当前位置:文档之家› 非线性解耦K_G模型及其特点

非线性解耦K_G模型及其特点

非线性解耦K_G模型及其特点
非线性解耦K_G模型及其特点

多变量解耦控制方法

多变量解耦控制方法 多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多女量矗解WSi+o其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以.血豹疔1964年提出的基于精确对消的全解竊映右全向癌及 Rosenbroc好20世纪60年代提出的基于对角优势化的现代频率法为代表,但这两种方 *法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发展’多种解耦控制方渕应运而生,如特征结构配置解須、自校正解粮、拿性二次型解耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解越等等护解耦控制丄直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。-* 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿幺和现代频率法。前者包括矩阵求逆解耦、不变性解耦和逆向解耦G扁陶鮒滾漆nuM玆佼疇fW擄林遞跖网禅融8 据是其理论基础,比较适合 于线性金常竝力系统。主要尙括:七?? 1)逆奈氏阵列法

逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析.必滋系统性态的精确方法。当采用其中的増益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足’因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看’类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主増益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。它是近年来普遍使用的方法之一。 此外,还有一些比较成功的频率方法,包括相对増益法、逆曲线法、特征曲线分析法。以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。 自适应解耦控制 自适应解耦岡是将自适应控制技术与解耦控制技术相结合并用于多变量系统,也即将被控对象的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。吉禹萸底宴将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。它是智能解耦理论的基础,适于时变对象。对于最小相位系统,自适应解耦控制采用最爪分臺佥前俺可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合项,就可达到消

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

系统解耦控制

实验二、 系统解耦控制 一、实验目的 1、 掌握解耦控制的基本原理和实现方法。 2、 学习利用模拟电路实现解耦控制及实验分析。 二、实验仪器 1、 TDN —AC/ACS 型自动控制系统实验箱一台 2、 示波器 3、 万用表 三、实验原理与内容 一般多输入多输出系统的矩阵不是对角阵,每一个输入量将影响所有输出量,而每一个输出量同样受到所有输入量的影响,这种系统称为耦合系统。系统中引入适当的校正环节使传递矩阵对角化,实现某一输出量仅受某一输入量的控制,这种控制方式为解耦控制,其相应的系统称为解耦系统。解耦系统输入量与输出量的维数必相同,传递矩阵为对角阵且非奇异。 1、 串联控制器()c G s 实现解耦。 图2-1用串联控制器实现解耦 耦合系统引入控制器后的闭环传递矩阵为 1 ()[()()()]()()p c p c s I G s G s H s G s G s -Φ=+ 左乘[()()()]p c I G s G s H s +,整理得 1()()()[()()]p c G s G s s I H s s -=Φ-Φ 式中()s Φ为所希望的对角阵,阵中各元素与性能指标要求有关, 在()H s 为对角阵的条件下,1 [()()]I H s s --Φ仍为对角阵, 1 1 ()()()[()()]c p G s G s s I H s s --=Φ-Φ

设计串联控制器()c G s 可使系统解耦。 2、 用前馈补偿器实现解耦。 解耦系统如图2-2, 图2-2 用前馈控制器实现解耦 解耦控制器的作用是对输入进行适当变换实现解耦。解耦系统的闭环传递函数 1()[()]()()p p d s I G s G s G s -Φ=+ 式中()s Φ为所希望的闭环对角阵,经变换得前馈控制器传递矩阵 1()()[()]()d p p G s G s I G s s -=+Φ 3、 实验题目 双输入双输出单位反馈耦合系统结构图如图。 图2-3 系统结构图 设计解耦控制器对原系统进行解耦,使系统的闭环传递矩阵为 10 (1) ()10(51)s s s ????+? ?Φ=? ???+? ? 通过原系统输出量(1,2y y )与偏差量(1,2e e )之间的关系

对象解耦和设计模式

对象解耦和设计模式 不知道各位对这几个概念:封装、继承和多态是怎样理解的,也许大家都在脑海中有那么一种印象,但是每个人也都不不同的看法,我先说说我的看法: 封装,就是把对象的属性和行为包装起来,隐藏属性,公开行为。 继承,是子类和父类之间共享属性和行为的机制。 多态,是对象的消息处理机制,不同的对象接收到同一个消息可以产生完全不同的结果。 那么多的设计模式,那么多的软件架构,无非就是封装和解耦、继承和关联、多态和转型的应用。这里面,着重看一下解耦。 评价一个软件结构是否合理,耦合的强弱是很重要的一个评判因素,强耦合的系统在应对变化的时候总是感觉乏力,而一个弱耦合的系统则会轻松自如。一个系统的耦合度,包括功能耦合度、流程耦合度等,怎么样让各个功能之间的耦合度下降,怎么样让流程上下环节的耦合度下降,这都是在进行业务分析的时候做的,当前期阶段的分析都完成之后,这个系统模块之间的耦合度就基本确定了,而我们所要做的是让我们的软件能够在既定的前提下更好的应对变化,这就需要考虑到系统中对象之间的耦合度。 不谈具体业务,先看一句话:一朵红玫瑰。 很明显,在这里,它就是一个对象。但是,在深入想一下,或者对比这一句:一个骑着自行车的男人,很明显,你会认为这里有两个对象。那么,为什么要把红和玫瑰这么紧密地结合呢?我们为什么不可以把“一朵玫瑰花”也看成两个对象呢?试一下这样,将其分解为:一朵红花,它是玫瑰花。一下子就变成两个对象了。为什么非要分开成两个对象呢?看一下变化,我现在需要一支黄玫瑰。那么照第一种分析,这个对象就要变了,即:一朵黄玫瑰,而第二种分析,而只会涉及到系统的一半,即:一朵黄花,它是玫瑰花。看出来了吧,Decorator模式正适合这种情况,那就拿来用吧。(不过好像这个例子也不太妥当) 到了这里,你可能会说,哦,解耦就是把一个东西拆为几部分。不错,不过,这只是开始。当你能够把对象按照粗细力度分析建模之后,下面就开始编码了,假如你的系统需要打印功能,但是现在流行的打印控件有很多,老板告诉你不能够把打印功能和你所用的控件紧密连到一起,也就是说你需要解耦。好了,怎样做呢?Adapter和Bridge模式会帮助你。Adapter模式可以将不同的打印

完整word版关于解耦控制的研究和发展现状

关于解耦控制的研究和发展现状言1 引 和Boksenhom多变量系统设计思想在控制学科发展初期就已经形成,在的报告 和钱学森的著作中就已得到了基本研究;在现代控制理论的框架内Hood年正式提出。随着被控系统越来越复杂,被控对象1964这个问题由Morgan在存在着 更多难以控制的因素,如不确定性、多干扰性、非线性、滞后和非最小相位特性等,使得工程对耦合控制系统的设计要求越来越高,设计难度越来越大。所以一直以来理论与工程界将其作为一个解耦问题成为学术与工程上一大难题,热点问题。2 工程背景在现代化的工业生产中,不断出现一些较复杂的设备或装置,这些设备或装置的本身所要求的被控制参数往往较多,因此,必须设置多个控制回路对该种设备进行控制。由于控制回路的增加,往往会在它们之间造成相互影响的耦合作用,也即系统中每一个控制回路的输入信号对所有回路的输出都会有影响,而每一个回路的输出又会受到所有输入的作用。要想一由于耦合关”系统。个输入只去控制一个输出几乎不可能,这就构成了“耦合系,往往使系统难于控制、性能很差。解耦控制系统3 如上图所示,所谓解耦控制系统,就是采用某种结构,寻找合适的控制规律来消除系统种各控制回路之间的相互耦合关系,使每一个输入只控制相应的一个输出,每一个输出又只受到一个控制的作用。解耦控制是一个既古老又极富生命力的话题,不确定性是工程实际中普遍存在的棘手现象。解耦控制是多变量系统控制的有效手段。 3.1 解耦控制系统的特点 1. 解耦控制系统一般都是多输入多输出系统,而且输入和输出之间的关系是复 杂的耦合,一个输入量影响多个输出量,一个输出量受多个输入量的影响。 实际被控对象不同,输入、输出之间的关系也不同。被控对象的某个输2. 出和某个输出具有明显的“一一对应”的“依赖”性,而其他输出和输出的相互关系则很弱,可以忽略。此时的多输入多输出关系,可以简化为多个单输入单输出的单回路控制系统,而把其他的影响因素看成干扰。 3. 当多输入多输出系统中输入输出相互耦合较强时,系统不能简单地简化为多 个单回路控制系统,此时应采取相应的解耦措施,之后再对系统采取适当的控制措施。 4. 多输入多输出系统中,输入和输出的耦合程度可用相对增益描述。

解耦分析建模方法

A New Decoupled Analytical Modeling Method for Switched Reluctance Machine Shoujun Song,Man Zhang,and Lefei Ge School of Automation,Northwestern Polytechnical University,Xi’an710072,China This paper proposes a new decoupled analytical modeling method for switched reluctance machine(SRM).The?ux linkage is represented by a second-order Fourier series,and the coef?cients of the series are position dependent,which can be further expressed by another second-order Fourier series.The proposed method only needs21data points from?ve rotor positions.Then, the static torque characteristics are analytically obtained based on the expression of the?ux linkage.The accuracy of the method is veri?ed by comparing the calculated?ux-linkage and static torque characteristics with those from measurements.With the calculated ?ux-linkage and static torque data,the dynamic performance of SRM is simulated under both motoring and generating mode.The simulation results,such as phase current and mechanical characteristics,agree well with those from the experiment,which further proves the effectiveness of the proposed method. Index Terms—Decoupled analytical model,dynamic performance,?ux linkage,Fourier series,switched reluctance machine(SRM). I.I NTRODUCTION S WITCHED reluctance machine(SRM)has simple and rugged structure,high ef?ciency and reliability,wide speed range,?exible control,and low cost,and it is suitable for working in harsh environment,such as high speed and high temperature.Due to these outstanding advantages,SRM has attracted increasing attention[1],and is competitive in many ?elds,including aviation industry,electric vehicle,wind power generation,household appliances,and so on[2]–[4]. It is relatively dif?cult to derive an accurate mathematical model for SRM due to its doubly salient structure and saturated magnetic?eld,which result in strong nonlinearities in ?ux-linkage and static torque characteristics[5].However, for performance prediction and advanced control of SRM,an accurate model is critical. There are several approaches to build the model of SRM, such as lookup table techniques[6],magnetic equivalent circuit analysis[7],neural network(NN)[8],and?nite-element method(FEM)[9].Magnetic equivalent circuit analysis and FEM are complex and time consuming and intensive computation is needed.The NN and lookup table techniques require numerous sample data from experiments or FEM,which inevitably takes much time.In some literature, analytical modeling methods for SRM have been presented.In [10],an accurate modeling method for SRM is proposed based on exponential function.However,the least square method is adopted to obtain the coef?cients,which is time consuming. In[11],the Fourier series in expression of current-dependent arctangent function is utilized to build the model of the SRM. However,the coef?cients in arctangent function cannot be directly calculated and the accuracy of the model depends on the method used for curve?tting.Effective modeling methods for SRM based on Fourier series are also proposed in[12]and[13],but the process to determine the coef?cients of the series is relatively complex and/or needs numerous sample data. Manuscript received May19,2014;revised August23,2014;accepted October8,2014.Date of current version April22,2015.Corresponding author:S.Song(e-mail:sunnyway@https://www.doczj.com/doc/0316445629.html,). Color versions of one or more of the?gures in this paper are available online at https://www.doczj.com/doc/0316445629.html,. Digital Object Identi?er10.1109/TMAG.2014.2363214 In this paper,a new method to calculate the?ux-linkage and static torque characteristics of SRM is proposed based on Fourier series expansion.The complicated and nonlinear in?uences of phase current and rotor position on?ux linkage are decoupled and a limited amount of sample data is required to determine the coef?cients of the Fourier series.By the proposed formula,the?ux linkage and static torque with any phase current and rotor position can be calculated easily. The validity of the proposed method is veri?ed by compari-son between calculated and measured characteristics.Finally, based on the characteristics obtained by the proposed method, the dynamic simulation model of SRM is built in MATLAB. The simulation results under different operation conditions are compared with those from experiments,and errors between them are fairly small,which further demonstrates that the proposed method is effective and accurate. II.D ECOUPLED A NALYTICAL M ODELING M ETHOD To improve the utilization ratio of material,SRM always operates with certain saturation,which results in nonlinear electromagnetic characteristics.The?ux linkageψ(θ,i)is a function of phase current and rotor position,which can be analytically presented by the following Fourier series: ψ(θ,i)=a0(θ)+ 2 m=1 a m(θ)cos(ω1mi)+ 2 m=1 b m(θ)sin(ω1mi) (1) ω1=π/(i max?i min)(2) where coef?cients a m and b m are constant for a given position and can be calculated with the?ux-linkage data.i max and i min are the maximum and minimum phase current in the measured data.The unit of rotor positionθis degree.In this paper,the coef?cients a m and b m are calculated by another second-order Fourier series as follows,which is a function ofθ: a m(θ)=c0m+ 2 n=1 c nm cos(ω2nθ)+ 2 n=1 d nm sin(ω2nθ)(3) ω2=π/(θmax?θmin)(4) where coef?cients c nm and d nm are constant for each machine.θmax andθmin are the maximum and minimum rotor position in 0018-9464?2015IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission. See https://www.doczj.com/doc/0316445629.html,/publications_standards/publications/rights/index.html for more information.

位姿解耦型五维混联隔振平台振动建模方法的研究

哈尔滨工业大学工程硕士学位论文 目录 摘要.................................................................................................................................... I ABSTRACT .........................................................................................................................II 第1章绪论 . (1) 1.1 课题背景及研究的目的和意义 (1) 1.1.1 课题的来源 (1) 1.1.2 课题研究的背景和意义 (1) 1.2 国内外隔振平台的动力学分析方法研究现状 (2) 1.2.1 国内外动力学基本建模的方法 (2) 1.2.2 国内外动力学方程的求解主要方法 (4) 1.3 本文的主要研究内容 (4) 第2章五维混联隔振平台运动学分析 (6) 2.1 引言 (6) 2.2 五维混联隔振平台系统组成 (6) 2.3 隔振平台运动学分析 (7) 2.3.1 系统参考坐标系定义 (7) 2.3.2 隔振平台的自由度分析 (8) 2.3.3 逆雅克比矩阵的分析 (12) 2.4 本章小结 (16) 第3章隔振机构五自由度振动建模与分析 (17) 3.1 引言 (17) 3.2 下层3-RPC并联机构的振动建模 (17) 3.2.1 下层3-RPC并联机构的振动模型 (17) 3.2.2 下层3-RPC并联机构的振动方程 (18) 3.3 上层3-UPS/U并联机构的振动建模 (22) 3.3.1 下层3-RPC并联机构的振动模型 (23) 3.3.2 上层3-UPS/U并联机构的振动方程 (24) 3.4 五维隔振平台的固有振动特性研究 (29) 3.4.1 3-RPC并联机构的固有振动特性研究 (29) 3.4.2 3-UPS/U并联机构的固有振动特性研究 (32) 3.5 本章小结 (34)

多变量解耦控制方法研究

本科毕业设计论文 题目多变量解耦控制方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 多变量解耦控制方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的多变量解耦控制方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 每一个输出仅受相应的一个输入控制,每一个输入也仅能控制相应的一个输出。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内 外研究现状及研究意义;(第1、2周) 2、完成总体设计方案的论证并撰写开题报告;(第 3、4周) 3、分析控制系统解耦;(第5、6周) 4、应用前馈补偿法进行解耦;(第7、8周) 5、应用反馈补偿法进行解耦;(第9、10周) 6、利用MATLAB对控制系统进行仿真;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)

(2)二稿;(第14周) 8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮.《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松.《自动控制原理》,科学2008,6出版社,2008.6 [3]薛定宇.陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林.《MATLAB/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]刘豹.《现代控制理论》,机械工业出版社,2004.9 [6]古孝鸿.周立群.线性多变量系统领域法[M].上海:上海交通大学出版社,1990. [7]李帆.不确定系统的解耦控制与稳定裕度分析[D].西安:西北工业大学,2001. [8]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001. [9]张晓婕.多变量时变系统CARMA模型近似解耦法[J].中国计量学院学报,2004,15(4):284-286. 学生指导教师系主任

多变量解耦控制方法

多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计。其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以Morgar于1964年提出的基于精确对消的全解耦状态空间法及Rosenbrock ????????于20世纪60年代提出的基于对角优势化的现代频率法为代表,但这两种方法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发 多种解耦控制方法应运而生, 如特征结构配置解耦、展,自校正解耦、线性二次型解 耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解耦等等。解耦控制一直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿法和现代频率法。前者包括矩阵求逆解耦、不变性解耦和逆向解耦;后者包括时域方法,其核心和基础是对角优势,奈氏(Nyquist)稳定判据是其理论基础,比较适合于线性定常MIM系统。主要包括: 1)逆奈氏阵列法 逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析MIM系统性态的精确方法。当采用其中的增益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足,因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看,类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主

解耦控制

第三章复杂控制系统的仿真研究 3.4 解耦控制系统 3.4.1 系统分析及控制策略 随着工业的发展,生产规模越来越复杂,而且在一个过程中,需要控制的变量以及操作变量常不止一对,一个生产装置要求若干个控制回路来稳定各被控量。一个过程变量的变化必然会波及到其它过程变量的变化,这种现象称之为耦合。严重耦合的系统对于工程实际很不利,直接影响控制质量甚至导致系统无法运行。例如,对于一个精馏塔而言,其顶部产品成分和流量、回流、送料量、上下塔板温度等,都是一些彼此有关的量,那么在这种情况下,对某一个参数的控制不可避免地要考虑另一些有关联的参数或操作变量的影响,因此这些单个参数的控制系统之间就必定有通道互相交错,就涉及到多变量控制的问题,必须进行解耦控制。常规解耦方法有前馈补偿法、对角矩阵法和单位矩阵法[2]。 1、前馈补偿法 前馈补偿是自动控制里最早出现的一种克服干扰的方法,它同样适用于解耦控制系统,方框图如图3-12。 图3-12 前馈解耦控制方框图 其中D21和D12是补偿器,利用补偿器原理: K21g21(s) + D21K22g22(s) = 0 K12g12(s) + D12K11g11(s) = 0 - 33 -

第三章 复杂控制系统的仿真研究 - 34 - 解得补偿器的数学模型为: )()(2222212121s g K s g K D -= )()(1111121221s g K s g K D -= (3-9) 采用前馈解耦,解耦器形控制器环节比较简单。 2、对角矩阵法 对角矩阵法与单位矩阵法类似,不同之处在于其使系统传递函数矩阵成 为如下形式:?????????????=??????)()()(0 0)()()(21221121s M s M s G s G s Y s Y c c 同样可以求得解耦器为: ?????????????=??????-)(00)()()()()()()()()(221112221121122211211s G s G s G s G s G s G s D s D s D s D (3-10) 加入解耦器后,各回路保持前向通道特性,互相不再关联影响。于是针对单回路整定好的控制器可以不加变化地使用。但其缺点与单位矩阵法相似,即对于复杂对象往往无法实现。 3、单位矩阵法 单位矩阵法和对角矩阵法的原理相似,它们的方框图如图3-13所示。 单位矩阵法求解解耦器的数学模型将使系统传递矩阵成为: ?? ??????????=??????)()(1001)()(2121s M s M s Y s Y c c ,即: ????? ?=?????????????1001)()()()()()()()(2221121122211211s D s D s D s D s G s G s G s G 则解耦器为12221121122211211)()()()()()()()(-??????=??????s G s G s G s G s D s D s D s D (3-11)

多变量解耦控制方法

多变量解耦控制方法 多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位 等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计........ 。其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以Morgan 于1964年提出的基于精确对消的全解耦状态空间法........及Rosenbrock 于20世纪60年代提出的基于对角优势化的现代频率法.....为代表,但这两种方法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发展,多种解耦控制方法应运而生,如特征结构配置解 耦、自校正解耦、线性二次型解耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解耦等等。解耦控制一直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿法和现代频率法。前者包括矩阵求逆解耦、不变性解 耦和逆向解耦;后者包括时域方法,其核心和基础是对角优势,奈氏(Nyquist )稳定判据是其理论基础,比较适合于线性定常MIMO 系统。主要包括: 1)逆奈氏阵列法 Company Document number :WTUT-WT88Y-W8BBGB-BWYTT-19998

逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析MIMO 系统性态的精确方法。当采用其中的增益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足,因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看,类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主增益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。它是近年来普遍使用的方法之一。 此外,还有一些比较成功的频率方法,包括相对增益法、逆曲线法、特征曲线分析法。以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。 自适应解耦控制 也即将被控对象的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。它的实质是..... 将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。它是智能解耦理论的基础,适于时变对象。对于最小相位系统,自适应解耦控制采用最小方差....控制律... 可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合

相关主题
相关文档 最新文档