当前位置:文档之家› 固体物理课后思考题答案

固体物理课后思考题答案

固体物理课后思考题答案
固体物理课后思考题答案

第一章晶体的结构

1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比.

[解答]

设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为, 晶胞的体积为

, 一个晶胞包含两个原子, 一个原子占的体积为,单位体积晶体中的原子数

为; 面心立方晶胞的边长为, 晶胞的体积为, 一个晶胞包含四个

原子, 一个原子占的体积为, 单位体积晶体中的原子数为. 因此, 同体

积的体心和面心立方晶体中的原子数之比为=0.918.

2.解理面是面指数低的晶面还是指数高的晶面?为什么?

[解答]

晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.

3.基矢为, , 的晶体为何种结构? 若+, 又为何种结构? 为什么?

[解答]

有已知条件, 可计算出晶体的原胞的体积

.

由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量

,

,

.

对应体心立方结构. 根据14题可以验证, 满足选作基矢的充分条件.可见基矢为

, , 的晶体为体心立方结构.

+,

则晶体的原胞的体积

,

该晶体仍为体心立方结构.

4.若与平行, 是否是的整数倍? 以体心立方和面心立方结

构证明之.

[解答]

若与平行, 一定是的整数倍. 对体心立方结构, 由(1.2)式

可知

,, ,

=h+k+l=(k+l)(l+h)(h+k)=p=p(l1 +l2 +l3

), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数.

对于面心立方结构, 由(1.3)式可知,

, , ,

=h+k+l=(-h+k+l)+(h-k+l)+(h+k-l)=p’= p’(l1 +l2

+l3),

其中p’是(-h+k+l)、(-k+h+l)和(h-k+l)的公约(整)数.

5. 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基

矢、和重合,除O点外,OA、OB和OC上是否有格点?若ABC面的指数为(234),情况又如何?

[解答]

晶面族(123)截、和分别为1、2、3等份,ABC面是离原点O最近的晶

面,OA的长度等于的长度,OB的长度等于的长度的1/2,OC的长度等于的长度的1/3,所以只有A点是格点. 若ABC面的指数为(234)的晶面族, 则A、B和C都不是格点.

6.验证晶面(),()和(012)是否属于同一晶带. 若是同一晶带, 其带轴方向的晶列指数是什么?

[解答]

由习题12可知,若(),()和(012)属于同一晶带, 则由它们构成的行列式的值必定为0.可以验证

=0,

说明(),()和(012)属于同一晶带.

晶带中任两晶面的交线的方向即是带轴的方向. 由习题13可知, 带轴方向晶列[l1l2l3]的取值为

l1==1, l2==2, l3==1.

7.带轴为[001]的晶带各晶面,其面指数有何特点?

[解答]

带轴为[001]的晶带各晶面平行于[001]方向,即各晶面平行于晶胞坐标系的

轴或原胞坐标系的轴,各晶面的面指数形为(hk0)或(h1h20), 即第三个数字一定为0.

8.与晶列[l1l2l3]垂直的倒格面的面指数是什么?

[解答]

正格子与倒格子互为倒格子. 正格子晶面(h1h2h3)与倒格式h1 +h2

+h3 垂直, 则倒格晶面(l1l2l3)与正格矢l1 +l2 +l3 正交. 即晶列[l1l2l3]与倒格面(l1l2l3) 垂直.

9.在结晶学中, 晶胞是按晶体的什么特性选取的?

[解答]

在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.

10.六角密积属何种晶系? 一个晶胞包含几个原子?

[解答]

六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.

11.体心立方元素晶体, [111]方向上的结晶学周期为多大? 实际周期为多大?

[解答]

结晶学的晶胞,其基矢为,只考虑由格矢h+k+l构成的格点.

因此, 体心立方元素晶体[111]方向上的结晶学周期为, 但实际周期为/2.

12.面心立方元素晶体中最小的晶列周期为多大? 该晶列在哪些晶面内?

[解答]

周期最小的晶列一定在原子面密度最大的晶面内. 若以密堆积模型, 则原子面密度最大的晶面就是密排面. 由图1.9可知密勒指数(111)[可以证明原胞坐标系中的

面指数也为(111)]是一个密排面晶面族, 最小的晶列周期为. 根据同族晶面族的性质, 周期最小的晶列处于{111}面内.

13. 在晶体衍射中,为什么不能用可见光?

[解答]

晶体中原子间距的数量级为米,要使原子晶格成为光波的衍射光栅,光

波的波长应小于米. 但可见光的波长为7.6 4.0米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.

14. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?

[解答]

对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指

数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式

可知, 面间距大的晶面, 对应一个小的光的掠射角. 面间距小的晶面,

对应一个大的光的掠射角. 越大, 光的透射能力就越强, 反射能力就越弱.

15. 温度升高时, 衍射角如何变化? X光波长变化时, 衍射角如何变化?

[解答]

温度升高时, 由于热膨胀, 面间距逐渐变大. 由布拉格反射公式

可知, 对应同一级衍射, 当X光波长不变时, 面间距逐渐变大, 衍射角逐

渐变小.所以温度升高, 衍射角变小.

当温度不变, X光波长变大时, 对于同一晶面族, 衍射角随之变大.

16. 面心立方元素晶体, 密勒指数(100)和(110)面, 原胞坐标系中的一级衍射,

分别对应晶胞坐标系中的几级衍射?

[解答]

对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式

求得为(), p’=1. 由(1.33)式可知, ; 由(1.16)和(1.18)两式可知,

; 再由(1.26)和(1.27)两式可知, n’=2n. 即对于面心立方元素晶体, 对应密勒指数(100)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的二级衍射.

对于面心立方元素晶体, 对应密勒指数(110)的原胞坐标系的面指数可由(1.34)式求得为(001), p’=2. 由(1.33)式可知, ; 由(1.16)和(1.18)两式可知,

; 再由(1.26)和(1.27)两式可知, n’=n, 即对于面心立方元素晶体, 对应

密勒指数(110)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的一级衍射.

17.由KCl的衍射强度与衍射面的关系, 说明KCl的衍射条件与简立方元素晶体的衍射条件等效.

[解答]

Cl 与K是原子序数相邻的两个元素, 当Cl原子俘获K原子最外层的一个电子结合

成典型的离子晶体后, 与的最外壳层都为满壳层, 原子核外的电子数和壳层

数都相同, 它们的离子散射因子都相同. 因此, 对X光衍射来说, 可把与看成同一种原子. KCl与NaCl结构相同, 因此, 对X光衍射来说, KCl的衍射条件与简立方元素晶体等效.

由KCl的衍射强度与衍射面的关系也能说明KCl的衍射条件与简立方元素晶体的衍

射条件等效. 一个KCl晶胞包含4个离子和4个离子,它们的坐标

:(000)()()()

:()()()()

由(1.45)式可求得衍射强度I hkl与衍射面(hkl)的关系

I hkl={1+cos

由于等于, 所以由上式可得出衍射面指数全为偶数时, 衍射强

度才极大. 衍射面指数的平方和: 4, 8, 12, 16, 20, 24…. 以上诸式中的n由

决定. 如果从X光衍射的角度把KCl看成简立方元素晶体, 则其晶格常数为

, 布拉格反射公式化为

显然, 衍射面指数平方和: 1, 2, 3, 4, 5, 6…. 这正是简立方元素晶体的衍射规律.

18. 金刚石和硅、锗的几何结构因子有何异同?

[解答]

取几何结构因子的(1.44)表达式

,

其中u j,v j,w j是任一个晶胞内,第j个原子的位置矢量在轴上投影的系数.

金刚石和硅、锗具有相同的结构, 尽管它们的大小不相同, 但第j个原子的位置

矢量在轴上投影的系数相同. 如果认为晶胞内各个原子的散射因子都一样, 则几何结构因子化为

.

在这种情况下金刚石和硅、锗的几何结构因子的求和部分相同. 由于金刚石和硅、

锗原子中的电子数和分布不同, 几何结构因子中的原子散射因子不会相同.

19. 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线是否等间距?

[解答]

旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 衍射线构成了一个个圆锥面. 如果胶片上的感光线如图所示是等间距, 则应有关系式

tg

.

其中R是圆筒半径, d是假设等间距的感光线间距, 是各个圆锥面与垂直于转轴的平面的夹角. 由该关系式可得

sin

,

与整数m不成正比. 但可以证明

.

与整数m成正比(参见本章习题23). 也就是说, 旋转单晶法中, 将胶片

卷成以转轴为轴的圆筒, 胶片上的感光线不是等间距的.

20. 如图1.33所示, 哪一个衍射环感光最重? 为什么?

[解答]

最小衍射环感光最重. 由布拉格反射公式

可知, 对应掠射角最小的晶面族具有最大的面间距. 面间距最大的晶面上的原子密度最大, 这样的晶面对射线的反射(衍射)作用最强. 最小衍射环对应最小的掠射角,它的感光最重.

第二章晶体的结合

1.是否有与库仑力无关的晶体结合类型?

[解答]

共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.

2.如何理解库仑力是原子结合的动力?

[解答]

晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.

3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?

[解答]

自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.

原子的动能与原子间的相互作用势能之和为晶体的内能.

在0K时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.

4.原子间的排斥作用取决于什么原因?

[解答]

相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳

层电子云的重叠.

5.原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么?

[解答]

在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态,

吸引力与排斥力缺一不可. 设此时相邻原子间的距离为, 当相邻原子间的距离>

时, 吸引力起主导作用; 当相邻原子间的距离<时, 排斥力起主导作用.

6.共价结合为什么有“饱和性”和“方向性”?

[解答]

设N为一个原子的价电子数目, 对于IV A、V A、VI A、VII A族元素,价电子壳层一共有8个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就是共价结合的“饱和性”.

共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的“方向性”.

7.共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?

[解答]

共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电

子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.

8.试解释一个中性原子吸收一个电子一定要放出能量的现象.

[解答]

当一个中性原子吸收一个电子变成负离子, 这个电子能稳定的进入原子的壳层中, 这个电子与原子核的库仑吸引能的绝对值一定大于它与其它电子的排斥能. 但

这个电子与原子核的库仑吸引能是一负值. 也就是说, 当中性原子吸收一个电子变成

负离子后, 这个离子的能量要低于中性原子原子的能量. 因此, 一个中性原子吸收一

个电子一定要放出能量.

9.如何理解电负性可用电离能加亲和能来表征?

[解答]

使原子失去一个电子所需要的能量称为原子的电离能, 电离能的大小可用来度量原子对价电子的束缚强弱. 一个中性原子获得一个电子成为负离子所释放出来的

能量称为电子亲和能. 放出来的能量越多, 这个负离子的能量越低, 说明中性原子与

这个电子的结合越稳定. 也就是说, 亲和能的大小也可用来度量原子对电子的束缚强弱. 原子的电负性大小是原子吸引电子的能力大小的度量. 用电离能加亲和能来表征

原子的电负性是符合电负性的定义的.

10.为什么许多金属为密积结构?

[解答]

金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云

靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构.

11.何为杂化轨道?

[解答]

为了解释金刚石中碳原子具有4个等同的共价键, 1931年泡林(Pauling)和斯

莱特(Slater)提出了杂化轨道理论. 碳原子有4个价电子, 它们分别对应、、

、量子态, 在构成共价键时, 它们组成了4个新的量子态

4个电子分别占据

新轨道,在四面体顶角方向(参见图1.18)

形成4个共价键.

12.你认为固体的弹性强弱主要由排斥作用决定呢, 还是吸引作用决定?

[解答]

如上图所示, 附近的力曲线越陡, 当施加一定外力, 固体的形变就越小.

附近力曲线的斜率决定了固体的弹性性质. 而

附近力曲线的斜率主要取决于排斥

力. 因此, 固体的弹性强弱主要由排斥作用决定.

13.固体呈现宏观弹性的微观本质是什么?

[解答]

固体受到外力作用时发生形变, 外力撤消后形变消失的性质称为固体的弹性. 设

无外力时相邻原子间的距离为

, 当相邻原子间的距离>

时, 吸引力起主导作用;

当相邻原子间的距离<

时, 排斥力起主导作用. 当固体受挤压时, <

, 原子间

的排斥力抗击着这一形变. 当固体受拉伸时, >

, 原子间的吸引力抗击着这一形变.

因此, 固体呈现宏观弹性的微观本质是原子间存在着相互作用力, 这种作用力既包含着吸引力, 又包含着排斥力.

14.你是如何理解弹性的, 当施加一定力, 形变大的弹性强呢, 还是形变小的强?

[解答]

对于弹性形变, 相邻原子间的距离在附近变化. 令, 则有

因为是相对形变, 弹性力学称为应变, 并计作S, 所以原子间的作用力

再令

,

.

可见, 当施加一定力, 形变S大的固体c小, 形变S小的固体c大. 固体的弹性是固体的属性, 它与外力和形变无关. 弹性常数c是固体的属性, 它的大小可作为固体弹性强弱的度量. 因此, 当施加一定力, 形变大的弹性弱, 形变小的强. 从这种意义上说, 金刚石的弹性最强.

15.拉伸一长棒, 任一横截面上的应力是什么方向? 压缩时, 又是什么方向?

[解答]

如上图所示, 在长棒中取一横截面, 长棒被拉伸时, 从截面的右边看, 应力向右, 但从截面的左边看, 应力向左. 压缩时, 如下图所示, 应力方向与拉伸时正相反. 可见, 应力方向依赖于所取截面的外法线矢量的方向.

16.固体中某一面积元两边的应力有何关系?

[解答

以上题为例, 在长棒中平行于横截面取一很薄的体积元, 拉伸时体积元两边受的应力如图所示.

压缩时体积元两边受的应力如下图所示.

当体积元无限薄, 体积元将变成面积元. 从以上两图可以看出, 面积元两边的应力大小相等方向相反.

17.沿某立方晶体一晶轴取一细长棒做拉伸实验, 忽略宽度和厚度的形变, 由此能

否测出弹性劲度常数?

[解答]

立方晶体轴是等价的, 设长棒方向为x(, 或, 或)轴方向, 做拉伸

实验时若忽略宽度和厚度的形变, 则只有应力应变不为0, 其它应力应变分量都

为0. 由(2.55)可得. 设长棒的横截面积为A, 长度为L, 拉伸力为F, 伸长

量为, 则有: . 于是, .

18.若把上题等价成弹簧的形变, 弹簧受的力, 与有何关系?

[解答]

上题中长棒受的力

,

长棒的伸长量即是弹簧的伸长量x. 因此,

可见, 弹簧的弹性系数与弹性劲度常数的量纲是不同的.

19.固体中的应力与理想流体中的压强有何关系?

[解答]

固体受挤压时, 固体中的正应力与理想流体中的压强是等价的, 但不同于理想流体中的压强概念. 因为压强的作用力与所考虑截面垂直, 而

与所考虑截面平行. 也就是说, 理想流体中不存在与所考虑截面平行的作用力. 这是因为理想流体分子间的距离比固体原子间距大得多, 流层与流层分子间不存在切向作用力.

20.固体中的弹性波与理想流体中的传播的波有何差异? 为什么?

[解答]

理想流体中只能传播纵波. 固体中不仅能传播纵波, 还能传播切变波. 这是

因为理想流体分子间距离大, 分子间不存在切向作用力, 只存在纵向作用力;而固体原

子间距离小, 原子间不仅存在纵向作用力, 还存在切向作用力.

第三章晶格振动与晶体热学性质

1. 相距为不是晶格常数倍数的两个同种原子, 其最大振幅是否相同?

[解答]

以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由本教科书的(3.16)可得两原子振幅之比

(1)

其中m原子的质量. 由本教科书的(3.20)和(3.21)两式可得声学波和光学波的频率分别为

, (2)

. (3)

将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为

, (4)

. (5)

由于

=,

则由(4)(5)两式可得, . 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.

2. 引入玻恩卡门条件的理由是什么?

[解答]

(1)方便于求解原子运动方程.

由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.

(2)与实验结果吻合得较好.

对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构

成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.

3.什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?

[解答]

为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加.

简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由

度数之和, 即等于3N.

4.长光学支格波与长声学支格波本质上有何差别?

[解答]

长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.

5. 晶体中声子数目是否守恒?

[解答]

频率为的格波的(平均) 声子数为

,

即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.

按照德拜模型, 晶体中的声子数目N’为

.

作变量代换

.

其中是德拜温度. 高温时,

,

即高温时, 晶体中的声子数目与温度成正比.

低温时, ,

, 即低温时, 晶体中的声子数目与T 3成正比.

6.温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?

[解答]

频率为的格波的(平均) 声子数为

.

因为光学波的频率比声学波的频率高, ()大于(), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.

7.对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多?

[解答]

设温度T H>T L, 由于()小于(), 所以温度高时的声子数目多于温度低时的声子数目.

8.高温时, 频率为的格波的声子数目与温度有何关系?

[解答]

温度很高时, , 频率为的格波的(平均) 声子数为

.

可见高温时, 格波的声子数目与温度近似成正比.

9. 从图3.6所示实验曲线, 你能否判断哪一支格波的模式密度大? 是光学纵波呢, 还是声学纵波?

从图3.6所示实验曲线可以看出, 在波矢空间内, 光学纵波振动谱线平缓, 声学纵波振动谱线较陡. 单位频率区间内光学纵波对应的波矢空间大, 声学纵波对应的波矢空间小. 格波数目与波矢空间成正比, 所以单位频率区间内光学纵波的格波数目大. 而模式密度是单位频率区间内的格波数目, 因此光学纵波的模式密度大于声学纵波的模式密度.

10.喇曼散射方法中,光子会不会产生倒逆散射?

[解答]

晶格振动谱的测定中, 光波的波长与格波的波长越接近, 光波与声波的相互作用才越显著. 喇曼散射中所用的红外光,对晶格振动谱来说, 该波长属于长波长范围. 因此, 喇曼

散射是光子与长光学波声子的相互作用. 长光学波声子的波矢很小, 相应的动量不

大. 而能产生倒逆散射的条件是光的入射波矢与散射波矢要大, 散射角也要大.

与大要求波长小, 散射角大要求大(参见下图), . 但对喇曼散射来说, 这两点都不满足. 即喇曼散射中,光子不会产生倒逆散射.

11.长声学格波能否导致离子晶体的宏观极化?

[解答]

长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.

12.金刚石中的长光学纵波频率与同波矢的长光学格横波频率是否相等? 对KCl 晶体, 结论又是什么?

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

固体物理学题库..doc

一、填空 1.固体按其微结构的有序程度可分为 _______、_______和准晶体。 2.组成粒子在空间中周期性排列,具有长程有序的固体称为 _______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为 _________。 3.在晶体结构中,所有原子完全等价的晶格称为 ______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为 ____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括 ______________晶体结构和 ______________晶体结构。 5.简单立方结构原子的配位数为 ______;体心立方结构原子的配位数为 ______。6.NaCl 结构中存在 _____个不等价原子,因此它是 _______晶格,它是由氯离子和钠离子各自构成的 ______________格子套构而成的。 7.金刚石结构中存在 ______个不等价原子,因此它是 _________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4 的长度套构而成,晶胞中有 _____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足 a i b j 2 ij 2 ,当i j时 关系的 b1,b 2, b 3为基矢,由0,当 i ( i, j 1,2,3) j时 K h h b h b h构b成的点阵,称为 _______。 1 1 2 2 3 10.晶格常数为 a 的一维单原子链,倒格子基矢的大小为 ________。 11.晶格常数为 a 的面心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为 _______。 12.晶格常数为 a 的体心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为 _______。 13.晶格常数为 a 的简立方晶格的 (010)面间距为 ________ 14.体心立方的倒点阵是 ________________点阵,面心立方的倒点阵是 ________________点阵,简单立方的倒点阵是________________。 15.一个二维正方晶格的第一布里渊区形状是 ________________。 16.若简单立方晶格的晶格常数由 a 增大为 2a,则第一布里渊区的体积变为原来的 ___________倍。

固体物理习题与答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理学题库

固体物理学题库 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、 填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠? 当时 (,当时关系的123,,b b b 为基矢,由 112233h K hb h b h b =++构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

固体物理思考题

绪论 1.二十世纪物理学的三大前沿领域是什么? [解答]微观领域(把包括分子、原子和各种基本粒子(一般线度小于亿分之一米)的粒子称为微观粒子,而微观粒子和它们现象的总称就是微观世界或微观领域。)、宇宙起源(许多科学家认为,宇宙是由大约137亿年前发生的一次大爆炸形成的)和演化复杂性问题(研究重点是探索宏观领域的复杂性及其演化问题)。 2.还原论的思维特点是什么?他对人们思想有何影响? [解答] 将复杂还原为简单,然后从简单再建复杂。它对人们认识客观世界有重要的积极的意义,并取得许多重要的成果,但这种思维特点不能强调过分,因为层展论也是认识客观世界的一种重要思维方法。 3.固体物理学的范式是什么?结合所学内容谈谈你是怎样理解这种范式的。 [解答]是周期性结构中波的传播。不同类型的波,不管是德布罗意波还是经典波, 弹性波还是电磁波,横波还是纵波,在波的传播问题上具有共性。固体物理学主要是探讨具有周期结构特征的晶态物质的结构与性能的关系。弹性波或晶格波在周期结构中的传播导致了点阵动力学,它主要由Born 及其合作者建立起来的;短波 长电磁波在周期结构中的传播导致了晶体中X 射线衍射问题,其动力学理论系由Ewald 与Laue 所表述的;德布罗意波(电子) 在周期结构中的传播导致了固体电子结构的能带理论,它是由Bloch 、A. C. Wilson ,Brillouin 等所表述的。这些理论有其共同的特征:为了借助于平移对称(周期性) 引入的简化,都采用Bloch 的 表示方式,也都强调了波矢(或倒) 空间(即实空间的富利叶变换) 的重要性。随后对这些领域进行加固并开发应用成为固体物理学家的主要任务。值得注意,即使 时至今日,这一范式还存在生机,到80 年代末及以后关于光子能带与声子能带的 研究又为它注入新的活力。 4.层展论的思维方法是什么?怎样理解实验发现、理论洞见和实际应用三者之 间的关系。 层展论的思维特点是从简单到复杂,每个层次都有自己独特的研究对象、研究内容、研究方法和客观规律;实验发现、理论洞见和实际应用三者间关系非常复杂,在固体物理研究中,有时是实验发现在前,有时是实际应用在前,也有时是理论洞见在先,尽管这种情况较少。 第一章 1.解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大.因为面间距大的晶面族的指数低,所以解理面是面指数

固体物理 题库

一 名词解释 原胞 布喇菲点阵 结点 第一布里渊区 肖脱基缺陷 弗兰克尔缺陷 费米面 费米能量 费米温度 绝热近似 肖特基效应 德哈斯—范阿尔芬效应 马德隆常数 二 简答题 1. 简述Si 的晶体结构的主要特征 2. 证明面心立方的倒格子为体心立方 3. 按对称类型分类,布拉菲格子的点群类型有几种?空间群类型有几种?晶体结构的点群类型有几种?空间群类型有几种? 4. 晶体的宏观对称性中,独立的对称操作元素有那些? 5. 劳厄方程 布拉格公式 6. 固体结合的五种基本形式 7. 写出离子晶体结合能的一般表达式,求出平衡态时的离子间距。 8. 点缺陷基本类型 9. 什么是热缺陷?简述肖特基缺陷和弗仑克尔缺陷的特点。 10. 接触电势差产生的原因 11. 请用自由电子气理论解释常温下金属中电子的比热容很小的原因。 12. 简要解释作为能带理论的三个基本近似:绝热近似、单电子近似和周期场近似。 13. 简述布洛赫定理 14. 试用能带论简述导体、绝缘体、半导体中电子在能带中填充的特点 15. 为什么有的半导体霍尔系数取正值,有的取负值。 16. 自由电子气模型基本假定 17. 能带理论基本假设 三 计算题 1. 某晶体具有面心立方结构,其晶格常数为a 。 (1)写出原胞基矢。 (2)求倒格子基矢,并指出倒格子是什么类型的布喇菲格子。 2. 简单立方晶格中,每个原胞中含有一个原子,每个原子只有一个价电子,使用紧束缚近 似,只计入近邻相互作用。 1) 求出s 态组成的s 能带的E(k)函数。 2) 给出s 能带带顶和带底的位置和能量值。 3) 求电子在能带底部和顶部的有效质量。 5) 求出电子运动的速度。 3.知Si 中只含施主杂质N = 1015 cm -3 D ,求载流子浓度? 4.假设某二价元素晶体的结构是简立方点阵。试证明第一布里渊区角偶点??? ??a a a πππ,,的自由电子动能为区边中心点?? ? ??0,0,a π的三倍。 5. 金属钠是体心立方晶格,晶格常数a =3.5?,假如每一个锂原子贡献一个传导电子而构成金属自由电子气,试推导T=0K 时金属自由电子气费米能表示式,并计算出金属锂费米能。(?=1.05×10-34J ·s ,m=9.1×10-35W ·s 3/cm 2,1eV=1.6×10-19J ) 6. 平时留过的作业题

固体物理经典复习题及答案(供参考)

一、简答题 1.理想晶体 答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间 无限重复排列而构成的。 2.晶体的解理性 答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。 3.配位数 答: 晶体中和某一粒子最近邻的原子数。 4.致密度 答:晶胞内原子所占的体积和晶胞体积之比。 5.空间点阵(布喇菲点阵) 答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,

它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。 10.布喇菲原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞) 答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间 划分成各个区域。围绕原点的最小闭合区域为维格纳-赛兹原胞。 一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。 12. 简单晶格 答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表 该原子,这种晶体结构就称为简单格子或Bravais 格子。 13.复式格子 答:当基元包含2 个或2 个以上的原子时,各基元中相应的原子组成与格 点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。显然,复式格子是由若干相同结构的子晶格相互位移套构而成。 14.晶面指数 答:描写晶面方位的一组数称为晶面指数。设基矢123,,a a a r u u r u u r ,末端分别落 在离原点距离为123d 、d 、h h h d 的晶面上,123、、h h h 为整数,d 为晶面间距,可以证明123、、h h h 必是互质的整数,称123、、h h h 3为晶面指数,记为()123h h h 。用结晶学原胞基矢坐标系表示的晶面指数称为密勒指数。 15.倒格子(倒易点阵)

固体物理(严守胜编著) 课后答案 第1章

1.1对于体积V 内N 个电子的自由电子气体,证明 (1)电子气体的压强 ()() V p 032ξ?=,其中 0ξ为电子气体的基态能量。 (2)体弹性模量()V p V K ??-=为V 100ξ 解:(1) () 3 2 352225 223101101-==V N m h V m k h F πππξ (1.1.1) () () () ()() V V N m h V N m h V N m h V V p 035 352223535222323522223101323231013101ξππππππξ?==??? ? ??--=??? ? ????=??-=--- (1.1.2) (2) ()() () () V V N m h V N m h V V N m h V V V p V K 1031019103531013231013203 8 35222 383 52 22 353522 2ξππππππ==??? ? ??--=??? ? ????-=??-=--- (1.1.3) 1.2 He 3 原子是具有自旋1/2的费米子。在绝对零度附近,液体He 3 的密度为0.081g ?cm -3。 计算费米能量F ε和费米温度F T 。He 3 原子的质量为g m 24105-?≈。 解:把 He 3 原子当作负电背景下的正电费米子气体. Z=1. 3 2832224 1062.11062.1105081 .01m cm m Z n m ?=?=??== --ρ (1.2.1) ( ) 19173 1 2 108279.7108279.73--?=?==m cm n k F π (1.2.2) () eV J m k F F 42327 2 9 3422102626.41080174.6100.52108279.710055.12----?=?=?????= =ηε (1.2.3) K k T B F F 92.410381.1106.801742323=??==--ε (1.2.4)

固体物理思考题答案固体物理课后思考题答案

固体物理思考题答案固体物理课后思考题答案第一章晶体的结构 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为 , 一个晶胞包含两个原子, 一个原子占的体积为 为 ; 面心立方晶胞的边长为 , 晶胞的体积为 , 单位体积晶体中的原子数为 , 晶胞的体积为 ,单位体积晶体中的原子数 , 一个晶胞包含四个 . 因此, 同体 原子, 一个原子占的体积为 1 积的体心和面心立方晶体中的原子数之比为 =0.272. 2. 解理面是面指数低的晶面还是指数高的晶面,为什么, [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 3. 基矢为 , , 的晶体为何种结构? 若 + , 又为何种结构? 为什么?

[解答] 有已知条件, 可计算出晶体的原胞的体积 . 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 , , . 对应体心立方结构. 根据14题可以验证, , 若 , 的晶体为体心立方结构. 满足选作基矢的充分条件.可见基矢为 + 则晶体的原胞的体积 2 , , 该晶体仍为体心立方结构. 4. 若 构证明之. [解答] 若 可知 , =h +k +l =(k+l) (l+h)

, (h+k) =p , =p(l1 +l2 +l3 与 平行, 一定是 的整数倍. 对体心立方结构, 由(1.2)式 与 平行, 是否是 的整数倍? 以体心立方和面心立方结 3 ), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数. 对于面心立方结构, 由(1.3)式可知, , =h +k +l =(-h+k+l) +(h-k+l) +l3 ), , +(h+k-l) =p’ , = p’(l1

固体物理学测验题

2008级电技专业《固体物理学》测验题 一、 (40分)简要回答: 1、 什么是晶体?试简要说明晶体的基本性质。 2、 试简要说明CsCl 晶体所属的晶系、布喇菲格子类型和 结合键的类型。 3、 试用极射赤平投影图说明3(3次旋转反演轴)的作 用效果并给出其等效对称要素。 4、 什么是格波?什么是声子?声子的能量和动量各为 多少? 5、 试写出自由电子和晶体中电子的波函数。 6、 如需讨论绝缘体中电子的能谱,应采何种模型?其势 能函数有何特点? 7、 什么是禁带?出现禁带的条件是什么? 8、 固体中电子的能量和电子波矢间有何关系? 二、(10分)某晶体具有简立方结构,晶格常数为a 。试画出 该晶体的一个晶胞,并在其中标出下列晶面:(111`),(201),(123)和(110)。 三、(8分)某晶体具有面心立方结构,试求其几何结构因子 并讨论x 射线衍射时的消光规律。 四、(12分)试求晶格常数为2a 的一维布喇菲格子晶格振动 的色散关系,并由此讨论此一维晶格的比热。 五、(15分)对于六角密积结构晶体,其固体物理原胞的基矢 为: k c a j a i a a j a i a a =+-=+=321232232 试求 (1) 倒格子基矢; (2) 晶面蔟(210)的面间距; (3) 试画出以21,a a 为基矢的二维晶格的第一、第二 和第三布里渊区。 六、(15)已知一维晶体电子的能带可写为: ) 2cos 81 cos 87()(22 ka ka ma k E +-= 式中a 是晶格常数,试求: (1) 能带的宽度; (2) 电子在波矢k 态时的速度; (3) 能带底部和能带顶部附近电子的有效质量。 《固体物理学》测验参考答案 一、(40分)请简要回答下列问题: 1. 实际的晶体结构与空间点阵之间有何关系? 答:晶体结构=空间点阵+基元。 2. 什么是晶体的对称性?晶体的基本宏观对称要素有哪些? 答:晶体的对称性指晶体的结构及性质在不同方向上有规律重复的现象。描述晶体宏观对称性的基本对称要素有1、2、3、4、6、对称心i 、对称面m 和4次反轴。 3. 晶体的典型结合方式有哪几种?并简要说明各种结合方式 中吸引力的来源。 答:晶体的典型型方式有如下五种: 离子结合——吸引力来源于正、负离子间库仑引力; 共价结合——吸引力来源于形成共价键的电子对的交换作用力; 金属结合——吸引力来源于带正电的离子实与电子间的库仑引力; 分子结合——吸引力来源于范德瓦尔斯力 氢键结合——吸引力来源于裸露的氢核与负电性较强的离子间 的库仑引力。 4. 由N 个原胞所组成的复式三维晶格,每个原胞内有r 个原子,试问晶格振动时能得到多少支色散关系?其波矢的取值数和模 式的取值数各为多少? 答:共有3r 支色散关系,波矢取值数=原胞数N ,模式取值数=晶体的总自由度数。 5. 请写出自由电子和Bloch 电子的波函数表达式并说明其物理 意义。

固体物理-课后思考题答案

1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为, 晶胞的体积为, 一个晶胞包含两个原子, 一个原子占的体积为,单位体积晶体中的原子数为; 面心立方晶胞的边长为, 晶胞的体积为, 一个晶胞包含四个原子, 一个原子占的体积为 , 单位体积晶体中的原子数为. 因此, 同体积的体心和面心立方晶体中的原子数之比为=0.272. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 3. 基矢为, , 的晶体为何种结构? 若+, 又为何种结构? 为什么? [解答] 有已知条件, 可计算出晶体的原胞的体积 . 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量

, , . 对应体心立方结构. 根据14题可以验证, 满足选 作基矢的充分条件.可见基矢为, , 的晶体为体心立方结构. 若 +, 则晶体的原胞的体积 , 该晶体仍为体心立方结构. 4. 若与平行, 是否是的整数倍? 以体心立方和面心立方结构证明之. [解答] 若与平行, 一定是的整数倍. 对体心立方结构, 由(1.2)式可知 ,, , =()()()(l1 2 3), 其中p是()、()和()的公约(整)数. 对于面心立方结构, 由(1.3)式可知,

, , , =()+()+()’= p’(l1 2 3), 其中p’是()、()和()的公约(整)数. 5. 晶面指数为(123)的晶面是离原点O最近的晶面,、和分别与基矢、和重合,除O点外、和上是否有格点?若面的指数为(234),情况又如何? [解答] 晶面族(123)截、和分别为1、2、3等份,面是离原点O最近的晶面,的长度等于的长度,的长度等于的长度的1/2,的长度等于的长度的1/3,所以只有A点是格点. 若面的指数为(234)的晶面族, 则A、B和C都不是格点. 6. 验证晶面(),()和(012)是否属于同一晶带. 若是同一晶带, 其带轴方向的晶列指数是什么? [解答] 由习题12可知,若(),()和(012)属于同一晶带, 则由它们构成的行列式的值必定为0.可以验证 =0, 说明(),()和(012)属于同一晶带. 晶带中任两晶面的交线的方向即是带轴的方向. 由习题13可知, 带轴方向晶列[l1l2l3]的取值为

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

固体物理XX题库

一、填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠?r r 当时 (,当时 关系的123,,b b b r r r 为基矢,由112233h K hb h b h b =++r r r r 构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________ 14. 体心立方的倒点阵是________________点阵,面心立方的倒点阵是________________点阵,简单立方的倒点阵是________________。 15. 一个二维正方晶格的第一布里渊区形状是________________。 16. 若简单立方晶格的晶格常数由a 增大为2a ,则第一布里渊区的体积变为原来的___________倍。

固体物理课后答案

x 表示钢球所占体积与总体积之比,如果将等体积球分别排列成下列结构,设 x简单立方π / 6 ≈体心立方 3π / 8 证明结构≈面心立方 2π / 6 ≈六方密排 2π / 6 ≈金刚石 3π /16 ≈ r a r 的关系根据不同晶体结构原子球的排列,晶格常数与解:设钢球半径为,a r不同,分别为:简单立方:= 2

金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为 面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为

同理 aπ/ 4的面心立方的基矢,说明体心立方晶与面心立方晶格基矢对比,正是晶格常数为格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 aπ4的体心立方晶格的基矢。而把以上结果与体心立方基矢比较,这正是晶格常数为

ABC 交于基矢的密勒指数为的晶面系中距离原点最近的平面证明:根据定义,截距分别为 即为平面的法线 根据定义,倒格子基矢为 则倒格子原胞的体积为

hkld 满足, 对于简单立方晶格,证明密勒指数为(), 的晶面系,面间距 a 为立方边长。其中 解:根据倒格子的特点,倒格子 hkl)(与晶面族,, 的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为

则带入前边的关系式,即得晶面族的面间距。 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立。,写出最近邻和次近邻的原子间距a 方边长为 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 a ;,次近邻原子间距为6次近邻原子数为 面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于 a 。,次近邻原子间距为次近邻原子数为6α = 2ln 2 证明两种一价离子组成 的一维晶格的马德隆常数为 证明:设一个由正负两种离子相间等距排列的无限一维长链,取一负离子作参考

相关主题
文本预览
相关文档 最新文档