当前位置:文档之家› 热分析技术在金属材料研究中的应用

热分析技术在金属材料研究中的应用

热分析技术在金属材料研究中的应用
热分析技术在金属材料研究中的应用

研究生课程论文

(2014 -2015 学年第一学期)

热分析技术在金属材料研究中的应用

提交日期:2014年12月 1 日研究生签名:

学号学院材料科学与工程学院

课程编号课程名称材料的物性及其测试技术

学位类别硕士任课教师

教师评语:

成绩评定:分任课教师签名:年月日

热分析技术在金属材料研究中的应用

摘要:介绍了热分析技术的一些常用的热分析方法,如热重分析、差热分析、差示扫描量热分析、热膨胀等;同时阐述了热分析技术在金属材料中的应用,如测定金属材料的相变的临界温度以及对磁性材料居里温度的测量,及相变的热效应等。

关键词:热分析技术金属材料研究应用

Application of thermal analysis technique in the research of metallic materials

Jing Deng

School of Materials Science and Engineering, South China University of Technology

Abstract: The application of the thermal analysis technique and some commonly methods were introduced, such as thermogravimetry analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermodilatometry and so on. The application of the thermal analysis technology in metallic materials was introduced, for example, to measure phase transition critical temperature of the metallic materials and the Curie temperature of the magnetic material and the thermal effect of the phase transition.

Keywords: thermal analysis technique; metallic materials; research; application

1、前言

热分析是在程序控制温度下测量物质的物理性质与温度之间对应关系的一项技术。主要包括如下三个方面的内容:一是物质要承受程序控温的作用,即以一定的速率等速升温或降温;二是要选择一观测的物理量P,该物理量可以是热学、磁学、力学、电学、声学和光学的等;三是测量物理量P随温度T的变化,往往不能直接给出两者之间的函数关系[1]。

热分析主要用于研究物理变化(晶型转变、熔融、升华和吸附等)和化学变化(脱水、分解、氧化和还原等)。热分析不仅提供热力学参数,而且还能给出有参考价值的动力学数据。因此,热分析在材料研究和选择上,在热力学和动力学的理论研究上都是很重要的分析手段[2]。

按照测量的物理性质,国际热分析协会(ICTA)将现有的热分析技术分类[3-4],具体见表1。热分析技术种类繁多,应用甚广,本文将介绍主要的热分析技术及其在金属材料研究中的主要应用。

表1 ICTA关于热分析技术的分类

测试性质方法名称英文全称缩名称质量热重法Thermogravimetry Analysis TGA

等压质量变化测定Isobaric Mass-change Determination

逸出气检测Evolved Gas Detection EGD

逸出气分析Evolved Gas Analysis EGA

放射热分析Emanation Thermal Analysis TEA

热微粒分析Thermoparticulate Analysis TPA 温度升温曲线测定Heating Curve Determination

差热分析Differential Thermal Analysis DTA 焓差示扫描量热法Differential Scanning Calorimetry DSC

尺寸热膨胀法Thermodilatometry

力学量热机械分析Thermomechanical Analysis TMA

动态热机械法Dynamic Mechanical Analysis DMA 声学量热发声法Thermosonimetry

热传声法Thermoacoustimetry

电学量热电学法Tbermoelectrometry ETA

光学量热光法Thermoptometry

磁学量热磁法Thermomagnetometry TMM

2、热重法(TG)

热重分析(Thermogravimetry Analysis)是在程序控温条件下,测量在升温、降温、或恒温过程中样品质量与温度(或时间)相互关系的一种技术[5]。

微商热重分析(DTG)是描述物质在温度程序下重量变化速度与温度或时间关系的一种技术,它是将热重曲线对时间或温度进行微分得到的。这样在TG中曲线以台阶形式出现,而在DTG中曲线以峰形式出现。DTG峰下的面积比例于每一阶段的总重量变化[6]。与TG比较,DTG优点很多,并且可以与DTA曲线类比。

常用的热重分析仪器为德国耐驰(NETZSCH)所生产。热重分析的应用很广,现介绍下面几个主要方面。

2.1、热重法在软磁铁氧体的生产中的应用

在软磁铁氧体生产过程中,铁氧体粉料经成型、烧结成为磁心,烧结过程最主要的是一个加热的过程,所以铁氧体粉料的热性能在软磁铁氧体质量控制中至关重要[7]。烧结是通过加热使成型坯件收缩和致密化的过程,这个过程同时也包含多种物理和化学变化,例如脱水,坯体内气体分解、多相反应和熔融、溶解等,烧结工艺是整个生产工艺流程的关键控制点。由于热分析仪检测的是物质在加热过程中的物理性质变化情况,我们可以通过热重分析仪对铁氧体材料中水分和黏合剂的挥发情况、坯件颗粒间发生固相反应、坯件的收缩等情况进行分析,从而可以对铁氧体烧结过程中的升温速率、保温温度、保温时间等起到关键的指导作用。从选料到烧结,热重分析仪可以对每个工艺过程中产生粉料的热性能进行测试分析,以检验各个工艺过程产物是否达到预期的效果,从而更好地控制各工艺阶段产品质量。热分析更多的是在新产品的开发和研制或生产情况发生异常时应用。

2.2、热重法研究稀土对20钢碳氮共渗过程的催渗作用

用热重法研究稀土元素对20钢表面碳氮共渗过程的催渗作用,可以考察不同稀土加入量、不同温度对催渗动力学过程的影响[8]。

在不同温度下,不加稀土与加稀土的动力学曲线的对比,如图1所示。可知,在有稀土参与共渗的条件下,增重量随时间的变化速率明显增加。表明稀土对碳氮共渗过程有显著的催渗作用。

图1 碳氮共渗增重与时间的关系

稀土催渗效果在短期碳氮共渗时尤为显著,随共渗时间延长而减弱,如图2所示。初步分析认为:随时间的延长,扩散成为共渗的控制因素。由于稀土渗入深度较浅,对于深层扩散的催渗效果则不显著。

共渗温度对稀土催渗效果的影响,如图3所示。在860℃左右催渗效果较好,共渗6h后相对催渗率达25%。随共渗温度的提高,催渗效果减弱。

图2 单位时间催渗增重与时间的关系图3 不同温度下稀土催渗增重的变化渗剂中稀土加入量也是影响催渗效果的一个重要因素。研究结果如图4所示:稀土加入量对于催渗效果存在一个最佳范围。在860℃热天平石英管式炉无负载的条件下,稀土加入量为6g/L混合介质时,催渗效果最明显。温度不同,最佳稀土加入量略有改变。

图4 单位面积上增重与稀土加入量的关系

3、差热分析(DTA)

差热分析法(Differential Thermal Analysis)是在程序控温下,测量物质和参比物质之间的温度差与温度的关系[9]。

记录时间—温度曲线的方法是常用的热分析方法,步冷曲线即属这一类。在环境的温度不变的情况下,体系在加热或冷却过程中如果不发生任何吸热或放热反应,体系的温度应该是时间的连续函数,其曲线是一条连续的曲线。反之,体系在加热或冷却过程中如有某种变化发生,伴随产生的热效应将使体系温度变化的连续性延缓或加速,在时间一温度曲线上将出现转折或水平部分。因此,根据实验所得曲线的形状,可以判断休系发生的变化[10-12]。

3.1、差热分析法测定钢的临界点A c1、A r1

用热分析法很容易测定钢在加热或冷却过程中转变的临界温度[13]。图5是用差热分析测得共析钢的热分析曲线。试样在加热过程中,珠光体向奥氏体转变要吸热,曲线上吸热峰的拐点a对应的温度为A c1点。试样在冷却过程中,奥氏体分解为珠光体要放热,曲线上的放热峰的拐点a`对应的温度为A r1点。

图5 共析钢DTA曲线

3.2、用差热分析法分析钢正火后低温回火过程中组织的变化

试验材料为中碳钢,其化学成分见表2。则钢正火后低温回火过程中的差热分析曲线如图5[14]。

表2试验钢的化学成分,Wt%

元素 C Si Mn P S V

含量0.4 0.7 1.63 <0.04 <0.04 0.1

图5 正火后低温回火过程中的差热分析曲线

试验钢正火后获得的显微组织分析是粒状贝氏体,即在铁素体基体上分布一些小岛状组织,小岛由马氏体M和奥氏体A组成。回火过程中组织的变化即粒状贝氏体中各组成相的变化。从图5可看出,在<300℃范围内,差热分析曲线共出现四个波峰,根究已被实验所证实的回火时碳原子富集温度(室温~100℃),M分解碳化物析出温度

(80℃~250℃),碳化物类型转变温度(250℃~400℃),残余奥氏体Ar转变温度(>200℃)等,可认为曲线上55~109.0℃范围内峰值温度为84.5℃的波峰是小岛内M中碳原子进行扩散形成富集去所造成的。109~177.3℃范围内的第二个峰是小岛内M发生分解弥散析出ε碳化物造成的。177.3~214℃范围内的第三个峰是小岛内M继续分解析出ε碳化物和先析出碳化物长大所造成。214 ~268℃范围内的第三个峰是小岛内A分解和小岛内M析出ε碳化物发生类型转变所造成的。根据这一显微组织的变化,也可理解钢正火后低温回火硬度的变化。

3.3、差热分析技术在钎料设计中的应用

在现代合金设计中,基于热力学基本理论,建立热力学模型,可以进行钎料合金系统相平衡计算、优化相图或预测新合金系统[15]。对于Pb-16Sn-7.5Sb-1.0Ag (wt.%)四元合

金料,对其进行差热分析,测得的DTA曲线见图6。从曲线也可以发现两个基本重叠的吸热峰,表明焊料为近共晶合金,固相温度为236℃,液相温度为243℃。试验表明该钎料可满足要求。

图6 Pb-16Sn-7.5Sb-1.0Ag(wt.%)合金DTA差热分析曲线

通过差热分析研究,基本确定出合适的钎料组分。实验表明,差热分析是研究钎料合金熔化温度的有效方法,可准确快速确定合金的固相线温度和液相线温度,为钎料设计、开发以及钎焊工艺设计提供依据。

3.4、差热分析确定镁合金AZ80转变温度

试验材料为AZ80镁合金锭,其化学成分见表3[16-17]。

表3 铸态AZ80镁合金成分(wt. %)

Al Zn Mn Mg

6.92~

7.40 0.78~1.19 0.30 其余

从室温至700℃温度范围内进行动态升温扫描,升温速率为10℃/min。扫描时试样在氮气气氛保护下进行,氮气流量为50 m L/min。测试前DSC样品用锉、粗砂纸将试样磨成直径<5mm,厚度<1mm的薄片。图7为显示镁合金AZ80样品的差热曲线图。从图7可看出样品在加热过程中出现了2个吸热峰值点,对应的温度为432.44 ℃和566.09 ℃。在第一个峰值点的上方出现了一个转折点a,对应的温度为426.02 ℃,该温度为相变起始温度。根据这个转折点和第一个峰值点,可得出该合金的共晶温度区间为

426.02~432.44℃。升温过程中在566 ℃附近出现一个放热峰,由于该点处于基体α-Mg熔化温度范围内,故根据第二个峰附近的b (528.13 ℃)、c (609.78 ℃)两点,可以判断出该合金的固液温度区间为528.13~609.78 ℃,对应α-Mg开始熔化温度和全部转变为液相的温度。

图7 AZ80镁合金成的DSC分析结果

通过对镁合金AZ80差热曲线(DSC)的分析得出,相变起始温度为426.02 ℃,共晶温度为432. 44 ℃,固相温度为528.13 ℃,液相温度为609.78 ℃。

3.5、测定过烧温度

铝合金过烧是指低熔点共晶体的复熔相变反应[13]。共晶体的复熔需要熔化热,在DTA 曲线上出现等温吸热效应,曲线上开始出现转变拐点,它在温度曲线上所对应的温度就是过烧温度。在实验过程中,复熔过程在一定的温度区间内进行,故通常取吸热效应的始点温度和终点温度的平均值作为过烧温度。

LD10合金在不同的升温速度下,过烧温度也不同,随着升温速度的提高,过烧温度也随之升高,两者呈近似线性变化。如图8所示。将曲线延长到纵坐标轴上,可得到静态温度,即平衡共晶温度514℃。同时用金相法可确定该合金的过烧温度为510~515℃[18],从而可知差热分析结果是正确的。

图8 LD10合金曲线

3.6、鉴别铝合金氧化程度

铝合金在高温时表面通常会发生急剧氧化。氧化过程是种化学反应放热过程,在DTA 曲线上出现氧化放热峰,且氧化放热量与生成氧化膜的量成正比。在相同实验条件下(试样表面积和气氛等),比较氧化放热峰面积的大小,可鉴别合金的氧化程度。该方法反映

铝合金的表面氧化程度是比较灵敏的,用适宜的升温速度和灵敏度可得到较好的结果[13]。

4、差示扫描量热法(DSC)

差示扫描量热法(Differential Scanning Calorimetry)是在程序控制温度下,测量输入到试样和参比物的功率差与温度的关系[19]。研究温度作用下物质的相转变和化学反应时的

热效应。参比物质是一种惰性物质,如Al

2O

3

或空的铝盒。相同温度时输入样品和参比物

的不同热流被作为温度的函数记录下来,即差示扫描量热曲线(DSC曲线)。参比物和试样的温度都以恒定的速率升高,纵坐标是试样和参比物的功率差Δ d H/d t(单位为m W),

横坐标是时间(t)或温度(T)。纵坐标没有规定吸热、放热的方向,可正可负。功率差用下式表示:

Δ[d H/d t] = [d H/d t]sample - [d H/d t]reference (1) 在DSC仪器中,使用最多的是Perkin Elmer公司的差示扫描量热仪[20]。DSC炉子的结构如图9所示。它由样品支持器和参比物支持器组成,其主体及其构件的结构材料都是由可耐高温的铂或铂铱合金制成,每个支持器下连着电阻加热器和温度传感器。

图9 DSC样品支持器和炉子结构示意图

通过把热量输给样品或参比物支持器,保证两个加热器在选定的升温速率下升高温度,样品和参比物的温度保持相等,记录保持等温条件所需的热量随时间或温度的变化关系d H/d t。通入氮气的作用是保证样品处在干燥气氛中,同时排除空气,避免样品在高温下氧化。通常样品被密封在小铝盒中,铝盒大约能装10mg样品,即用DSC测量时,试样质量一般不超过10mg。而参比物为空的带盖铝盒。在DSC谱图中,融化过程是一个正峰。通过对基线下DSC峰面积积分,得到相转变的总熔融焓:

∫[d H/d t]sample d t = Δ H sample (2) 积分计算由电脑完成。积分单位是任意的,所以必须用一种已知准确熔融焓和已知重量的标准物质进行校正。铟就是用来校正的物质之一。校正熔融焓用下面的公式计算:

Δ H

sample =Δ H

indium

[样品熔融峰面积/铟熔融峰面积] (3)

4.1、用差示扫描量热法测定金属Gd的比热容

差示扫描量热(DSC)法是在程序控温下,测量输入物质和参比物的热流率(功率差)

与温度的关系[21]。扣除基线后,DSC绝对信号的大小与样品热容(比热容×质量)成正比,

用DSC测定比热容时,样品处在线性升温程序控制下,流入样品的热流速率是连续的,它等于样品吸收的热量。比热容C和吸收的热量H之间的关系为

C=(d H/d t) × (1/m sam)

由于实际测量中很难直接测定比热容的绝对值,因此常采用间接测量方法,即依次测量基线、标样线、样品线,再运用DSC分析软件分析得到比热容值。使用差示扫描量热仪测定150~350K范围内金属Gd的比热容,然后用拟合实验曲线确定晶格比热容和电子比热容,从而确定金属Gd的磁比热容及其磁熵变化。

图10为金属Gd的比热容随温度的变化曲线,其中曲线1是前人用ac测量法测量的结果[22],曲线2是DSC的测量结果,曲线3是用德拜模型拟合的晶格比热容和电子比热容的总和。由图10可见,在相变点,即居里温度T C=290K,实验结果与磁性测量结果[23]基本一致;在相变区以下,实验值与文献值[22-24]有所不同,这可能是由于两种测量方法不同或两个样品不同所致。但在相变点附近,测量结果与文献值[22-24]完全符合,说明在相变点附近用DSC方法测定磁比热容是可行的。

图10 Gd的比热容随温度的变化曲线

4.2、用差示扫描量热法测量涂膜中的锌粉含量

涂膜中的锌粉在DSC的加热过程中发生熔融,样品吸收一定的热量,样品与参比产生热能差,这时仪器系统要通过功率的补偿Δ Q维持试样与参比热能平衡,Δ Q直接作为信号输出,表现在DSC曲线图上为一吸热峰,计算此吸热峰的峰面积得出系统所补偿的能量,也就是涂膜中锌粉熔融产生的焓变值,单位样品质量的焓变值即为此样品中锌粉熔融所产生的焓值(J/g)样[25]。它与纯锌(99.999%)的焓值(J/g)纯的比值即为涂膜样品中锌含量的质量百分数。

Zn%=(J/g)

样/(J/g)

×100

锌的熔点为419℃左右,ASTM规定测量涂膜中锌粉含量时,仪器的扫描温度为(370~435)℃,在这个温度区间内锌的状态发生改变,仪器采集样品随温度的变化而产生的能量变化曲线,即DSC曲线。

4.3、用差示扫描量热法研究磁相变材料的热效应

用差示扫描量热法研究磁性材料的热效应,即研究材料的比热﹑熵变﹑相变潜热及相变热滞现象[26]。用差示扫描量热仪依次测量样品的基线,标样线,样品线,再运用DSC 分析软件进行分析得到比热值。

图11所示为Mn2-x Fe x P0.5Si0.49(x = 0.8, 0.85, 0.9, 0.95, 1.0)系列化合物升温过程中比热随温度变化曲线。从图可知,比热随温度变化曲线上出现了吸热峰,该峰对应与材料的铁磁到顺磁的相变。说明该系列化合物在相变附近比热有反常行为,并且随着Fe含量的增加反常峰向高温区移动(该结果与磁性测量一致)。从图可以看出,相变区以外,该系列五个化合物的比热曲线基本重合。对比热进行积分可以得到熵随温度变化曲线(如图11a所示)。由图12a可知:随着温度的增加,熵增加,并且相变附近熵发生阶梯式变化,即相变点熵不连续,进一步说明了该系列化合物经历了铁磁→顺磁的一级相变。如图12b 所示:用切线法可估算相变前后最大熵变和两相共存区的温度跨度,计算结果表明,随着Fe含量的增加,相变过程的熵变和两相共存区的温度跨度增加,该系列化合物的熵变在7.5~10J/mol-K之间变化,两相共存区的温度跨度在11.9~16.2 K之间变化,结果列于表4。相变过程的熵变越大,表明,化合物具有大的磁热效应。通过熵变和相变潜热

,可计算化合物一级相变的潜热大小,计算结果如表4所示:满足的关系式:L=ΔS·T

C

随着相变温度的增加,相变潜热增加。

图11 Mn2-x Fe x P0.5Si0.49系列化合物比热随温度变化曲线

图12 Mn2-x Fe x P0.5Si0.49系列化合物熵随温度变化曲线

表4 Mn2-x Fe x P0.51Si0.49系列化合物的相变温度﹑熵变﹑两相

共存区的温度跨度﹑相变潜热值

x T C(K) T(K) S(J/mol-K) L(kJ/ mol)

0.8 280.8 11.9 7.5 2.11

0.85 308.8 11.9 8.1 2.5

0.9 315.1 11.3 8.4 2.65

0.95 322 16 9.8 3.16

1.0 345.7 16.2 1 0 3.46

5、热膨胀法(Thermodilatometry)

热膨胀法(Thermodilatometry),在程序温度下,测量物质的尺寸与温度的函数关系技术。其中又分线热膨胀法与体积热膨胀法[27]。

5.1、测定BT25钛合金相变点

热膨胀法测定钛合金相变点是根据在加热过程中,钛合金发生α→ β同素异构转变时体积的变化,测定绘出其温度恒定后,试样连续升温的线膨胀值—温度曲线,根据曲线斜率的变化即可得到α + β钛合金的相变温度[28]。

图13为BT25 合金线膨胀值—温度曲线。曲线1为连续升温曲线,曲线2为一阶导数曲线。对于BT25钛合金,( α + β)→β转变是一个持续过程,在连续升温曲线上,相变开始表现为曲线1出现拐点,由于曲线1过渡比较平稳,通过对其求一阶微分(即曲线2),发现曲线2斜率的最高点在963. 2 ℃,表示(α + β)→β相变的开始温度,紧邻下一拐点温度为1029. 2 ℃,为相变结束温度。因此,该方法表明BT25 合金的相变点在1029. 2 ℃左右。

图13 BT25 合金热膨胀曲线

6、结语

热分析技术除了上述用途以外,热分析技术主要用于研究物质的物理变化(吸附、晶型转变和相态变化等)和化学变化(氧化、还原、脱水和分解等),上述的具体应用只是这些年来学者在热分析技术应用上的一些探索。随着热分析仪器制作水平的提高及各种配套计算机软件的推出,热分析数据愈来愈完善;此外热分析技术与其它分析技术(如

红外光谱、气相色谱、质谱)的联用发展迅速,进一步拓宽了热分析测试的应用领域,丰富和发展了热分析的实验技术、数据处理和相关理论。这些分析技术的发展为我们提供了很好的实验分析条件,同时也对分析人员的理论水平和实验技能提出了更高的要求。

参考文献

[1] 祁景玉. 现代分析测试技术[M]. 上海:同济大学出版社,2006, 2.

[2] Antonin Blazek. Thermal Analysis[M]. Van Nostrand Reinhold Company Ltd, 197.

[3]马冰,李德荣等,二元铝铁合金凝固过程的差热分析研究[J],铸造, 1999, 3: 5-8.

[4] 宛静,热分析技术概述及其应用[C].航空航天科技创新与长三角经济转型发展论坛论文集

[5] 陈鹏,王敦辉等, 磁制冷工质材料的研究进展[J], 物理学进展. 1999, 19(4): 371-385.

[6] 李传军. 磁场下金属凝固过程形核与生长的差热分析研究[D]. 上海大学博士学位论文. 2010.

[7] 刁静人.热重分析结果的影响因素分析[J].磁性材料及器件. 2012, 12.

[8] 韦永德,陈刚.用热重法研究稀土对20钢碳氮共渗过程的催渗作用[J].金属学报.1986, 22(3):

b126-b130.

[9] 王岩,况军.热分析技术的发展现状及其在稀土功能材料中的应用[J].金属功能材料.2014, 21(4):

43-46.

[10] 何伟,杜小平等. TC4钛合金相变温度的测定与分析[J]. 理化检验-物理分册. 2014, 50(7): 461-464.

[11] 哈斯朝鲁.Fe-Mn-Si基复合型室温磁制冷工质研究[D]. 内蒙古师范大学硕士学位论文. 2010.

[12] 曹宏燕.冶金材料仪器分析方法国内外标准的进展[J]. 冶金分析, 2013, 33(1): 27-42.

[13] 张明奇,热分析技术在金属材料研究中的应用[J].《材料开发与应用》,1994, 9(6):36-40.

[14] 曹楚南.腐蚀电化学原理[M].化学工业出版社. 2008.

[15] 王炜,张国清等.差热分析技术在钎料设计中的应用[J].分析仪器.2014, (3): 56-61.

[16] 艾秀兰,杨军等.镁合金AZ31的差热分析及凝固组织观察[J].大连交通大学学报.2009, 30(2): 58-61.

[17] 艾秀兰,杨军等.镁合金AZ80的差热分析及凝固组织观察[J].铸造.2009, 5: 482-485.

[18] 宋学梦.理化检验物理分册.1980, 16(2), 30.

[19] 陈青,魏伯荣等.差示扫描量热法单峰测定物质的纯度[J].分析仪器2005, 3: 43-46.

[20] 陈镜泓.热分析及其应用[M].北京: 科学出版社,1985: 315.

[21] 哈斯朝鲁,石海荣等.用差示扫描量热法测定金属Gd的比热容[J].内蒙古师范大学学报(自然科学

汉文版),2011, 40(6): 586-588.

[22] Griffel M Skochdopole R E. Spending F H. The heat capacity of gadolinium from 15 to 355K[J]. Phys

Rev. 1954, 657-661.

[23] Tegus O, Bruck E, Buschow K H J, eta. Transition metal based magnetic refrigerants for

room-temperature applications[J]. Nature. 2002, 415: 150.

[24] Edwin A S, Lewis. Heat capacity of gadolinium near the Curie point[J]. Phys Rev B, 1970(1):

4368-4377.

[25] 陈旭东,殷勇.用差示扫描量热法测量涂膜中的锌粉含量[J].中国涂料. 2005,20(10): 18-20.

[26] 石海荣. 用差示扫描量热法研究磁相变材料的热效应[D]. 内蒙古师范大学硕士学位论文. 2012

[27] 李红英,李阳华等.28CrMnMoV钢过冷奥氏体连续转变冷却研究[J]. 中南大学学报(自然科学版).

2014,45(10): 3363- 3372.

[28] 田飞,曾卫东.物理分析法与金相法测定BT25钛合金相变点[J].材料热处理学报,2011, 32(5): 1-5.

热分析技术在金属材料研究中的应用

研究生课程论文 (2014 -2015 学年第一学期) 热分析技术在金属材料研究中的应用 提交日期:2014年12月 1 日研究生签名: 学号学院材料科学与工程学院 课程编号课程名称材料的物性及其测试技术 学位类别硕士任课教师 教师评语: 成绩评定:分任课教师签名:年月日

热分析技术在金属材料研究中的应用 摘要:介绍了热分析技术的一些常用的热分析方法,如热重分析、差热分析、差示扫描量热分析、热膨胀等;同时阐述了热分析技术在金属材料中的应用,如测定金属材料的相变的临界温度以及对磁性材料居里温度的测量,及相变的热效应等。 关键词:热分析技术金属材料研究应用 Application of thermal analysis technique in the research of metallic materials Jing Deng School of Materials Science and Engineering, South China University of Technology Abstract: The application of the thermal analysis technique and some commonly methods were introduced, such as thermogravimetry analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermodilatometry and so on. The application of the thermal analysis technology in metallic materials was introduced, for example, to measure phase transition critical temperature of the metallic materials and the Curie temperature of the magnetic material and the thermal effect of the phase transition. Keywords: thermal analysis technique; metallic materials; research; application 1、前言 热分析是在程序控制温度下测量物质的物理性质与温度之间对应关系的一项技术。主要包括如下三个方面的内容:一是物质要承受程序控温的作用,即以一定的速率等速升温或降温;二是要选择一观测的物理量P,该物理量可以是热学、磁学、力学、电学、声学和光学的等;三是测量物理量P随温度T的变化,往往不能直接给出两者之间的函数关系[1]。 热分析主要用于研究物理变化(晶型转变、熔融、升华和吸附等)和化学变化(脱水、分解、氧化和还原等)。热分析不仅提供热力学参数,而且还能给出有参考价值的动力学数据。因此,热分析在材料研究和选择上,在热力学和动力学的理论研究上都是很重要的分析手段[2]。 按照测量的物理性质,国际热分析协会(ICTA)将现有的热分析技术分类[3-4],具体见表1。热分析技术种类繁多,应用甚广,本文将介绍主要的热分析技术及其在金属材料研究中的主要应用。 表1 ICTA关于热分析技术的分类 测试性质方法名称英文全称缩名称质量热重法Thermogravimetry Analysis TGA 等压质量变化测定Isobaric Mass-change Determination 逸出气检测Evolved Gas Detection EGD 逸出气分析Evolved Gas Analysis EGA 放射热分析Emanation Thermal Analysis TEA

热分析应用

武汉理工大学 热分析技术应用综述 课程名称:材料热分析技术 学院:材料学院 班级:建材院委培生 学号: 姓名:吴帅 摘要对热分析技术进行了介绍,并综述了近年来热分析技术在工业方面、食品分析、高分子及复合材料检测等领域的应用情况。

关键词热分析技术;工业方面;食品分析;高分子及复合材料检测 1 热分析技术概述 热分析技术作为一种科学的实验方法,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。国际热分析协会(ICTA)对热分析技术作了如下定义:热分析是在程序温度控制下,测量物质的物理性质与温度之间关系的一类技术。这里所说的“程序控制温度”一般指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。这里的“物质”指试样本身和(或)试样的反应产物,包括中间产物。上述物理性质主要包括质量、温度、能量、尺寸、力学、声、光、热、电等。根据物理性质的不同,建立了相对应的热分析技术,ICTA 命名委员会对热分析技术进行了分类,具体见表1-1。 表1-1 热分析技术分类 热分析技术的优点主要有下列几方面:(1)可在宽广的温度范围内对样品进行研究:(2)可使用各种温度程序(不同的升降温速率);(3)对样品的物理状态无特

殊要求;(4)所需样品量可以很少(0.1μg~10mg);(5)仪器灵敏度高(质量变化的精确度达10-5);(6)可与其他技术联用;(7)可获取多种信息。 2 热分析技术在工业领域的应用 2.1 热分析在炸药研制过程中的应用 炸药是一种相对稳定的平衡体系,在一定外界条件作用下能够发生高速化学反应,释放出巨大的热能,产生大量的气体,其整个反应是一个复杂的、伴随着吸热和放热过程的物理化学变化。热分析是测量炸药物性参数对温度依赖性的有关技术的总称。在炸药热分析中,除了测定其在热作用下的热行为外,更重要的是利用热分析方法来对其反应动力学进行研究,并根据动力学参数以及炸药在各种温度下的热行为,探讨和确定炸药在研制、生产和使用中的最佳条件(工艺条件和环境条件),以为确保这些过程的安全性、可靠性提供重要的实验和理论依据。因此,炸药的热分析在炸药研制过程中具有重要的意义和关键性的作用。 2.2 热分析在遥感卫星设计上的应用 作为卫星热设计的重要步骤,热分析主要用于检验热设计是否将卫星温度控制在所要求的范围内。卫星热分析主要包括热网络模型建立、外热流计算、温度场分析和热分析模型修正等内容。选取合理的建模方法,通过简化,精确地反映卫星各部件与环境的热交换是热分析建模的基本原则。近年来,我国的卫星热分析技术取得了快速进展,其主要标志是:配备并完善了热分析软件;热分析计算贯穿热设计的全过程[1]。卫星热分析与热试验温度偏差一般可控制在5~10 ℃,已基本满足卫星工程设计的需求。目前,进一步提高热分析模型精度的主要方法是利用热平衡试验数据进行热分析模型修正[2]。实践表明:由于热分析模型针对的飞行状态与热平衡试验状态并不一致,直接利用热试验结果修正热模型往往无法获得预期效果。因此,有必要分析卫星热平衡试验与在热分析结果存在差异的主要原因,并寻求合适的途径以实现热模型的有效修正。 2.3 热分析在铸造领域的应用 热分析方法开始应用于铸造领域时用于分析铸铁的化学成分[3]。但是现在已经广泛应用于工业界的是利用其来分析铝合金的晶粒细化和Al-Si合金中的Si 变质程度[4]。热分析方法还是常用于评价铁合金、铝合金等的凝固过程及凝固过

热分析的基础与应用

热分析的基础与分析 SII·Nano technology株式会社 应用技术部大九保信明 目录 1.引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2.热分析概要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2-1热分析的基本定义 2-2热分析技术的介绍 2-3热分析结果的主要 3.热分析技术的基本原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3-1 差热分析DTA原理 3-2 差热量热DSC原理 3-3 热重TG 原理 3-4 热机械分析TMA原理 4.应用篇。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 4-1DSC的应用例 4-1-1聚苯乙烯的玻璃化转变分析 4-1-2聚苯乙烯的融解温度分析 4-1-3比热容量分析 4-2TG/DTA的应用例 4-2-1聚合物的热分析测定 4-2-2橡胶样品的热分析测定 4-2-3反应活化能的解析 4-3TMA的应用例 4-3-1聚氯乙烯样品玻璃化温度的测定 4-3-2采用针入型探针对聚合物薄膜的测定 4-3-3热膨胀,热收缩的异向性解析 结束语。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 参考文献

1.前言 与其它分析方法相比,热分析方法研究的历史较为久远,1887年,勒夏特利埃(Le Chatelier)就着手研究差热分析,1915年,我国的本多光太郎开创了热重分析(热天平)。之后,随着电气、电子技术、机械技术的发展,热分析仪器迅速地得到了普及,加之,由于最近该仪器的自动化、计算机化程度的不断提高,热分析技术已作为通用的分析技术之一已被广泛的应用。 热分析技术涉及众多领域,以化学领域为首,热分析技术已广泛应用于物理学、地球科学、生物化学、药学等领域。起初,在这些领域中,热分析主要用于基础性研究。随着研究成果的不断积累、扩大,现已被用于应用开发、材料设计,以及制造工序中的各种条件的研究等生产技术方面。近年来,在日本工业标准/JIS等的试验标准、日本药典等的法定分析法中有些也采用了热分析技术。同时,在产品的出厂检验、产品的验收检查等质量管理、工艺管理领域,热分析也已成为最重要的分析方法之一。 作为热分析技术的最常用的方法,本章主要介绍差热分析(DTA)、差热量热分析(DSC)、热重分析(TG)及热机械分析(TMA)的基本原理以及各种测量技术的典型应用示例。 2.热分析的概要 2-1 热分析的定义 根据国际热分析协会(International Confederation for Thermal Analysis and Calorimetry:ICTA)的定义,热分析为: 热分析技术是在控制程序温度下,测量物质(或其反应生成物)的物理性质与温度(或时间)的关系的一类技术。 图1为根据该定义制作的热分析仪器的示意图。所谓热分析是指,如图1所示将试样放入加热炉中,检测使温度发生变化时所发生的各种性能变化的方法。根据要检测不同的物质性能的变化,热分析技术可以分类为几种不同的热分析技术。 图1热分析仪器的示意图

金属材料检测检验检测标准

金属材料检测检验检测标准 金属材料检测范围涉及对黑色金属、有色金属、合金、铸件、机械设备及零部件等的机械性能测试、化学成分分析、金相分析、精密尺寸测量、无损探伤、耐腐蚀试验和环境模拟测试等。青岛科标检测中心出具权威资质认证国家认可的检测报告。 检测项目: 常规元素分析 品质(成份分析)、硅(Si)、锰(Mn)、磷(P)、碳(C)、硫(S)、镍(Ni)、铬(Cr)、铜(Cu)、镁(Mg)、钙(Ca)、铁(Fe)、钛(Ti)、锌(Zn)、铅(Pb)、锑(Sb)、镉(Cd)、铋(Bi)、砷(As)、钠(Na)、钾(K)、铝(Al)、牌号测定等 贵金属元素分析 银(Ag)、金(Au)、钯(Pd)、铂(Pt)、铑(Rh)、钌(Ru)、铱(Ir)、锇(Os) 物理性能:磁性能、电性能、热性能、抗氧化性能、耐磨、盐雾、腐蚀、密度、热膨胀系数、弹性模量、硬度; 化学性能:大气腐蚀、晶间腐蚀、应力腐蚀、点蚀、腐蚀疲劳、人造气氛腐蚀; 力学性能:拉伸、弯曲、屈服、疲劳、扭转、应力、应力松弛、冲击、磨损、硬度、耐液压、拉伸蠕变、扩口、压扁、压缩、剪切强度等; 工艺性能:细丝拉伸、断口检验、反复弯曲、双向扭转、液压试验、扩口、弯曲、卷边、压扁、环扩张、环拉伸、显微组织、金相分析; 检测产品: 钢铁材料:结构钢、铜、铝、铁、不锈钢、耐热钢、高温合金、精密合金等 金属及其合金:轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等; 特种金属材料:功能合金、金属基复合材料等; 金属材料制品:生铁、铝管、铁板、铁管、钢锭、钢坯、型材、线材、金属制品、有色金属及其制品等。 检测标准: 978-7-5066-5282-7 无机非金属材料检测标准手册胶凝材料卷 CB 1369-2002 舰船用金属材料进货检验及验收规则 CB 1370-2002 舰船用非金属材料进货检验及验收规则 CB/Z 264-1998 金属材料低周疲劳表面裂纹扩展速率试验方法

(整理)热分析技术在LC、LCP及LCD中的应用

热分析技术在LC 、LCP 及LCD 中的应用 液晶(LC)和液晶高分子(LCP)通常是指在一定温度范围内呈现介于固相和液相之间的中间相的有机化合物。在这中间相,它既具有液体又具有晶体的特性;其颜色和透明度可随外界条件(如温度,电场,磁场,吸附气体等)变化而变化。LC 和LCP 这些不寻常的性质已经在液晶显示材料(LCD)中得到了广泛的实际应用,是近十几年来高分子材料研究的热点。而热分析技术是通过测试材料随温度或时间而变化的物理和化学性能来对其进行表征的一系列技术。由此可见热分析技术是进行LC、LCP 和LCD 研究和质量控制必不可缺的基本手段之一,其应用也愈来愈广泛和深入。 DSC 的应用 DSC 是在程序控制温度下,测量输入到物质和参比物的热流差与温度(时间)关系的一种技术。由于DSC 不仅能准确测定LC、LCP 和LCD 的相变温度、结晶温度、熔融温度和玻璃化转变温度;而且能定量地量热,测定各种热力学参数(如热焓熵和比热)和动力学参数,灵敏度高和工作温度可以很低,因此DSC 在LC、LCP、LCD 中的研制和生产中的应用是最宽的。 1. 液晶的相变 由于LC、LCP、LCD 具有复杂的中间相,其相变过程也很复杂,并且有些相变过程的热效应也很小,属于微弱的一级相变,因此对DSC 的灵敏度和量热的准确性提出了很高的要求。否则有些相变过程就会因测量不到而被忽略。METTLER-TOLEDO 公司的DSC822e 结合了静态量热计量热准确和DSC 技术少量快速的优点,采用独特的卡尔文热电堆热流传感器,具有比同类产品高得多的检测灵敏度和准确性(见图1),图中的液晶样品在冷却曲线上中间相的焓变和温度范围都很小,但经信号放大后能清晰可见),信号时间常数短,分峰能力强,噪声低。并且配合该公司的FP84 热台偏光显微镜的使用是表征LC、LCP、LCD相变的最简单有效的方法。图1

热分析技术及其在高分子材料研究中的应用

第33卷第3期2008年9月 广州化学 Guangzhou Chemistry V ol.33, No.3 Sept., 2008 热分析技术及其在高分子材料研究中的应用 翁秀兰1,2 (1. 福建师范大学化学与材料学院,福建福州350007; 2. 福建省高分子材料重点实验室,福建福州350007) 摘要:简要介绍了热分析技术——热重法、差热分析、差示扫描量热法、热机械分析法和动态 机械热分析法等及其在高分子材料领域的广泛应用。热分析技术的方法具有快速、方便等优点, 在高分子材料的研究中发挥着重要作用。 关键词:热分析;高分子材料;应用 中图分类号:O657.99 文献标识码:A 文章编号:1009-220X(2008)03-0072-05 热分析技术是在程序控制温度下测量样品的性质随温度或时间变化的一组技术,它在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用。热分析技术已渗透到物理、化学、化工、石油、冶金、地质、建材、纤维、塑料、橡胶、有机、无机、低分子、高分子、食品、地球化学、生物化学等各个领域。 在高分子材料研究领域,随着高分子工业的迅速发展,为了研制新型的高分子材料与控制高分子材料的质量和性能,测定高分子材料的熔融温度、玻璃化转变温度、混合物的组成、热稳定性等是必不可少的[1-2]。在这些参数的测定中,热分析是主要的分析工具。 热分析技术主要包括:热重分析法(TG)、差热分析法(DTA)、差示扫描量热法(DSC)、热机械分析法(TMA)、动态热机械分析法(DMA)等。本文简要介绍了热分析技术及其发展前景及其在高分子材料研究领域的应用。 1 TG及其在高分子材料方面的应用 热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。热重分析主要研究在惰性气体中、空气中、氧气中材料的热的稳定性、热分解作用和氧化降解等化学变化;还广泛用于研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣,吸附、吸收和解吸,气化速度和气化热,升华速度和升华热;有填料的聚合物或共混物的组成等[3]。 1.1 高分子材料的组分测定 热重法测定材料组分,方法简便、快速、准确,经常用于进行高分子材料组分分析。通过热重曲线可以把材料尤其是高聚物的含量、含碳量和灰分测定出来,而对于高分子材料的混合物,如果各组分的分解温度范围不同的话,则可以利用TG来确定各个组分的含量[4]。 收稿日期:2007-11-13 作者简介:翁秀兰(1980-),女,福建福清人,研究实习员,负责热分析仪器及从事光催化研究。

热分析技术

热分析技术 1 热分析技术的类别 1.1 热重分析( TGA) 热重分析法是在程序控制温度下,测量物质的重量与温度关系的一种技术[6]。记录重量变化对温度的关系曲线称热重曲线(TG曲线),热重曲线是在氮气流或其他惰性气流下,由于挥发性杂质失去,导致重量减失,以温度为横坐标,重量为纵坐标绘制的图谱,为便于观察,也采用其微分曲线,称为微分热重分析( D/TG)。热重分析仪由装在升温烘箱中的微量天平组成。此天平应对温度不发生称量变化,保证在长期程序升温时测量稳定。 1.2 差热分析( DTA) 对供试品与热惰性参比物进行同时加热的条件下,当供试品发生某种物理的或化学的变化时,由于这些变化的热效应,使供试品与参比物之间产生温度差。在程序控制温度下,测定供试品与参比物之间温度差与温度(或时间)关系的技术称为差热分析。 1.3 差示扫描量热分析( DSC) DSC是在DTA基础上发展起来的一种热分析方法[7-9]。测量输给供试品与参比物热量差(dQ/dT)与温度(或时间)关系的技术成为差示扫描量热分析。在DTA 中,是样品与参比物,在温度变化时热量的变化对样品温度作图,而在DSC中为保持样品与参比物相同温度所需输入能量的差异与样品的温度作图,其精密度与准确度均高于DTA。在DSC仪器中,样品和参比物的支架是热互相隔离的,各自固定在自己的温度传感器及加热器上,样品和参比物放在支架内的金属小盘中,在程序升温过程中,当样品熔融或挥发时,样品与参比物需要保持温度一致所需的能量不同,在DSC 图谱中,纵坐标为热量差,横坐标为温度,峰面积为样品的转换能,正峰与负峰分别为吸热峰与放热峰,峰面积与热焓成比例。 2 热分析技术在中药及其制剂质控中的应用 2.1 药物纯度的测定 药物纯度的测定是药品质量控制的重要内容之一。热分析技术用于中药纯度的测定有其独特的优点,如样品用量少且一般不需预处理等。但也有一定的要求,即样品的纯度>97%。然而在具体的操作方法上,可采用相应的措施使该技术能用于成分复杂的中药及制剂纯度的测定。由于试样量极少,故只需用少量标准品便可完成纯度测定。例如,粉防己甲素和熊果酸这些从中药材提得的药品,目前尚无其它合适的定量分析方式。杨腊[10]虎用DSC法成功地进行了纯度分析,并在测得药品总杂质含量的同时,还可获得各药物的准确熔点。 2.2 药物赋形剂筛选和组分分析

金属材料机械性能检测

金属材料机械性能检测 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensile strength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yield strength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。

热分析技术的表征应用

目录 摘要 (2) 关键词 (2) 前言 (2) 1 热分析技术综述 (2) 1.1 差示扫描量热法(DSC) (3) 1.2 差示热分析法(DTA) (3) 1.3 热重法(TGA) (3) 1.4 热机械法(DMA) (3) 2热分析技术的表征应用综述 (4) 2.1热分析技术在化合物表征中的应用 (4) 2.2 热分析技术在食品分析研究中的应用 (4) 2.2.1 食品的水含量及玻璃态转变温度Tg的测定 (4) 2.2.2 蛋白质、淀粉、脂类的研究 (5) 2.3 热分析技术在药品检验中的应用 (5) 2.3.1 药品的纯度、熔点测定 (6) 2.3.2 药品溶剂化物及水成分的确定 (6) 2.3.3 药品的相容性和稳定性测定 (6) 2.3.4 药物多晶型及差向异构体的分析 (7) 2.3.5 制剂辅料相容性考察 (7) 2.4 热分析技术在催化研究中的应用 (7) 2.4.1 金属和金属氧化物催化剂中的应用 (7) 2.4.1.1 催化剂失活研究 (7) 2.4.1.2 非晶态合金催化剂热稳定性研究 (7) 2.4.2 沸石分子筛与多孔材料研究中的应用 (8) 2.4.2.1 沸石分子筛催化剂的积炭行为研究 (8) 2.4.2.2 沸石分子筛吸附性能的研究 (8) 2.5 热分析技术高分子材料研究中的应用 (8) 2.5.1 TG在高分子材料方面的应用 (8) 2.5.1.1 高分子材料的组分测定 (8) 2.5.1.2 高分子材料中挥发性物质的测定 (9) 2.5.1.3 高分子材料的热稳定性研究 (9) 2.5.2 DTA在高分子材料方面的应用 (9) 2.5.3 DSC在高分子材料方面的应用 (9) 2.5.4 DMA在高分子材料方面的应用 (9) 2.5.4.1 高分子共混材料相容性的表征 (9) 2.5.4.2 表征高聚物材料阻尼特性 (10) 3 结语 (10) 参考文献: (10)

金属材料硬度测试实验

金属材料硬度测试实验集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

实验报告 课程名称:材料性能研究技术成绩:实验名称:金属材料硬度测试实验批阅人: 实验时间:实验地点:x5406报告完成时间:2 姓名:学号:班级: 同组实验者:指导教师: 一、实验目的 1.了解不同类型硬度测试的基本原理。 2.了解不同类型硬度测试设备的特点及应用范围。 3.掌握各类硬度计的操作方法。 二、实验原理 金属的硬度可以认为是金属材料表面在压应力作用下抵抗塑性变形的一种能力。硬度测试能够给出金属材料软硬度的定量概念,即:硬度示值是表示材料软硬程度的数量指标。由于在金属表面以下不同深度处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹性、微量应变抗力、应变强化能力以及大量形变抗力。硬度值越高,表明金属抵抗塑性变形的能力越大,材料产生塑性变形就越困难。硬度的大小对于机械零件或工具的使用寿命具有重要的影响。 硬度测试方法有很多,大体可以分为弹性回跳法(如肖氏硬度)、压入法(如布氏硬度、洛氏硬度、维氏硬度)和划痕法(如莫氏硬度)等三类。 硬度是表征金属材料软硬程度的一种性能,其物理意义随着试验方法的不同而表示不同的意义。其中弹性回跳法主要表征金属弹性变形功的能力;压入法主要表征金属塑性变形抗力及应变硬化能力;而划痕法主要表征金属切断能力。 下面介绍三种最常用的硬度测试方法: 1、布氏硬度 (1)布氏硬度试验原理 用一定直径D(mm)的硬质合金球作为压头,用一定的试验力F(N),将其压入试样表面,经过规定的保持时间t(s)之后卸载试验力,观察试样表面,会发现有残留压痕(如图1)。测残留压痕的平均直径d(mm),然后求出压痕球形面积A(mm2)。布氏硬度值(HBW)就是试验力F除以压痕表面积A所得的商,F以N作为单位时,其计算公式为 注:布氏硬度值不标出单位 布氏硬度试验用的压头球直径有10mm、5mm、2.5mm和1mm四种,主要根据试验厚度选择,选择要求是使压痕深度h小于试样厚度的1/8。当试样厚度足够时,应尽量选用10mm的压头球。 (2)布氏硬度的特点 布氏硬度试验时一般采用直径较大的压头球,所以它所得的压痕面积会比较大。

金属材料检测技术试题

1金属材料检测技术 1.1名词解释 1)试样:经机加工或未经机加工后具有合格尺寸且满足试验要求的状态的样坯,称为试样。 2)强度:金属材料在外力作用下抵抗变形和断裂的能力。 3)屈服强度:当金属材料发生屈服现象时,在试验期间不增加载荷而试样变形增加所对应的应力。也称屈服极限。用R P0.2(或σs)表示,单位为MPa。 4)规定非比例延伸强度:试样标距部分的非比例伸长达到规定原始标距百分比时的应力。表示此应力的符号应附以角注说明所规定的百分比。例如:R p0.01表示规定非比例伸长率为0.01%时的应力。 5)抗拉强度:试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为Rm,单位为MPa。 6)断后伸长率:试样断裂后的伸长量与原始计算长度之比。用A(或δ)表示。A=(L f-L0)/ L0 7)断面收缩率:试样断裂后的截面积最大收缩量与原始截面积之比。用Z(或ψ)表示:Z=(F0-F f)/ F0 8)许用应力:金属在工作温度下允许的使用应力。用〔σ〕表示,单位为MPa。 9)塑性:断裂前材料发生不可逆永久变形的能力,常用的塑性判据是伸长率和断面收缩率。 10)冲击韧性:金属材料抵抗瞬间冲击载荷的能力,称做冲击韧性。将标准冲击试样一次冲断,以试样缺口单位面积上的冲击功来表示冲击韧性аk值。单位为J/cm2。 11)冲击功:规定形状和尺寸的金属试样在冲击试样力的作用下,一次冲断试样所 消耗的能量称做冲击功,用A k表示。单位为J。

12)硬度:材料抵抗局部变形,特别是塑性变形、压痕或划痕的抗力,是衡量金属软硬的判据。 13)脆性转变温度:通常取结晶状区域面积占断口总面积50%的温度为脆性转变温度,记为50%FATT。 14)持久强度:指在一定温度和规定持续时间内材料保持不失效的最大应力值。用σT 表示。 τ 15)疲劳强度:金属材料在交变载荷作用下,不致引起断裂的最大应力叫疲劳强度。 16)蠕变强度:在一定的蠕变条件下(一定温度、一定时间内、达到一定的蠕变变形或蠕变速度)材料保持不失效的最大承载能力。 17)固溶强化:向钢加入合金元素使之溶入作为基体的固溶体,从而使钢或合金得以强化。固溶体中的合金元素可增大晶格畸变,增强固溶体原子键引力,提高再结晶温度,提高固溶体的稳定性,对位错起锁锚作用。 18)晶界强化:向钢中加入一些微量的表面活性元素,如硼和稀土元素等,产生内吸附现象浓集于晶界,从而使钢的蠕变极限和持久强度显著提高的方法。细化晶粒也是一种晶界强化的手段,即利用一定温度范围内晶界强度大于晶内强度的现象,细化晶粒达到增加晶界密度的目的。 19)沉淀强化:过饱和固溶体在长期保温过程中发生时效,析出弥散分布的碳化物、氮化物或金属间化合物的小质点,它们在高温下不易聚集,阻止了位错运动,从而提高钢和合金的室温强度、蠕变极限和持久强度。 20)金属材料的等强温度:晶界强度等于晶内强度时的温度。室温下,金属材料的晶界强度大于晶内;晶界强度和晶内强度都会随着温度的升高而下降,但是他们的下降速率不同,导致出现交点,这个交点就是晶界和晶内的等强温度了。 21)断裂力学:研究带有裂纹的材料强度及其抵抗脆性断裂能力的学科。 22)无损检测:在不损伤构件性能和完整性的前提下,检测构件金属的某些物理性能和组织状态,以及查明构件金属表面和内部各种缺陷的技术。

热分析方法的多种联用

热分析方法的多种联用 热分析是表征材料的基本方法之一,多年以来一直广泛应用于科研和工业中。近年来在各个领域,都有了长足发展。根据DIN EN ISO 9000 标准,热分析仪器已经成为QA/QC、工业实验室和研究开发中不可缺少的设备。 热分析是测量物质的物理或化学参数对温度的依赖关系的一种分析方法。热分析可应用于成分分析(如无机物、有机物、药物和高聚物的鉴别和分析以及它们的相图研究),稳定性测定(如物质的热稳定性、抗氧化性能的测定等),化学反应的研究(如固-气反应研究、催化性能测定、反应动力学研究、反应热测定、相变和结晶过程研究),材料质量测定(如纯度测定、物质的玻璃化转变和居里点、材料的使用寿命测定)以及环境监测(研究蒸汽压、沸点、易燃性等)。热分析方法的种类是多种多样的,根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,在这些热分析技术中,热重法、差热分析、差示扫描量热法和热机械分析应用得最为广泛。差热分析、热重分析、差示扫描量热分析、热机械分析可用于研究物质的晶型转变、融化、升华、吸附等物理现象以及脱水、分解、氧化、还原等化学现象。快速提供被研究物质的热稳定性、热分解产物、热变化过程的焓变、各种类型的相变点、玻璃化温度、软化点、比热、纯度、爆破温度和高聚物的表征及结构性能等。 目前,热分析仪器发展的一个趋势是将不同仪器的特长和功能相结合,实现联用分析,扩大分析范围。一般来说,每种热分析技术只能了解物质性质及其变化的某些方面,而一种热分析手段与别的热分析段或其它分析手段联合使用,都会收到互相补充,互相验证的效果,从而获得更全面更可靠的信息。如DTA-TG、DSC-TG、DSC-TG-DTG、DTA-TMA、DTA-TG-TMA等的综合以及TG与气相色谱(GC)、质谱(MS)、红外光谱(IR)等仪器的联用分析,热分析联用种类有很多,下面举几例加以简单说明。 热重分析法(Thermogravimetric Analysis.简称TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析法通常可分为两大类:静态法和动态法。静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。动态法是在程序升温的情况下,测量物质质量的变化对时间的函数关系。热重法实验得到的曲线称为热重曲线(TG曲线) 如图1曲线a所示。TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。

浅谈热分析技术及其应用

浅谈热分析技术及其应用 (学号:0908321083姓名:吕夏燕) 热分析是在程序控制温度的条件下,测量物质的物理性质与温度关系的一种技术。在加热或冷却的过程中,随着物质的结构、相态、化学性质的变化都会伴随相应的物理性质变化。这些物理性质包括质量、温度、尺寸等性质。根据测量物质的物理性质的不同,热分析方法的种类是多种多样的。如:差热分析(DTA) 、热重分析(TG) 、差示扫描量热(DSC) 和热机械分析( TMA、DMA) 等。在热分析技术中,应用得最为广泛的是热重法、差热分析与差示扫描量热法。 DSC(DSC - Differential Scanning calorimeters),DSC 全称差示扫描量法,分为功率补偿式(Power Compensation )和热流式(Heatflow )。其中功率补尝式DSC的测量原理是给被测样品和参比物样品放在同一环境中同时加温。加温过程中,当被测物由于发生物理性变,产生吸热或放热反应引起两个样品温度有差别时,通过及时给较低温度的样品加热,补偿功率的方法达到两样品时时保持相同温度。功率补偿式DSC 在定量测量热量方面比差热分析法好得多,能够直接从曲线峰面积中得到试样放热量(或吸热量),而且分辨率高,测得的化学反应动力学参数与纯度比差热分析法更精确。 TG(Thermogravimetric Analyzers) 热重分析法,热重分析法是在程序控制温度下,测量温度的质量与温度的关系的技术。用来进行热重分析的仪器一般称为热天平。它的测量原理是在给被测物加温过程中,由于物质的物理或化学特性改变,引起质量的变化,通过记录质量变化时程序所走出的曲线,分析引起物质特性改变的温度点,以及被测物在物理特性改变过程中吸收或者放出的能量,从而来研究物质的热特性。 DTA(Microcumputer Differential Thermal Analyzers)差热分析法,差热分析法是应用最广泛的一种热分析技术,它是在程序控制温度下,建立被测量物质和参比物的温度差与温度关系的技术。其测量原理是将被测样品与参考样品同时放在相同的环境中同时升温,其中参考样品往往选择热稳定性很好的物质,同时给两种样品升温过程中,由于被测样品受热发生特性改变,产生吸、放热反应,引起自身温度变化,使得被测样品和参考样品的温度发生差异。用计算机软件描图的方法记录升温过程和升温过程中温度差的变化曲线,最后获取温度

金属材料检测规范标准大汇总

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 223.X系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 6987.X系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法

GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法

热分析技术综述

热分析技术综述 摘要综述了近年来热分析技术在化合物表征、有机质研究、药品分析等领域 的应用情况 前言:热分析及热分析仪器的起源与发展 热分析一词是1905年由德国的Tammann提出的。但热分析技术的发明要早的多。热重法是所有热分析技术中最早发明的。公元前25世纪古埃及壁画中就有火与天平的图案。14世纪时欧洲人将热重法原理应用于黄金的冶炼。1780年英国人Higgins在研究石灰黏结剂和生石灰的过程中第一次用天平测量了试样受热时 所产生的重量变化。1786年,Wedgwood在研究黏土时测得了第一条热重曲线,发现黏土加热到暗红(500~600℃)时出现明显失重。最初设计热天平的是日本东北大学的本多光太郎,1915年他把化学天平的一端秤盘用电炉围起来制成第 一台热天平,并用了“热天平”(thermobalance)一词,但由于测定时间长未能达到普及。第一台商品化的热天平是1945年在Chevenard等工作的基础上设计制作的。Cahn和Schultz于1963年将电子天平引入现代自动热天平中,使 仪器的灵敏度达到0.1μg,质量变化精度达10-5。我国第一台商业热天平是20 世纪60年代初由北京光学仪器厂制造的[1]。常用的热分析方法有:差示扫描量 热(DSC)法、差示热分析(DTA )法和热重(TGA )法。近年来,热分析法得到了迅猛发展,出现了多种新型测量仪器和方法,如动力机械热分析(DMTA )法、热机械分析(TMA )法、声纳热分析法、发散热分析法等。联用技术的大量开发和使 用更加推动了这一技术的蓬勃发展,如TG-MS、TGA-FTIR、TG /DTA、MR-MS法等。本文对近年来我国热分析技术在几个具体领域的应用现状作了一些归纳。 1、热分析技术在化合物热分解研究中的应用 热分析作为一种表征化合物(配合物)的重要手段获得了非常广泛的应用。测 试者通过热分析获得化合物的对热稳定性,热分解机理,分解过程的热力学数 据及动力学参数等。如马荣华等人[2]对过氧铌杂多钨酸盐热分解行为进行了研 究,薛岗林等人[2]研究了新合成的化合物[Ce(NO 3) 5 H 2 O ](C 3 H 5 N 2 ) 2 的热分解机理, 胡远芳等人[3]合成了[Nd(C 3H 7 NO 2 ) 2 (C 3 H 4 N 2 )(H 2 O)](ClO 4 ) 3 稀土配合物并对其进行了 热分析研究,杨锐等[4]合成了超分子化合物 [Eu(C1OH 9N 2 O 4 )(C1OH 8 N 2 O 4 )(H 2 O) 3 ] 2 ·phen·4H 2 O并对其热稳定性进行了研究等。 又如陆美玉[5]运用热重法与压力差示扫描量热法进行高温抗氧化剂的研究。另 外在对高分子材料进行改性以增加其热机械性能能扩大高分子材料的应用领域中,用 TMA 可检测高分子材料的链受热断裂的温度等,如于俊荣等[6]用 TMA 研究纯 UHMWPE 纤维在 140℃受热断裂,而纳米 SiO 2 改性UHMWPE 纤维在 144℃ 受热断裂,说明 UHMWPE 纤维经 SiO 2 改性后其热机械性能提高。杨红玲、孙枫 等人[7]用DSC和 DMA对PP-R专用料性能的评价等。崔蕊蕊[8]等用热重分析法测 定氟唑活化酯的饱和蒸气压。 2、热分析技术在有机质分析研究中的应用 因为有机质在高温条件下会分解等,由此可利用不同的热分析方法来进行分析 研究。如蒋绍坚、黄靓云[9]等运用热重分析对纤维素、半纤维素、木质素等三

热分析技术及应用实验报告

热分析技术及应用实验报告(修改)热分析技术主要包括差示扫描量热(DSC),差热分析(DTA),热重分析(TGA)以及热机械分析(DMA),该是指在温度程序控制下研究材料的各种转变和反应,如脱水,结晶-熔融,蒸发,相变等以及各种无机和有机材料的热分解过程和反应动力学问题等,是一种十分重要的分析测试方法。 作为一种科学的实验方法,热分析技术在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。以下简单介绍热分析技术在一些行业的应用。 一、DSC方法对塑料行业热稳定性(氧化诱导期)的测定 塑料是中国四大基础建材之一。我国是塑料制品的生产和消费大国。塑料在国民经济和日常生活中得到了广泛应用,市场空间十分广阔,尤其是电子电器、交通运输及建筑业的发展对塑料零部件和各种制品提出越来越高的要求,迫使塑料的产业升级和产品的更新换代,塑料实现高价比、节能、环保及使用安全。因此,塑料行业作为朝阳产业,仍有很大的发展空间。 需要特别关注的是,塑料材料在贮存、加工和日常使用中受光、热和氧气等的作用,极易引起高分子材料的老化反应,使材料的物理机械性能变坏,缩短使用寿命。因此在塑料的新产品开发和性能测试中正确评价抗氧剂添加的效果具有重要的意义。而氧化诱导时间和氧化诱导温度本身可作为高聚物热氧化稳定性的一种度量,近年来广泛被采用。随着测试技

术和测试仪器的发展,采用差示扫描量热法(DSC)测定材料氧化诱导时间和氧化诱导温度已成为评价塑料热稳定性的重要方法。 热分析测定聚合物的氧化诱导时间和氧化诱导温度是加速老化实验之一。采用差示扫描量热法(DSC)可以方便快捷地测量塑料原料的氧化诱导时间和温度。将塑料试样与惰性参比物置于差热分析仪中,在氧气或空气气氛中,在规定的温度下恒温或以恒定的速率升温时,测定试样中的抗氧化稳定体系抑制其氧化所需的时间或温度。氧化诱导时间或温度是评价被测材料热稳定性的一种手段。 二、DSC 方法在热固性树脂固化度测试方面的应用 热固性树脂,是指树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解的一种树脂。常见的热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。其中环氧粉末涂料是热固性聚合物材料重要的一类,由于它具有良好的粘接性能,介电性能和化学稳定性,所以被广泛应用各个领域。 固化反应是指在适当的温度下环氧官能基与硬化剂作用产生链结反应。固化度是热固性聚合物材料一个很重要的参数,固化反应一般都是放热反应.放热的多少与树脂官能度的类型、参加反应的官能团的数量、固化剂的种类及其用量等有关.但是对于一个配方确定的树脂体系,固化反应热是一定的,因此用DSC可以很方便地进行固化度的测定。 三、(DSC)法在非晶体高分子领域玻璃化转变温度的测试 在实际应用中塑料和橡胶材料的机械性能与其热性质-—玻璃化转变温度(Tg)、熔融温度(Tm)、结晶温度(Tc)、比热(Cp)及热焓值等有一定关系。和晟仪器氧化诱导期测

相关主题
文本预览
相关文档 最新文档