当前位置:文档之家› 高考数学一轮复习 第9章 计数原理、概率、随机变量及其分布 第2讲 排列与组合知能训练轻松闯关 理 北师大版

高考数学一轮复习 第9章 计数原理、概率、随机变量及其分布 第2讲 排列与组合知能训练轻松闯关 理 北师大版

高考数学一轮复习 第9章 计数原理、概率、随机变量及其分布 第2讲 排列与组合知能训练轻松闯关 理 北师大版
高考数学一轮复习 第9章 计数原理、概率、随机变量及其分布 第2讲 排列与组合知能训练轻松闯关 理 北师大版

第2讲 排列与组合

1.不等式A x 8<6×A x -2

8的解集为( )

A .[2,8]

B .[2,6]

C .(7,12)

D .{8}

解析:选D.由题意得8!(8-x )!<6×8!(10-x )!

,所以x 2-19x +84<0,解得7<x <12.又x ≤8,x -2≥0,所以7<x ≤8,x ∈N *,即x =8.

2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )

A .60种

B .63种

C .65种

D .66种

解析:选D.共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,

或全为偶数,或2个奇数和2个偶数,故不同的取法有C 45+C 44+C 25C 24=66(种).

3.(2016·山西省考前质量检测)A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北面的椅子,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )

A .60种

B .48种

C .30种

D .24种

解析:选B.由题知,不同的座次有A 22A 44=48(种),故选B.

4.(2016·长沙模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有( )

A .12对

B .18对

C .24对

D .30对

解析:选C.依题意,注意到在正方体ABCD -A 1B 1C 1D 1中,与直线AC 构成异面直线且所成的角为60°的直线有BC 1,BA 1,A 1D ,DC 1,注意到正方体ABCD -A 1B 1C 1D 1中共有12条面对角线,可

知所求的“黄金异面直线对”共有4×122

=24(对),故选C. 5.(2016·济南模拟)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有4种颜色可供使用,则不同的染色方法总数有( )

A .48种

B .72种

C .96种

D .108种

解析:选B.记四棱锥为E -ABCD ,第一步,确定四棱锥顶点E 的颜色,相应的方法数有C 14=4

种;第二步,确定顶点A 的颜色,相应的方法数有C 13=3种;第三步,确定顶点D 的颜色,

相应的方法数有C 12=2种;第四步,确定顶点B ,C 的颜色,相应的方法数有3种.因此由

分步乘法计数原理得满足题意的方法数共有4×3×2×3=72种,故选B.

6.(2016·衡水调研)某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( )

A .80种

B .90种

C .120种

D .150种

解析:选D.将5名教师先分成3组,有两种分法,即一所学校1人,另两所学校分别2人,

或一所学校3人,另两所学校分别1人,共有? ??

??C 25·C

23·C 11A 22+C 35·C 12·C 1

1A 22·A 33=150种. 7.若把英语单词“good ”的字母顺序写错了,则可能出现的错误方法共有________种.

解析:把g 、o 、o 、d 4个字母排一列,可分两步进行,第一步:排g 和d ,共有A 24种排法;

第二步:排两个o ,共一种排法,所以总的排法种数为A 24=12(种).其中正确的有一种,所

以错误的共A 24-1=12-1=11(种).

答案:11

8.(2016·南昌模拟)安排A ,B ,C ,D ,E ,F 六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人.考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,安排方法共有________种.

解析:第一种情况当B 照顾老人甲时,有C 14C 24=24种安排方法;第二种情况当B 照顾老人丙

时,有C 24C 23=18种安排方法,所以一共有42种安排方法.

答案:42

9.(2016·河南省高考适应性测试)3对夫妇去看电影,6个人坐成一排.若女性的邻座只能是其丈夫或其他女性,则坐法的种数为________.

解析:当女性有3人相邻时,有2A 33(A 22+1)=36种坐法;当女性只有2人相邻时,有2A 23(1

+1)=24种坐法,所以共有36+24=60种坐法.

答案:60

10.在三位正整数中,若十位数字小于个位和百位数字,则该数为“驼峰数”.比如:“102”“546”为“驼峰数”,由数字1,2,3,4,5这五个数字构成的无重复数字的“驼峰数”的十位上的数字之和为________.

解析:三位“驼峰数”中1在十位的有A 24个,2在十位的有A 23个,3在十位上的有A 22个,所

以所有三位“驼峰数”的十位上的数字之和为12×1+6×2+2×3=30.

答案:30

11.用五个数字0,1,2,3,4组成没有重复数字的自然数,问:

(1)四位数有几个?

(2)比3 000大的四位偶数有几个?

解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有C 14A 34=96(个).

(2)①若4在首位,则个位数字必是0或2,有C 12A 23个数,②若3在首位,则个位数字必是0

或2或4,有C 13A 23个数.所以比3 000大的偶数且是四位数的有C 12A 23+C 13A 23=30(个).

12.从1到9的9个数字中取3个偶数4个奇数,试问:

(1)能组成多少个没有重复数字的七位数?

(2)上述七位数中,3个偶数排在一起的有几个?

(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?

解:(1)分三步完成:第一步,在4个偶数中取3个,有C 34种情况;第二步,在5个奇数中

取4个,有C 45种情况;第三步,3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意

的七位数有C 34C 45A 77=100 800(个).

(2)上述七位数中,3个偶数排在一起的有C 34C 45A 55A 33=14 400(个).

(3)(1)的七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34C 45A 33A 44A 22=5 760(个).

1.(2016·江西省九校联考)将6名报名参加运动会的同学分别安排到跳绳、接力、投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每

项比赛至少要安排一人时,则共有y 种不同的方案,则x +y 的值为( )

A .1 269

B .1 206

C .1 719

D .756

解析:选A.6名同学报名参加跳绳、接力、投篮三项比赛,每人只参加一项,每人有3种报

名方法,根据分步乘法计数原理可得x =36=729;而每项比赛至少要安排一人时,先分组有

114、123、222,即有? ????C 16C 15C 44A 22

+C 16C 25C 33+C 26C 24C 2

2A 33=90种,再排列有A 33=6种,所以y =90×6=540种;故x +y =1 269.

2.(2016·安徽省皖北协作区联考)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).

解析:由题意知,分别选择3个,4个,5个,…,10个键同时按下,可发出和声的情况,

共分以下8类:当选择3个不同按键时,有C 310种方法;当选择4个不同按键时,有C 410种方

法;…;当选择10个不同按键时,有C 1010种方法,所以不同的和声数为C 310+C 410+…+C 1010=

(C 010+C 110+C 210+C 310+C 410+…+C 1010)-(C 010+C 110+C 210)=210-(1+10+45)=968.

答案:968

3.现有男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?

(1)男运动员3名,女运动员2名;

(2)至少有1名女运动员;

(3)既要有队长,又要有女运动员.

解:(1)任选3名男运动员,方法数为C 36,再选2名女运动员,方法数为C 24,共有C 36·C 24=

120种方法.

(2)法一:至少有1名女运动员包括以下几种情况:

1女4男,2女3男,3女2男,4女1男,

由分类加法计数原理可得总选法数为

C 14C 46+C 24C 36+C 34C 26+C 44C 16=246(种).

法二:“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法

有C 510-C 56=246(种).

(3)当有女队长时,其他人任意选,共有C 49种选法,不选女队长时,必选男队长,其他人任

意选,共有C 48种选法,其中不含女运动员的选法有C 45种,所以不选女队长时共有(C 48-C 45)种

选法.

所以既有队长又有女运动员的选法共有C 49+C 48-C 45=191(种).

4.有4个不同的球与4个不同的盒子,把球全部放入盒内.

(1)恰有1个盒不放球,共有几种放法?

(2)恰有1个盒内有2个球,共有几种放法?

(3)恰有2个盒不放球,共有几种放法?

解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出一个,问题转化为“4个球,3个盒子,每个盒子都要放入球, 共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球分别放在另外2个盒子内,由分步乘法计

数原理知,共有C 14C 24C 13A 22=144(种).

(2)恰有1个盒内有2个球,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.

(3)确定2个空盒有C 24种方法.

4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;

第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24? ????C 34C 11A 22+C 24C 22A 22·A 22=84(种).

高考数学 计数原理 知识汇总

计数原理 课表要求 1、会用两个计数原理分析解决简单的实际问题; 2、理解排列概念,会推导排列数公式并能简单应用; 3、理解组合概念,会推导组合数公式并能解决简单问题; 4、综合应用排列组合知识解决简单的实际问题; 5、会用二项式定理解决与二项展开式有关的简单问题; 6、会用二项式定理求某项的二项式系数或展开式系数,会用赋值法求系数之和。突破方法 1.加强对基础知识的复习,深刻理解分类计数原理、分步计数原理、排列组合等基本概念,牢固掌握二项式定理、二项展开式的通项、二项式系数的性质。2.加强对数学方法的掌握和应用,特别是解决排列组合应用性问题时,注重方法的选取。比如:直接法、间接法等;几何问题、涂色问题、数字问题、其他实际问题等;把握每种方法使用特点及使用范围等。 3.重视数学思维的训练,注重数学思想的应用,在解题过程中注重化归与转化思想的应用,将不同背景的问题归结为同一个数学模型求解;注重数形结合、分类讨论思想、整体思想等,使问题化难为易。 知识点 1、分类加法计数原理 完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类办法中有m2种不同的方法,……在第n类办法中有m n种不同的方法。那么完成这件事共有:N=m1+m2+……+m n种不同的方法。 注意:(1)分类加法计数原理的使用关键是分类,分类必须明确标准,要求每一种方法必须属于某一类方法,不同类的任意两种方法是不同的方法,这时分类问题中所要求的“不重复”、“不遗漏”。 (2)完成一件事的n类办法是相互独立的。从集合角度看,完成一件事分A、B两类办法,则A∩B=?,A∪B=I(I表示全集)。 (3)明确题目中所指的“完成一件事”是指什么事,完成这件事可以有哪些办法,怎样才算是完成这件事。 2、分步乘法计数原理 完成一件事,需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有:N=m1·m2·……·m n种不同的方法。 注意:(1)明确题目中所指的“做一件事”是什么事,单独用题中所给的某种方法是不是能完成这件事,是不是要经过几个步骤才能完成这件事。 (2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成。 (3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步去

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

高中数学选修2-3计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+== 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

高考数学压轴专题最新备战高考《计数原理与概率统计》难题汇编及解析

【高中数学】数学《计数原理与概率统计》复习知识要点 一、选择题 1.某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36 B .72 C .108 D .144 【答案】D 【解析】 【分析】 按三步分步进行,先考虑甲单位招聘,利用间接法,因为至少招聘一名男生,将只招女生 的情况去掉,录取方案数为22 63C C -,然后剩余四人依次分配给乙单位和丙单位,分别为 24C 、2 2C ,然后根据分步乘法计数原理将三个数相乘可得出答案。 【详解】 根据题意,分3步进行分析: ①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况, ②单位乙在剩下的4人中任选2人招聘,有246C =种情况, ③单位丙在剩下的2人中任选1人招聘,有1 2 2C =种情况, 则有1262144??=种不同的录取方案; 故选:D . 【点睛】 本题考查排列组合问题,将问题分步骤处理和分类别讨论,是两种最基本的求解排列组合问题的方法,在解题的时候要审清题意,选择合适的方法是解题的关键,着重考查学生分析问题和解决问题的能力,属于中等题。 2.已知函数,在区间 内任取一点,使 的概率为( ) A . B . C . D . 【答案】C 【解析】 【分析】 先求出的取值范围,再利用几何概型相关公式即可得到答案. 【详解】 由 得,故 或 ,由 ,故 或 ,故使 的概率为 . 【点睛】 本题主要考查几何概型的相关计算,难度一般.

3.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C. 【点睛】 本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力. 4.下列等式不正确的是( ) A .111 m m n n m C C n ++=+ B .121 11m m m n n n A A n A +-+--= C .1 1m m n n A nA --= D .1(1)k k k n n n nC k C kC +=++ 【答案】A 【解析】 【分析】 根据排列和组合公式求解即可. 【详解】 根据组合公式得1 1!1(1)!1!()!1(1)!()!1 m m n n n m n m C C m n m n m n m n +++++==?=-++-+,则A 错误; 根据排列公式得 1221 11(1)!!!(1)!(11)()!()!()!()! m m m n n n n n n n A A n n n A n m n m n m n m +-+-+--= -=+-=?=----,则B 正 确; 根据排列公式得1 1!(1)!()!()! m m n n n n A n nA n m n m ---= =?=--,则C 正确;

高中计数原理与概率计数原理

高中计数原理与概率计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理 二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多. 三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案. ∴选B

高中数学典型例题解析:第九章 计数原理与概率

第九章 计数原理与概率 §9.1 计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法, 这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一 种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地 到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种

2019年高考真题理科数学分类汇编专题10 概率与统计和计数原理(解析版)

专题10 概率与统计 1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7 D .0.8 【答案】C 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题. 2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差 【答案】A 【解析】设9位评委评分按从小到大排列为1234 89x x x x x x <<<<<. 则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x , A 正确; ②原始平均数1234891 ()9x x x x x x x = <<<<<,后来平均数234 81 ()7 x x x x x '=<<<,平均数 受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2 222111 [()()()]9q S x x x x x x = -+-++-,22222381 [()()()]7 s x x x x x x '=-'+-'+ +-',由② 易知,C 不正确; ④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

计数原理、概率

计数原理、概率 两个基本计数原理 导学目标:理解分类计数原理和分步计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. 自主梳理 1.分类计数原理 完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步计数原理 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n 步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法. 3.分类计数原理与分步计数原理,都是涉及完成一件事的不同方法的种数,它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,从思想方法的角度看,分类计数原理的运用是将一个问题进行“分类”思考,分步计数原理是将问题进行“分步”思考. 自我检测 1.(2009·北京改编)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为________. 2. 右图小圆圈表示络的结点,结点之间的连线表示它们有线相联,连线上标注的数字表示该段线单位时间内可以通过的最大信息量.现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________. 3.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种. 4.(2018·湖北改编)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是________. 5. 如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则不同着色方法共有________种.(以数字作答) 探究点一分类计数原理的应用 例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?

高考数学压轴专题人教版备战高考《计数原理与概率统计》基础测试题含解析

数学高考《计数原理与概率统计》复习资料 一、选择题 1.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3 C .0.58 D .0.958 【答案】D 【解析】 分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可. 详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =?=, 恰在第三次落地打破的概率为30.70.60.90.378P =??=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D . 点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C.

高中数学之计数原理

计数原理(讲义) ? 知识点睛 一、两个计数原理 1. 全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全排列, A (1)(2)21n n n n n n =?-?-???=L ! 即正整数1到n 的连乘积叫做n 的阶乘,用n !表示. A ()m n n n m =-!!,A !C !()!A m m n n m m n m n m ==-, 规定0!1=,0C 1n =. 2. 组合数的性质 C C m n m n n -=,11C C C m m m n n n -+=+. ? 精讲精练 1. 从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地 到B 地有4条路,则从A 地到B 地的不同走法共有( )种.

A .3+2+4=9 B .1 C .3×2×4=24 D .1+1+1=3 2. 设4名学生报名参加同一时间安排的3项课外活动的方案有a 种,这4名学生在运动会上共同争 夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( ) A .(34,34) B .(43,34) C .(34,43) D .3344(A A ), 3. 填空: (1)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有______种. (2)某校学生会由高一年级5人,高二年级6人,高三年级4人组成,若要选出不同年级的两人参加市里组织的某项活动,则不同的选法共有______种. (3)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有_____种. (4)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的为_____种(结果用数值表示). 4. 填空: (1)用0到9这10个数字,可组成________个没有重复数字的四位偶数. (2)6个人从左至右排成一行,若最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种. (3)某运输公司有7个车队,每个车队的车均多于4辆且型号相同,现从这个车队中抽调出10辆车,并且每个车队至少抽调一辆,则不同的抽调方法共有________种.

计数原理-排列组合

排列组合 知识点 一、排列 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中 取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解: 定义中包括两个基本内容:①取出元素②按照一定顺序。因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列” 相同的排列:元素完全相同,并且元素的排列顺序完全相同。若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。比如abc 与acb 是两个不同的排列 描述排列的基本方法:树状图 排列数公式:),)(1()2)(1(*∈+-???--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!??????-?-?=n n n n ,并规定1!0=。 全排列数公式可写成!n A n n =. 由此,排列数公式可以写成阶乘式: )!(!)1()2)(1(m n n m n n n n A m n -= +-???--=(主要用于化简、证明等) 二、组合 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合;组合数用符号m n C 表示 对组合定义的理解: 取出的m 个元素不考虑顺序,也就是说元素没有位置要求,无序性是组合的特点. 只要两个组合中的元素完全相同,则不论元素的顺序如何,都是相同的组合.只有当两个组合中的元素不完全相同时,才是不同的组合 排列与组合的区别:主要看交换元素的顺序对结果是否有影响,有影响就是“有序”,是排列问题;没影响就是“无序”,是组合问题。 组合数公式: ),()!(!!!)1()2)(1(n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+-???--==*,且 变式:),,()! ()1()2)(1()!(!!n m N m n C m n m n n n m n m n C m n n m n ≤∈=-+???--=-= *-且

高考数学-计数原理-3-排列组合

专项-排列组合 知识点 一、排列 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中 取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解: 定义中包括两个基本内容:①取出元素②按照一定顺序。因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列” 相同的排列:元素完全相同,并且元素的排列顺序完全相同。若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。比如abc 与acb 是两个不同的排列 描述排列的基本方法:树状图 排列数公式:),)(1()2)(1(*∈+-???--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!??????-?-?=n n n n ,并规定1!0=。 全排列数公式可写成!n A n n =. 由此,排列数公式可以写成阶乘式: )!(!)1()2)(1(m n n m n n n n A m n -= +-???--=(主要用于化简、证明等) 二、组合 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合;组合数用符号m n C 表示 对组合定义的理解: 取出的m 个元素不考虑顺序,也就是说元素没有位置要求,无序性是组合的特点. 只要两个组合中的元素完全相同,则不论元素的顺序如何,都是相同的组合.只有当两个组合中的元素不完全相同时,才是不同的组合 排列与组合的区别:主要看交换元素的顺序对结果是否有影响,有影响就是“有序”,是排列问题;没影响就是“无序”,是组合问题。 组合数公式: ),()!(!!!)1()2)(1(n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+-???--==*,且 变式:),,()! ()1()2)(1()!(!!n m N m n C m n m n n n m n m n C m n n m n ≤∈=-+???--=-= *-且

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

2021-2022年高考数学一轮总复习第十一章计数原理和概率题组训练82古典概型理

2021年高考数学一轮总复习第十一章计数原理和概率题组训练82古典概 型理 1.将一个骰子抛掷一次,设事件A 表示向上的一面出现的点数不超过3,事件B 表示向上的一面出现的点数不小于4,事件C 表示向上的一面出现奇数点,则( ) A .A 与B 是对立事件 B .A 与B 是互斥而非对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件 答案 A 解析 由题意知,事件A 包含的基本事件为向上点数为1,2,3,事件B 包含的基本事件为向上的点数为4,5,6.事件C 包含的点数为1,3,5.A 与B 是对立事件,故选A. 2.从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件的是( ) A .恰好有1件次品和恰好有2件次品 B .至少有1件次品和全是次品 C .至少有1件正品和至少有1件次品 D .至少有1件次品和全是正品 答案 A 解析 依据互斥和对立事件的定义知,B ,C 都不是互斥事件;D 不但是互斥事件而且是对立事件;只有A 是互斥事件但不是对立事件. 3.(xx·广东茂名模拟)在{1,3,5}和{2,4}两个集合中各取一个数字组成一个两位数,则这个数能被4整除的概率是( ) A.1 3 B.12 C.16 D.14 答案 D

解析 符合条件的所有两位数为12,14,21,41,32,34,23,43,52,54,25,45,共12个,能被4整除的数为12,32,52,共3个,故所求概率P =312=1 4 . 4.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12 C.23 D.34 答案 C 解析 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P =2 3 . 5.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下: A .0.53 B .0.5 C .0.47 D .0.37 答案 A 解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100 =0.53,故选A. 6.(xx·天津改编)甲、乙两人下棋,和棋的概率为12,乙获胜的概率为1 3,则甲获胜的概率 和甲不输的概率分别为( ) A.16,1 6 B.12,23 C.16,23 D.23,12 答案 C 解析 “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=1 6. 设事件A 为“甲不输”,则A 可看作是“甲胜”与“和棋”这两个互斥事件的并事件,所以P(A)=16+12=2 3 .(或设事件A 为“甲不输”,则A 可看作是“乙胜”的对立事件.所以P(A)

计数原理与排列组合(教师用)

姓名学生姓名填写时间2016-12-7学科数学年级高三教材版本人教版阶段第( 48 )周观察期:□维护期:□ 课题 名称排列组合课时计划 第()课时 共()课时 上课时间2016-12-8 教学目标大纲教学目标 1、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用 问题. 2、理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解 决一些简单的应用问题. 个性化教学目标体会分类讨论的思想 教学重点1、正确区分排列与组合,熟练排列数与组合数公式 2、能熟练利用排列数与组合数公式进行求值和证明. 教学 难点 分类讨论思想的灵活应用 教学过程问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法 一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……,在第n类方法中有mn种不同的方法,则完成这件事共有 12n N m m m =+++种不同的方法 说明:1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数. 第一部分:计数原理

又称乘法原理

一、问题引入 问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名同学参加下午的活动,有多少种不同的选法 问题2:从1、2、3、4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数 问题1和2的共同点是什么 二、排列 1、对排列定义的理解. 定义:一般地,从n 个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 2、相同排列. 如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. 3、排列数. 从n 个不同元素中取出m(m≤n)个元素的所有不同的排列的个数,称为从n 个不同元素中取出m 个元素的排列数.用符号 m n A 表示. 且有:n n A 第二部分:排列

计数原理与排列组合

计数原理与排列组合 计数原理一、知识导学 1.分类计数原理:完成一件事n类办法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事分成n个步骤,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法. 二、经典例题导讲[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 分析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D . [例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用). 解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有3 2=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数. [例5] 用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字不重复的三位奇数? (3)可以组成多少个数字不重复的小于1000的自然数? 解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个. (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个. (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个 四、典型习题导练 1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有( ) A .43种 B .3 4种 C .18种 D .36种

相关主题
文本预览
相关文档 最新文档