当前位置:文档之家› 3.4基本不等式(1)

3.4基本不等式(1)

3.4基本不等式(1)
3.4基本不等式(1)

§3.4 基本不等式

ab ≤

a +b

2

基础梳理

1.重要不等式:如果a ,b ∈R ,那么a 2

+b 2

≥2ab (当且仅当a =b 时取“=”号). 2.算术平均数与几何平均数

(1)定义:设a ,b 是两个正数,称

a +b

2

为a ,b 的算术平均数,称ab 为a ,b 的几何平均数.

(2)算术平均数与几何平均数定理:如果a ,b 是正数,那么

a +b

2

≥ab (当且仅当a =b 时取“=”号).

即两个正数的算术平均数不小于它们的几何平均数. 说明:(ⅰ)a 2

+b 2

≥2ab 和

a +b

2

≥ab 成立的条件不同:前者a ,b ∈R ,后者a ,b ∈R *

.

(ⅱ)利用该命题求某些函数的最大值,最小值时,应注意三个条件: ①函数式中各项(必要时,还要考虑常数项)必须都是正数(),+∈R y x ;

②函数式中,含变数的各项的和或积必须是定值(即常数);

③等号成立条件必须存在,只有当各项相等时,最大(小)值才能取到(能使得y x =成立,才能取得最

值的符号).

以上三点可简记为: “一正、二定、三相等.” 3.利用算术平均数与几何平均数定理求最值问题

若x >0,y >0,则

①如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) ②如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 2

4

.(简记:和定积最大)

运用公式解题时,既要掌握公式的正用,也要注意公式的逆用:

a 2+

b 2

≥2ab 的逆用:ab ≤

a 2+

b 2

2

; ab ≤

a +b

2

(a ,b >0)的逆用:ab ≤?

??

??a +b 22(a ,b >0).

两个变形:(1)ab ≤? ??

??a +b 22≤a 2

+b 2

2 (a ,b ∈R ,当且仅当a =b 时取等号);

(2)

21

a +

1b

≤ab ≤a +b 2

≤a 2+b 2

2

(a >0,b >0,当且仅当a =b 时取等号).

三个注意

(1)使用基本不等式求最值,其存在前提“一正、二定、三相等”.要利用基本不等式求最值,这三个条件缺一不可.

(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.

(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.

考向一 利用基本不等式求最值

[例1]试判断b a +a

b (a >0,b >0)与2的大小关系?

在结论成立的基础上,条件“a >0,b >0”可以变化吗?

[例2]求下列函数的最小值:

(1)已知x >1,则f (x )=x +

1

x -1

的最小值为________. 解析:∵x >1,∴f (x )=(x -1)+1

x -1

+1≥2+1=3 当且仅当x =2时取等号.

(2)设x >1,则2+x 3+

1

4

-x 的最小值为________. 解析:∵2+x 3+

14-x =5+3(x-1)+1

4

-x , 当x >1时,x-1>0,∴3(x-1)+

14

-x ≥21

41)-x (3-?x =43 当且仅当3(x-1)=

14-x ,即x=1+3

32时,2+x 3+14-x 有最小值43+5. (3)已知x >0,y >0,且2x +y =1,则1x +1

y

的最小值为________.

解析:∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2x

y

时取等号.

(4)已知a >0,b >0,且a 4+b =1,求ab 的最大值. 解析:∵a >0,b >0,∴ab =

41×4b a ?≤41×2)2b a 4(+=16

1,当且仅当4a=b ,即b=21,a=81

时,等号成立.

求下列函数的最值: (1)已知x >0,则y =2-x -

x

4

的最大值________.

解析:∵x >0,∴x +

x

4

≥4,y=2-(x +

x

4

)≤2-4=-2,当且仅当x =

x

4

(x >0),即x=2时,y min =-2.

(2)已知x >0,y >0,且

x 1+y 9

=1,则y x +的最小值________.

解析:∵x >0,y >0,

x 1+y 9=1,∴x +y =(x +y )???? ??+y x 91=x

y +y x 9+10≥6+10=16.当且仅当x y =y x 9时,上式等号成立,又x 1+y 9

=1,∴x =4,y =12时,(x +y )min =16.

(3)若x >0,y >0,且x +y 8=1,求xy 的最大值. 解析:x >0,y >0,∴xy =

81×y x 8?≤81×2)28x (y +=321,当且仅当x=8y ,即x=21,y=16

1时,等号成立.

[例3]当x >0时,则f (x )=

2x

x 2

+1

的最大值为________. 解析:∵x >0,∴f (x )=2x x 2+1

=2x +1x ≤22=1,当且仅当x =1

x ,即x =1时取等号.

[例4](1)若正数a ,b 满足ab =3+a +b ,求ab 的最小值.

解析:∵ab =3+a +b ,a >0,b >0得ab ≥2ab +3,∴ab -2ab -3≥0,即(ab -3)(ab +1)≥0,由ab >0,得ab -3≥0,∴ab ≥9,当且仅当a=3,别时取“=”号,故的取值范围是[9,+∞). (2)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.

解析:由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )????8x +2y =10+8y x +2x

y

=10+2????4y x +x y ≥10+2×2×

4y x ·x y =18,当且仅当4y x =x

y

,即x =2y 时取等号, 又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.

若a ,b ∈R *

,a +b +8=ab ,则a +b 的最小值是________.

解析:∵a ,b ∈R *

,a +b +8=ab ≤? ??

?

?a +b 22,∴(a+b)2-4(a+b)-32≥0,解得a+b ≥8或a+b ≤-4(舍去),故当a=b=4时,a+b 由最小值8. [例5]求下列函数的最小值:

(1)y=

1

22

2++x x ; (2)y=

4

52

2++x x .

解析:(1)∵y=1x 2++

1

1

2

+x ≥2,当且仅当1x 2+=

1

1

2

+x ,即x=0时取“=”号.

(2)∵y=4x 2++

4

1

2+x ,令t=4x 2+≥2,∴y=t+

t

1

在[2,+∞)上为增函数,当t=2时,y min =2+21=2

5

,当且仅当x=0时,等号成立.

考向二 利用基本不等式证明不等式

[例6]已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1

c

≥9.

+b 1+c 1= a c b a +++b c b a +++c c b a ++=3+??? ??+b a a b +??? ??+c a a c +??

? ??+c b b c ≥3+2+2+2=9.当且仅当a =b =c =31时取等号. 已知a >0,b >0,c >0,求证:bc a +ca b +

ab

c

≥a +b +c .

证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2

bc a ·ca b =2c ;bc a +ab c

≥2 bc a ·ab

c

=2b ; ca b +ab c

≥2 ca b ·ab c =2a .以上三式相加得:2????bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab

c

≥a +b +c . 考向三 利用基本不等式恒成立问题,求参数的取值范围

[例6] (2010·山东)若对任意x >0,x

x 2

+3x +1

≤a 恒成立,则a 的取值范围是________.

答案 ???

?1

5,+∞ 解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =x

x 2+3x +1的最大值即可,因为x >0,所以y =

x x 2

+3x +1=1x +1x +3≤12 x ·1x

=1

5

,当且仅当x =1时取等号,所以a 的取值范围是????15,+∞ 【训练3】已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 答案 10

解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.

[示例]1.已知a >0,b >0,且a +b =1,求1a +2

b

的最小值.

正解 ∵a >0,b >0,且a +b =1,∴1a +2b =????1a +2b (a +b )=1+2+b a +2a

b ≥3+2 b a ·2a

b

=3+2 2. 当且仅当?????

a +

b =1,b a =2a b

,即???

a =2-1,

b =2-2时,1a +2

b 的最小值为3+2 2.

2.(2010·四川)设a >b >0,则a 2

+1ab +

1

a

a -b

的最小值是( ). A .1 B .2 C .3 D .4 答案 D a 2+1

ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )

+ab +1

ab ≥2

a (a -

b )·

1

a (a -

b )

+2

ab ·1ab =2+2=4.当且仅当a (a -b )=1a (a -b )

且ab =1ab ,即a =2b 时,等号成立.

双基自测

1.(人教A 版教材习题改编)函数y =x +1

x

(x >0)的值域为( ).

A .(-∞,-2]∪[2,+∞)

B .(0,+∞)

C .[2,+∞)

D .(2,+∞)

答案 C

解析 ∵x >0,∴y =x +1

x ≥2,当且仅当x =1时取等号.

2.下列不等式:①a 2

+1>2a ;②

a +

b ab

≤2;③x 2

+1x +1≥1,其中正确的个数是( ).

A .0

B .1

C .2

D .3 答案 B

解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1

x 2+1-1≥2-1=1.

3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ).

A.1

2 B .1 C .2 D .4 答案 A

解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1

2.

4.(2011·重庆)若函数f (x )=x +

1

x -2

(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 答案 C

解析 当x >2时,x -2>0,f (x )=(x -2)+

1

x -2

+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1

x -2

(x >

2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.

5.已知t >0,则函数y =t 2-4t +1

t

的最小值为________.

解析 ∵t >0,∴y =t 2-4t +1t =t +1

t -4≥2-4=-2,当且仅当t =1时取等号.

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

基本不等式教案第一课时

第 周第 课时 授课时间:20 年 月 日(星期 ) 课题: §3.4 2 a b + 第1课时 授课类型:新授课 【学习目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程; 【教学难点】 2 a b +≤等号成立条件 【板书设计】

【教学过程】 1.课题导入 2 a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据 中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不 等关系吗? 教师引导学生从面积的关系去找相等关系或不等关 系。 2.讲授新课 1.问题探究——探究图形中的不等关系。 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.总结结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导。 3.思考证明:你能给出它的证明吗? 证明:因为 2 22)(2b a ab b a -=-+ 当22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即.2)(22ab b a ≥+

第20炼 一元不等式的证明

第20炼 一元不等式的证明 利用函数性质与最值证明一元不等式是导数综合题常涉及的一类问题,考察学生构造函数选择函数的能力,体现了函数最值的一个作用——每一个函数的最值带来一个恒成立的不等式。此外所证明的不等式也有可能对后一问的解决提供帮助,处于承上启下的位置。 一、基础知识: 1、证明方法的理论基础 (1)若要证()f x C <(C 为常数)恒成立,则只需证明:()max f x C <,进而将不等式的证明转化为求函数的最值 (2)已知()(),f x g x 的公共定义域为D ,若()()min max f x g x >,则()(),x D f x g x ?∈> 证明:对任意的1x D ∈,有()()()()11min max ,f x f x g x g x ≥≤ ∴由不等式的传递性可得:()()()()11min max f x f x g x g x ≥>>,即()(),x D f x g x ?∈> 2、证明一元不等式主要的方法有两个: 第一个方法是将含x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于移项后较复杂的解析式则很难分析出单调性 第二个方法是利用不等式性质对所证不等式进行等价变形,转化成为()()f x g x >的形式,若能证明()()min max f x g x >,即可得:()()f x g x >,本方法的优点在于对x 的项进行分割变形,可将较复杂的解析式拆成两个简单的解析式。但缺点是局限性较强,如果 ()min f x 与()max g x 不满足()()min max f x g x >,则无法证明()()f x g x >。所以用此类方 法解题的情况不多,但是在第一个方法失效的时候可以考虑尝试此法。 3、在构造函数时把握一个原则:以能够分析导函数的符号为准则。 4、若在证明()0f x >中,解析式()f x 可分解为几个因式的乘积,则可对每个因式的符号进行讨论,进而简化所构造函数的复杂度。 5、合理的利用换元简化所分析的解析式。 6、判断解析式符号的方法: (1)对解析式进行因式分解,将复杂的式子拆分为一个个简单的式子,判断出每个式子的符号即可得到解析式的符号

3.4基本不等式(第一课时)

3.4 基本不等式: 2b a a b + ≤(第一课时) 教学设计 一、教学内容解析 (一)教材的地位和作用 本节课是人教版《数学》必修5第三章第四节(第一课时),基本不等式是高中数学中一个非常重要的不等式,它是解决一些简单的最大(小)值问题的最基本也是最重要的方法。在前几节课刚刚学习了不等式的性质、一元二次不等式、二元一次不等式组与线性规划问题,这些内容为本节课打下了坚实的基础,同时基本不等式的学习为今后解决最值问题提供了新的方法。 本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体. (二)教学目标 1. 通过实例探究,引导学生从几何图形中获得重要不等式,并通过类比的和代换的思想得到基本不等式,让体会数形结合的思想,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣; 2. 从结构、形式等方面进一步认识基本不等式; 3. 经历由实际问题推导出基本不等式,在回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。 (三)教学重点与难点 重点:应用数形结合的思想理解不等式,并从不同角度认识基本不等式。 难点:在几何背景下抽象出基本不等式的过程;使用基本不等式解决求最值问题时的条件的认识。 二、学生学情分析: 在初中阶段,学生学习了平方、开方、勾股定理、圆、射影定理等概念,高中阶段学生学习了基本初等函数及其性质,加上刚学过的不等关系与不等式的性质,学生对不等式有了初步的了解和应用,但本节内容,变换灵活,应用广泛,条件有限制,考察了学生属性结合、转化化归等数学思想,对学生能灵活应用数

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

高中数学 3.4 基本不等式(第1课时)练习

【成才之路】2015版高中数学 3.4 基本不等式(第1课时)练习 一、选择题 1.函数f(x)=x x +1的最大值为 ( ) A.2 5 B .1 2 C.2 2 D .1 [答案] B [解析] 令t =x (t≥0),则x =t2, ∴f(x)=x x +1=t t2+1. 当t =0时,f(x)=0; 当t>0时,f(x)=1t2+1t =1t +1t . ∵t +1t ≥2,∴0<1t +1t ≤1 2. ∴f(x)的最大值为1 2. 2.若a≥0,b≥0,且a +b =2,则 ( ) A .ab≤1 2 B .ab≥1 2 C .a2+b2≥2 D .a2+b2≤3 [答案] C [解析] ∵a≥0,b≥0,且a +b =2, ∴b =2-a(0≤a≤2), ∴ab =a(2-a)=-a2+2a =-(a -1)2+1. ∵0≤a≤2,∴0≤ab≤1,故A 、B 错误; a2+b2=a2+(2-a)2=2a2-4a +4 =2(a -1)2+2. ∵0≤a≤2,∴2≤a2+b2≤4.故选C. 3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( ) A.1 2 B .a2+b2 C .2ab D .a [答案] B [解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <1 2, 又∵a2+b2≥2ab ,∴最大数一定不是a 和2ab ,

∵1=a +b >2ab , ∴ab <14, ∴a2+b2=(a +b)2-2ab =1-2ab >1-12=12, 即a2+b2>12.故选B. 解法二:特值检验法:取a =13,b =23,则 2ab =49,a2+b2=59, ∵59>12>49>13,∴a2+b2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小 值为 ( ) A .8 B .4 C .1 D .14 [答案] B [解析] 根据题意得3a·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B. 5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于 ( ) A .1 B .3 C .2 D .4 [答案] C [解析] 1a +1b =12??? ?1a +1b (a +b) =1+12??? ?b a +a b ≥2,等号在a =b =1时成立. 6.已知x>0,y>0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则 a + b 2cd 的最小值是 ( ) A .0 B .1 C .2 D .4 [答案] D [解析] 由等差、等比数列的性质得 a + b 2cd =x +y 2xy =x y +y x +2≥2y x ·x y +2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题

2020学年高中数学第一章不等式的基本性质和证明不等式的基本方法1_1_2一元一次不等式和一元二次不

1.1.2 一元一次不等式和一元二次不等式的解法 [读教材·填要点] 1.一元二次不等式 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式. 2.二次函数、二次方程、二次不等式之间的关系 1.“若ax 2+bx +c <0(a ≠0)的解集是空集,则a 、b 、c 满足的关系是b 2-4ac <0且a >0”是否正确? 提示:当Δ=0时,易知ax 2+bx +c <0(a >0)的解集也是?,从而满足的条件应为“a >0且b 2-4ac ≤0”. 2.当a <0时,若方程ax 2+bx +c =0有两个不等实根α,β且α<β,则不等式ax 2+bx +c >0的解集是什么? 提示:借助函数f (x )=ax 2+bx +c 的图象可知,不等式的解集为{x |α

A .{x |10,a <0讨论. [精解详析] 若a =0,原不等式可化为-x +1<0, 即x >1. 若a <0,原不等式可化为? ?? ??x -1a (x -1)>0, 即x <1a 或x >1.

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

三角形的证明一元一次不等式

第1讲:特殊三角形的性质与判定 一、知识回顾: 等腰三角形的性质与判定 等腰三角形的两个底角相等。 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。等边对等角 等角对等边等边三角形的性质与判定 (1 )等边三角形的每个内角都等于60°。 (2) 3个内角都相等的三角形是等边三角形。 如果一个等腰三角形中有一个角等于60°,那么这个三角形是等边三角形。 直角三角形的性质与判定 直角三角形两锐角互余 有两个内角互余的三角形是直角三角形 斜边和一条直角边对应相等的两个直角三角形全等。直角 (简写为“ H L” 三角形30°角所对的直角边等于斜边的一半勾股定理 勾股定理逆定理四、典型例题分析: 1、已知:如图/ EAC是△ ABC的外角,AD平分/ EAC且AD// BC 求证:AB= AC D 2、在上图中,如果AB= AC, AD// BC,那么AD平分/ EAC吗?如果结论成立,你能证明这个结论吗? 3:A ABC 中AD丄BC 于D , AB=3, BD=2, DC=1,贝U AC 等于

4:A ABC 中,BD 丄AC 与 D , AB=6,AD=4,BC=5,DC= 5,^ABC 中,/ C=90°, AB 垂直平分线交 BC 于 D 若 BC=8, AD=5,贝U AC 等于 第五题图 &△ ABC 中,AB=AC=10, BD 丄 AC 于 D , CD=2,贝 U BC 等于 达标训练 1、 如果等腰三角形的周长为 2、 如果等腰三角形有两边长 为 3、 如果等腰三角形有一个角 等于 4、 如果等腰三角形有一个角等于 5、 在^ ABC 中,/ A = 40°,当/ B 等于多少度数时,△ ABC 是等腰三角形? 6、如图,△ ABC 中,AB= AC,角平分线 BD CE 相交于点 0, 求证: 0B= 0C 7、如图,在△ ABC 中,/ B =/ C = 36°,/ ADE ^/ AED= 2/ B ,由这些条件你能得到哪些 结论?请证明你的结论。 12, 一边长为5,那么另两边长分别为. 2和5,那么周长为 ______ 50°,那么另两个角为_ 120 °,那么另两个角为.

高中数学基本不等式(第一课时)教案

课题:§3.4 2a b +≤(第1课时) 数学组 2009-3-18 授课类型:新授课 教学目标: 1、知识与技能目标:(12 a b +≤,认识其运算结构; (2)了解基本不等式的几何意义及代数意义; (3)能够利用基本不等式求简单的最值。 2、过程与方法目标:(1)经历由几何图形抽象出基本不等式的过程; (2)体验数形结合思想。 3、情感、态度和价值观目标(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物; (2)体会多角度探索、解决问题。 教学重点:应用数形结合的思想,并从不同角度探索和理解基本不等式。 教学难点:2 a b +≤ 求最值的前提条件。 教学过程: 一、创设情景,引入新课 1.勾股定理的背景及推导 赵爽弦图 引导学生从赵爽弦图中各图形的面积关系得到勾股定理,了解勾股定理的背景。 2.(1)问题探究——探究赵爽弦图中的不等关系 如图是在北京召开的第24界国际数学家大会的会标,比较4个直角三角形的面积和与大正方形的面积,你会得到怎样的不等式? 引导学生从面积关系得到不等式:a 2+b 2≥ 2ab ,当直角三角形变为等腰直角三角形,即正 方形EFGH 缩为一个点时,有222a b ab += (2)总结结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a

(3)推理证明:作差法 二、讲授新课 1.思考:如果用222a b ab +≥中的a ,b 能得到什么结论?a ,b 要满足什么条 件? 2 a b +(0,0>>b a ),当且仅当b a =时取等号。 2.推理证明:作差法 3.(1)探究:(课本P98) 如图所示:AB 是圆的直径,点C 是AB 上一点,AC =a ,BC =b 。 过点C 作垂直于AB 的弦DE ,连接AD 、BD 。 引导学生发现: 2 a b +CD,得到 2a b +(0,0>>b a ) 几何意义:半弦长不大于半径长。 (2),a b 的几何平均数,称2 a b +为正数,a b 的算术平均数。 代数意义:几何平均数小于等于算术平均数 三、例题讲解 例1:若0>x ,求1y x x =+ 的最小值。 变1:若0x >,求123y x x =+的最小值。 变2:若0,0a b >>,求b a y a b =+的最小值。 变3:若3x >,求13 y x x =+-的最小值。 例2:若01x <<,求(1)y x x =-的最大值。 变:若102x <<,求(12)y x x =-的最大值。 设计意图:发现运算结构,应用基本不等式求最值,把握基本不等式成立的前提条件 四、课时小结 1.知识要点:(1)基本不等式的条件及结构特征 (2)基本不等式在几何、代数两方面的意义 2.思想方法技巧:(1)数形结合思想 (2)换元法、作差法 (3)配凑等技巧 五、作业 自编的练习

一个不等式的简洁证明

k AB i >k A C ,即 m ax i +b -m b (ax i +b )-b >m ac +b -m b (ac +b )-b , 整理得 m ax i +b > m b + x i c (m ac +b -m b ), ∴∑n i=1 m ax i +b >  ∑n i=1[m b + x i c (m ac +b -m b )] =n m b +m a c +b c ∑n i=1x i -m b c ∑n i=1 x i =n m b + m ac +b -m b (∵∑n i=1 x i =c ) =(n -1) m b +m ac +b . ∴∑n i=1m ax i +b >(n -1) m b + m ac +b . 很明显,(1)、(2)、(3)式都是上式的特 例. 参考文献 1 李康海.引入参数证明不等式.中学数学,1999, 8. 2 马林、王艳萍.根式和下界不等式的一种新证法. 河北理科教学研究,1999,4. 一个不等式的简洁证明 段志强 (云南省大理宾川三中 671600) 文[1]在引言中谈到:在江苏省吴县市召开的1999年全国不等式研究学术会议上,中科院成都计算机应用研究所杨路教授应用通用软件Bo t te m a 给出以下不等式的一个“机器证明”: 设a ,b ,c 都是正数,则a b +c + b c +a + c a +b >2.文[]中通过构造长方体给出了一个证明,但证明还是较繁事实上,利用二元均值不等式就可以给出一个简洁的证明证明 ∵ a b + c ≤ a + b +c 2 , ∴ a b +c = a a b +c ≥ a a + b +c 2 = 2a a + b +c ,同理可得 b c +a ≥2b a +b +c , c a + b ≥2c a + b +c .注意到以上三式等号不同时成立,故a b +c +b c +a +c a +b >2. 参考文献 1 杨晓晖、刘建军.长方体中的若干性质及应用.中 学数学月刊,2000,5. 解数列问题的一种技巧 李枝团 (重庆市第36中学 400024)解决数列问题时,等差数列往往以首项与公差奠基,等比数列则以首项与公比搭桥.据此虽然能按条件得结果,但某些问题按此处理则较繁,甚至无法获解.本文介绍一种非常规方法.以得到更简单的解法. 例1 已知一个各项均为实数的等比数列的前四项之积为81,第二项与第三项之和为10,求此等比数列的公比. (选自《数学通报》1998年第9期第22~24页例4) 分析 原解设等比数列前四项分别为 a ,a q ,a q 2 ,aq 3 ,得关于a ,q 的“二元十次”方 程组,解法相当复杂.根据题设,可以第二、三项的特点作过渡,于是可获得理想的解答. 解 设此数列的第二、三项分别是x ,y ,则由条件得: x +y =10, (x y )=, (根据等比数列性质)故有 x +y =,xy =或 x +y =,xy =, 24 中学数学月刊 2000年第11期 1.. 2 81109 10-9

基本不等式第一课时

基本不等式(第一课时) 授课教师:浙江省温州市第十四高级中学陈芝飞 教材:人教版高中数学必修5第三章 一、教学目标 1.通过两个探究实例,引导学生从几何图形中获得基本不等式,培养学生用数学的眼光观察世界的素养------数学抽象与直观想象。 2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,培养学生用数学思维分析世界的素养----逻辑推理论与数学运算。 3.通过“赵爽弦图”的引入传播数学文化,感受数学魅力;从直观猜想到严格论证体现数学的理性精神;通过不同角度理解基本不等式,发现数学的和谐美、对称美、简洁美。 4.借助例题尝试用基本不等式解决简单的最值问题,引导学生领会运用基本不等式 2b a a b + ≤的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略. 二、教学重点和难点 重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式 2b a a b + ≤的证明过程. 难点:在探究基本不等式的过程中培养学生的数学核心素养,并能应用基本不等式求最大值与最小值. 三、教学过程: 1.由形及数,发现新知 师:先给大家展示一幅图。(展示北京国际数学家大会会标) 问题1:同学们见过这个图形吗?它告诉我们什么信息? 师:这个是什么图形?你感觉它像什么呀? 这是由四个全等的直角三角形所围成的一个正方形,颜色的明暗使它看 上去像一个“风车”,代表中国人民热情好客。这种像“风车”一样的图标是2002年8月20—28在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的。该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a )2·( c +d), ∵a +b >0,∴4c d <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <3 1ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-3 2ab ,显然矛盾.

高中数学第1章不等式的基本性质和证明的基本方法1_1不等式的基本性质和一元二次不等式的解法学业分层测

第1章不等式的基本性质和证明的基本方法 1.1 不等式的基本性质和一元二次不等式的解法学业分层测评新人教B版选修4-5 (建议用时:45分钟) [学业达标] 一、选择题 1.已知全集U=R,集合M={x|x2-2x-3≤0},则?U M=( ) A.{x|-1≤x≤3} B.{x|-3≤x≤1} C.{x|x<-3或x>1} D.{x|x<-1或x>3} 【解析】法一:因为M={x|-1≤x≤3},全集U=R, 所以?U M={x|x<-1或x>3}. 法二:因为M={x|x2-2x-3≤0},所以 ?U M={x|x2-2x-3>0}={x|x<-1或x>3}. 【答案】 D 2.设a>1,且m=log a(a2+1),n=log a(a-1), p=log a(2a),则m,n,p的大小关系为( ) A.n>m>p B.m>p>n C.m>n>p D.p>m>n 【解析】当a>1时, ∵a2+1-2a=(a-1)2>0, ∴a2+1>2a. ∵2a-(a-1)=a+1>0,∴2a>a-1, ∴a2+1>2a>a-1. ∵函数y=log a x(a>1)单调递增, ∴m>p>n. 【答案】 B 3.关于x的不等式x2-ax-20a2<0任意两个解的差不超过9,则a的最大值与最小值的和是( ) A.2 B.1 C.0 D.-1 【解析】方程x2-ax-20a2=0的两根是x1=-4a,x2=5a,由关于x的不等式x2-ax-20a2<0任意两个解的差不超过9,得|x1-x2|=|9a|≤9, 即-1≤a≤1. 【答案】 C

4.不等式f (x )=ax 2 -x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为 ( ) 【解析】 由题意得????? a <0,-2+1=1a ,-2×1=-c a , 解得a =-1,c =-2,f (x )=-x 2 -x +2, 则函数y =f (-x )=-x 2+x +2.故方选C. 【答案】 C 5.若a >b >0,则下列各式中恒成立的是( ) A.2a +b a +2b >a b B.b 2+1a 2+1>b 2a 2 C.a +1a >b +1b D.a a >b b 【解析】 选取适当的特殊值,若a =2,b =1,可知 2a +b a +2b =54,a b =2,由此可知选项A 不成立.利用不等式的性质可知,当a >b >0时,1a <1b ,由此可知,选项C 不恒成立.取a =12 ,b =14,则a >b >0,则a a =b b ,故选项D 不恒成立. 【答案】 B 二、填空题 6.给出四个条件: ①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0. 能得出1a <1b 成立的有________. 【解析】 1a <1b ?1a -1b <0?b -a ab <0, ∴①②④可推出1a <1b 成立. 【答案】 ①②④ 7.已知x =1是不等式k 2x 2-6 kx +8≥0(k ≠0)的解,则k 的取值范围是________. 【导学号:】 【解析】 由题意知,k 2-6k +8≥0, 即(k -2)(k -4)≥0, ∴k ≥4或k ≤2,又∵k ≠0,

基本不等式教学设计-教学教材

基本不等式教学设计-

《基本不等式》教学设计 刘敏 教材分析: 这节课是必修5第三章第四节的第一课时,主要内容是使学生了解基本不等式的代数、几何背景及基本不等式的证明及应用。不等关系和相等关系都是客观事物的基本数量关系,是数学研究的重要内容,建立不等观念,处理不等关系与处理等量问题是同样重要的。 学情分析: 现阶段大部分学生学习的自主性较差,主动性不够,逻辑能力不强,很难用数学的观点和思想提炼生活中的实际问题。所以这节课应通过一系列的具体问题情境,使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解一些不等式产生的实际背景的前提下,学习基本不等式的有关内容使学生感受到不等式的广泛应用,增强学习的兴趣,动员学生实际参与能力。 教学目标:1.理解并掌握基本不等式的证明及其应用。 2. 探索基本不等式的证明过程,进一步领悟不等式 2b a a b + ≤ 成立的条件,会用基本不等式解决简单最大(小)值问题。 3.体验探究的乐趣,培养学生主动运用数形结合的思想,去分析问题,解决问题和应用问题的能力。 教学重点:应用数形结合的思想理解基本不等式,并从不同的角度 探索基本不等式 2b a a b + ≤的证明过程。

教学难点:用基本不等式求最大值和最小值。 教学方法:引导,启发与讲授相结合 教学过程: 一、 问题情境(5分钟) 北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表ab 2中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗? 在正方形中有4个全等的直角三角形。设直角三角形的两条直角边的长为,那么正方形的边长为)(,b a b a ≠,这样,4个直角三角形的面积和为ab 2,正方形的面积为22b a +。由于正方形大于4个直角三角形的面积和,我们就得到了一个不等式ab b a 222>+。当直角三角形为等腰直角三角形,即b a =,正方形中空白处缩为一个点。这是有ab b a 222=+。 一般的,对于任意实数b a ,,我们有ab b a 222≥+,当且仅当b a =时,等号成立。

一元函数的凹凸性在证明不等式中的应用

龙源期刊网 https://www.doczj.com/doc/0d15793997.html, 一元函数的凹凸性在证明不等式中的应用 作者:吴建军刘晶 来源:《教育界·C》2020年第01期 【摘要】函數的凹凸性是函数的重要性质之一,它描述和刻画的是函数图象的弯曲程度。本文首先介绍了描述函数凸性的四种定义,其次对函数凹凸性的相关性质进行了讨论,总结了函数凸性的判别法和凸函数的一些重要的性质,得到了几个关于函数凹凸性的命题,并对函数凹凸性的应用进行了研究,最后简要地给出了函数凸性在证明不等式方面的一些应用,利用函数凹凸性的定义证明了几个重要的不等式。 【关键词】凹凸性;可导;单调;连续 【基金项目】本文系省级课题“基于核心素养理念下的数学史知识在高中数学课堂教学中的运用研究”(课题编号:GS〔2017〕MSZX141)。 函数是基础数学研究的一个重要组成部分,更是高中数学教学研究的中心课题,了解和掌握函数的内在本质就需要我们从“数”和“形”两个方面去探究和分析。在具体的研究实践中,我们更多的是通过研究函数的基本性质去刻画和描述函数的图象,再通过观察函数的图象发现更多的更加深刻的函数的基本性质。函数的凹凸性作为函数的基本性质,它反映在函数图象上就是曲线的弯曲方向。探究和分析函数的凹凸性,可以较好地掌握函数对应曲线的性状,所以深入研究函数的凹凸性对于我们掌握和了解函数的整体性质和图象具有不可替代的重要意义。 一、下凸函数的几种定义 1.下凸函数的定义1 2.下凸函数的定义2 若不等号严格成立,则称;f(x);是;I;上的严格下凸函数. 3.下凸函数的定义3 定义3 设函数在区间;I;上有定义,;f(x);称为;I;上的下凸函数当且仅当曲线;f(x);的切线保持在曲线之下.若除切点之外,切线严格保持在曲线的下方,则称;f(x);是;I;上的严格下凸函数. 二、判定函数凸性的方法 (对严格的下凸函数有类似的结论,只要将“≤”改为“

相关主题
文本预览
相关文档 最新文档