz dx x z -=- - 所以 ()()1sin x e x z du f y f f dx x x y x z z ??-???=-+-?? ??-??? 【98】设1 ()()z f xy y x y x ?=++,f ,?具有二阶连续导数,则 2________z x y ?=??。 答案:()()()yf xy x y y x y ??'''''++++ 注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和?均为一元函数。 【05】设函数(,)()()()d x y x y u x y x y x y t t ??ψ+-=++-+? ,其中函数?具有二阶导数,ψ 具有一阶导数,则必有( ) (A )2222u u x y ??=-??;(B )2222u u x y ??=??;(C )222u u x y y ??=???;(D )222 u u x y x ??=??? 答案:B 全微分形式不变性 例:利用全微分形式不变性求sin u z e v =,u xy =,v x y =+的偏导数。 【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式 2222 0z z x y ??+=??

多元函数微分学习题

第七章 多元函数微分学 【内容提要】 1.空间解析几何基础知识 三条相互垂直的坐标轴Ox 、Oy 、Oz 组成了一个空间直角坐标系。 空间直角坐标系下两点间的距离公式为: 平面方程:0Ax By Cz D +++= 二次曲面方程: 2220Ax By Cz Dxy Eyz Fzx Gx Hy Iz K +++++++++= 球面方程:()()()2 2 02 02 0R z z y y x x =-+-+- 圆柱面方程:2 22R y x =+ 椭球面方程:()222 2221,,0x y z a b c a b c ++=>, 椭圆抛物面方程:22 22,(,0)x y z a b a b +=> 双曲抛物面方程:22 22,(,0)x y z a b a b -=> 单叶双曲面图方程:122 2222=-+c z b y a x (a ,b ,c >0) 双叶双曲面方程:222 2221,(,,0)x y z a b c a b c +-=-> 椭圆锥面方程:222 2220,(,,0)x y z a b c a b c +-=> 2.多元函数与极限 多元函数的定义:在某一过程中,若对变化范围D 的每一对值(,)x y ,在变域M 中存在z 值,按一定对应法则f 进行对应,有唯一确定的值,则称f 为集合D 上的二元函数, 记为 ,x y 称为自变量,D 称为定义域,z 称为因变量。(,)x y 的对应值记为(,)f x y ,称为函数 值,函数值的集合称为值域。 多元函数的极限:设函数(,)f x y 在开区间(或闭区间)D 内有定义,000(,)P x y 是D 的内点或边界点。如果对于任意给定的正数e ,总存在正数d ,使得对于适合不等式

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

多元函数微分法

第十章 多元函数微分学 一、学习要点 1.关于二元函数 会求二元函数的定义域和相应的函数值。求二元函数定义域及函数值的方法与一元函数的方法相似。 2.关于二元函数微分 (1)熟练掌握一阶、二阶偏导数的计算方法和复合函数、隐函数一阶偏导数的计算方法,尤其是形如z=f (x 2-y 2 ,e xy )等的复合函数的偏导数。能熟练地求全微分。 偏导数的定义、计算公式基本与一元函数导数公式相同。求偏导数时,对一个变量求导时,将另一变量视为常数。如求函数32ln z y x u ++=的偏导数 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) 复合函数求偏导数是难点。一般用链式法则,即z=f (u ,v),u=u(x ,y),v=v(x ,y),有 y v v z y u u z y z x v v z x u u z x z ????????????????????+=+= 具体情况有两种: (一)全部函数关系都给出:这时可按前边方法求偏导数,如求二元函数 )ln(2v u z +=,xy e v y x u =+=,22. 的偏导数y z x z ????,,可以把u ,v 代入z 中,再求偏导数,即 z=ln(x 2+y 2+e 2xy ),求偏导数有 xy xy e y x ye x x z 222222+++=?? xy xy e y x xe y y z 222222+++=?? (二)部分函数关系没有给出:此时只有用链式法则。如求函数z=f(xy ,x 2+y 3),

的一阶偏导数,则不能用如上方法求解.正确求法是记u=xy ,v=x 2+y 3,用链式法则 x v f y u f x v v z x u u z x z 2??????????????+=+=,23y v f x u f y z ??????+= 上例也可以用链式法则,有 xy xy xe v u v y v u y z ye v u v x v u x z 2222221,221+++=+++=???? 求隐函数的偏导数,是复合函数求偏导数的应用,方法仍然同一元隐函数的求导. 如求函数32ln z y x u ++=的偏导数. 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) (2)知道函数连续、可微、偏导数存在的关系。 3.关于偏导数的几何应用 掌握求曲线的切线与法平面,曲面的切平面与法线的方法. (1)设空间曲线方程为x =x (t),y =y (t),z = z (t),在t=t 0处的切线方向为 ))(),(),((000t z t y t x l '''=ρ,则在t 0处曲线的 切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='- 法平面方程为 )())(()())(()())((000000t z t z z t y t y y t x t x x '-+'-+'-=0 (2)曲面F (x ,y ,z)=0(或z=f (x ,y)),在曲面上的点P(x 0,y 0,z 0)处的法方向为)}1,,{(},,{),,(),,(000000z y x y x z y x z y x f f F F F n -'''''=或ρ,则在点(x 0,y 0,z 0)处的 切平面方程为 0)()()(000=-'+-'+-'z z F y y F x x F z y x 法线方程为 z y x F z z F y y F x x ' -='-='-000

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

多元函数微分学习题

创作编号:BG7531400019813488897SX 创作者: 别如克* 第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组?? ?+=+=2 2 v u y v u x 确定,则当v u ≠时, =??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。

(C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92 ,91,91(- (D) )9 2,91,91(2- 答:A 6.函数z f x y =(.)在点(,)x y 00处具有两个偏导数f x y f x y x y (,),(,)0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件 (C).必要条件 (D). 既不充分也不必要 答C 7.对于二元函数z f x y =(,),下列有关偏导数与全微分关系中正确的命题是 ( )。 (A).偏导数不连续,则全微分必不存在 (B).偏导数连续,则全微分必存在 (C).全微分存在,则偏导数必连续 (D).全微分存在,而偏导数不一定存在 答B 8.二元函数z f x y =(,)在(,)x y 00处满足关系( )。 (A).可微(指全微分存在)? 可导(指偏导数存在)?连续 (B).可微?可导?连续 (C).可微?可导或可微?连续,但可导不一定连续 (D).可导?连续,但可导不一定可微 答C

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

相关主题
相关文档 最新文档