当前位置:文档之家› 使用AIDL实现进程间的通信

使用AIDL实现进程间的通信

使用AIDL实现进程间的通信
使用AIDL实现进程间的通信

在Android中,如果我们需要在不同进程间实现通信,就需要用到AIDL技术去完成。AIDL(Android Interface Definition Language)是一种接口定义语言,编译器通过*.aidl文件的描述信息生成符合通信协议的Java代码,我们无需自己去写这段繁杂的代码,只需要在需要的时候调用即可,通过这种方式我们就可以完成进程间的通信工作。关于AIDL的编写规则我在这里就不多介绍了,读者可以到网上查找一下相关资料。

接下来,我就演示一个操作AIDL的最基本的流程。

首先,我们需要建立一个服务端的工程,如图所以:

在IPerson.aidl中我们定义了一个“问候”的方法,代码如下:

[java]view plaincopy

1.package com.scott.aidl;

2.interface IPerson {

3. String greet(String someone);

4.}

在Eclipse插件的帮助下,编译器会自动在gen目录中生成对应的IPerson.java文件,格式化后的代码如下:

[java]view plaincopy

1.package com.scott.aidl;

2.

3.public interface IPerson extends android.os.IInterface {

4./** Local-side IPC implementation stub class. */

5.public static abstract class Stub extends android.os.Binder implem

ents com.scott.aidl.IPerson {

6.

7.private static final https://www.doczj.com/doc/0c15096308.html,ng.String DESCRIPTOR = "com.scott.

aidl.IPerson";

8.

9./** Construct the stub at attach it to the interface. */

10.public Stub() {

11.this.attachInterface(this, DESCRIPTOR);

12. }

13.

14./**

15. * Cast an IBinder object into an com.scott.aidl.IPerson inter

face,

16. * generating a proxy if needed.

17. */

18.public static com.scott.aidl.IPerson asInterface(android.os.IB

inder obj) {

19.if ((obj == null)) {

20.return null;

21. }

22. android.os.IInterface iin = (android.os.IInterface) obj.qu

eryLocalInterface(DESCRIPTOR);

23.if (((iin != null) && (iin instanceof com.scott.aidl.IPers

on))) {

24.return ((com.scott.aidl.IPerson) iin);

25. }

26.return new com.scott.aidl.IPerson.Stub.Proxy(obj);

27. }

28.

29.public android.os.IBinder asBinder() {

30.return this;

31. }

32.

33.@Override

34.public boolean onTransact(int code, android.os.Parcel data, an

droid.os.Parcel reply, int flags)

35.throws android.os.RemoteException {

36.switch (code) {

37.case INTERFACE_TRANSACTION: {

38. reply.writeString(DESCRIPTOR);

39.return true;

40. }

41.case TRANSACTION_greet: {

42. data.enforceInterface(DESCRIPTOR);

43. https://www.doczj.com/doc/0c15096308.html,ng.String _arg0;

44. _arg0 = data.readString();

45. https://www.doczj.com/doc/0c15096308.html,ng.String _result = this.greet(_arg0);

46. reply.writeNoException();

47. reply.writeString(_result);

48.return true;

49. }

50. }

51.return super.onTransact(code, data, reply, flags);

52. }

53.

54.private static class Proxy implements com.scott.aidl.IPerson {

55.private android.os.IBinder mRemote;

56.

57. Proxy(android.os.IBinder remote) {

58. mRemote = remote;

59. }

60.

61.public android.os.IBinder asBinder() {

62.return mRemote;

63. }

64.

65.public https://www.doczj.com/doc/0c15096308.html,ng.String getInterfaceDescriptor() {

66.return DESCRIPTOR;

67. }

68.

69.public https://www.doczj.com/doc/0c15096308.html,ng.String greet(https://www.doczj.com/doc/0c15096308.html,ng.String someone) th

rows android.os.RemoteException {

70. android.os.Parcel _data = android.os.Parcel.obtain();

71. android.os.Parcel _reply = android.os.Parcel.obtain();

72. https://www.doczj.com/doc/0c15096308.html,ng.String _result;

73.try {

74. _data.writeInterfaceToken(DESCRIPTOR);

75. _data.writeString(someone);

76. mRemote.transact(Stub.TRANSACTION_greet, _data, _r

eply, 0);

77. _reply.readException();

78. _result = _reply.readString();

79. } finally {

80. _reply.recycle();

81. _data.recycle();

82. }

83.return _result;

84. }

85. }

86.

87.static final int TRANSACTION_greet = (android.os.IBinder.FIRST

_CALL_TRANSACTION + 0);

88. }

89.

90.public https://www.doczj.com/doc/0c15096308.html,ng.String greet(https://www.doczj.com/doc/0c15096308.html,ng.String someone) throws and

roid.os.RemoteException;

91.}

该文件的大纲视图如下:

IPerson接口中的抽象内部类Stub继承android.os.Binder类并实现IPerson接口,比较重要的方法是asInterface(IBinder)方法,该方法会将IBinder类型的对象转换成IPerson类型,必要的时候生成一个代理对象返回结果。

接下来就是我们的Service了:

[java]view plaincopy

1.package com.scott.server;

2.

3.import android.app.Service;

4.import android.content.Intent;

5.import android.os.IBinder;

6.import android.os.RemoteException;

7.import android.util.Log;

8.

9.import com.scott.aidl.IPerson;

10.

11.public class AIDLService extends Service {

12.

13.private static final String TAG = "AIDLService";

14.

15. IPerson.Stub stub = new IPerson.Stub() {

16.@Override

17.public String greet(String someone) throws RemoteException {

18. Log.i(TAG, "greet() called");

19.return"hello, " + someone;

20. }

21. };

22.

23.@Override

24.public IBinder onBind(Intent intent) {

25. Log.i(TAG, "onBind() called");

26.return stub;

27. }

28.

29.@Override

30.public boolean onUnbind(Intent intent) {

31. Log.i(TAG, "onUnbind() called");

32.return true;

33. }

34.

35.@Override

36.public void onDestroy() {

37.super.onDestroy();

38. Log.i(TAG, "onDestroy() called");

39. }

40.}

我们实现了IPerson.Stub这个抽象类的greet方法,然后再onBind(Intent)方法中返回我们的stub实例,这样一来调用方获取的IPerson.Stub就是我们的这个实例,greet方法也会按照我们的期望那样执行。

当然,要想让Service生效,我们还需要在AndroidManifest.xml中做一些配置工作:[java]view plaincopy

1.

2.

3.

4.

/>

5.

6.

服务端已经完成了,接下来我们就该完成客户端的工作了。我已经建好了一个客户端工程,如图:

我们只需要把IPerson.aidl文件拷到相应的目录中即可,编译器同样会生成相对应的IPerson.java文件,这一部分和服务端没什么区别。这样一来,服务端和客户端就在通信协议上达到了统一。我们主要工作在MainActivity中完成。

MainActivity代码如下:

[java]view plaincopy

1.package com.scott.client;

2.

3.import android.app.Activity;

4.import https://www.doczj.com/doc/0c15096308.html,ponentName;

5.import android.content.Context;

6.import android.content.Intent;

7.import android.content.ServiceConnection;

8.import android.os.Bundle;

9.import android.os.IBinder;

10.import android.os.RemoteException;

11.import android.util.Log;

12.import android.view.View;

13.import android.widget.Button;

14.import android.widget.Toast;

15.

16.import com.scott.aidl.IPerson;

17.

18.public class MainActivity extends Activity {

19.

20.private Button bindBtn;

21.private Button greetBtn;

22.private Button unbindBtn;

23.

24.private IPerson person;

25.private ServiceConnection conn = new ServiceConnection() {

26.

27.@Override

28.public void onServiceConnected(ComponentName name, IBinder ser

vice) {

29. Log.i("ServiceConnection", "onServiceConnected() called");

30. person = IPerson.Stub.asInterface(service);

31. }

32.

33.@Override

34.public void onServiceDisconnected(ComponentName name) {

35.//This is called when the connection with the service has

been unexpectedly disconnected,

36.//that is, its process crashed. Because it is running in o

ur same process, we should never see this happen.

37. Log.i("ServiceConnection", "onServiceDisconnected() called

");

38. }

39. };

40.

41.@Override

42.public void onCreate(Bundle savedInstanceState) {

43.super.onCreate(savedInstanceState);

44. setContentView(https://www.doczj.com/doc/0c15096308.html,yout.main);

45.

46. bindBtn = (Button) findViewById(R.id.bindBtn);

47. bindBtn.setOnClickListener(new View.OnClickListener() {

48.@Override

49.public void onClick(View v) {

50. Intent intent = new Intent("android.intent.action.AIDL

Service");

51. bindService(intent, conn, Context.BIND_AUTO_CREATE);

52.

53. bindBtn.setEnabled(false);

54. greetBtn.setEnabled(true);

55. unbindBtn.setEnabled(true);

56. }

57. });

58.

59. greetBtn = (Button) findViewById(R.id.greetBtn);

60. greetBtn.setOnClickListener(new View.OnClickListener() {

61.@Override

62.public void onClick(View v) {

63.try {

64. String retVal = person.greet("scott");

65. Toast.makeText(MainActivity.this, retVal, Toast.LE

NGTH_SHORT).show();

66. } catch (RemoteException e) {

67. Toast.makeText(MainActivity.this, "error", Toast.L

ENGTH_SHORT).show();

68. }

69. }

70. });

71.

72. unbindBtn = (Button) findViewById(R.id.unbindBtn);

73. unbindBtn.setOnClickListener(new View.OnClickListener() {

74.@Override

75.public void onClick(View v) {

76. unbindService(conn);

77.

78. bindBtn.setEnabled(true);

79. greetBtn.setEnabled(false);

80. unbindBtn.setEnabled(false);

81. }

82. });

83. }

84.}

从代码中可以看到,我们要重写ServiceConnection中的onServiceConnected方法将IBinder类型的对像转换成我们的IPerson类型。到现在我们就剩下最后一个步骤了,这个环节也是最为关键的,就是绑定我们需要的服务。我们通过服务端Service定义的“android.intent.action.AIDLService”这个标识符来绑定其服务,这样客户端和服务端就实现了通信的连接,我们就可以调用IPerson中的“问候”方法了。

最后,贴几张客户端演示过程图。

按照顺序分别是:初始界面;点击bindService后界面;点击greet后界面;点击unbindService后界面。

操作过程中的日志如下:

进程间通信的四种方式

一、剪贴板 1、基础知识 剪贴板实际上是系统维护管理的一块内存区域,当在一个进程中复制数据时,是将这个数据放到该块内存区域中,当在另一个进程中粘贴数据时,是从该内存区域中取出数据。 2、函数说明: (1)、BOOL OpenClipboard( ) CWnd类的OpenClipboard函数用于打开剪贴板。若打开剪贴板成功,则返回非0值。若其他程序或当前窗口已经打开了剪贴板,则该函数返回0值,表示打开失败。若某个程序已经打开了剪贴板,则其他应用程序将不能修改剪贴板,直到前者调用了CloseClipboard函数。 (2)、BOOL EmptyClipboard(void) EmptyClipboard函数将清空剪贴板,并释放剪贴板中数据的句柄,然后将剪贴板的所有权分配给当前打开剪贴板的窗口。 (3)、HANDLE SetClipboardData(UINT uFormat, HANDLE hMem) SetClipboardData函数是以指定的剪贴板格式向剪贴板上放置数据。uFormat指定剪贴板格式,这个格式可以是已注册的格式,或是任一种标准的剪贴板格式。CF_TEXT表示文本格式,表示每行数据以回车换行(0x0a0x0d)终止,空字符作为数据的结尾。hMem指定具有指定格式的数据的句柄。hMem参数可以是NULL,指示采用延迟提交技术,则该程序必须处理WM_RENDERFORMA T和WM_RENDERALLFORMATS消息。应用程序在调用SetClipboardData函数之后,就拥有了hMem参数所标识的数据对象,该应用程序可以读取该数据对象,但在应用程序调用CloseClipboard函数之前,它不能释放该对象的句柄,或者锁定这个句柄。若hMem标识了一个内存对象,那么这个对象必须是利用GMEM_MOVEABLE标志调用GlobalAlloc函数为其分配内存。 注意:调用SetClipboardData函数的程序必须是剪贴板的拥有者,且在这之前已经打开了剪贴板。 延迟提交技术:当一个提供数据的进程创建了剪贴板数据之后,直到其他进程获取剪贴板数据之前,这些数据都要占据内存空间。若在剪贴板上放置的数据过大,就会浪费内存空间,降低对资源的利用率。为了避免这种浪费,就可以采用延迟提交计数,也就是由数据提供进程先提供一个指定格式的空剪贴板数据块,即把SetClipboardData函数的hMem参数设置为NULL。当需要获取数据的进程想要从剪贴板上得到数据时,操作系统会向数据提供进程发送WM_RENDERFORMA T消息,而数据提供进程可以响应这个消息,并在此消息的响应函数中,再一次调用SetClipboardData函数,将实际的数据放到剪贴板上。当再次调用SetClipboardData函数时,就不再需要调用OpenClipboard函数,也不再需要调用EmptyClipboard函数。也就是说,为了提高资源利用率,避免浪费内存空间,可以采用延迟提交技术。第一次调用SetClipboardData函数时,将其hMem参数设置为NULL,在剪贴板上以指定的剪贴板格式放置一个空剪贴板数据块。然后直到有其他进程需要数据或自身进程需要终止运行时再次调用SetClipboardData函数,这时才真正提交数据。 (4)、HGLOBAL GlobalAlloc( UINT uFlags,SIZE_T dwBytes); GlobalAlloc函数从堆上分配指定数目的字节。uFlags是一个标记,用来指定分配内存的方式,uFlags为0,则该标记就是默认的GMEM_FIXED。dwBytes指定分配的字节数。

进程和进程间的通信

1、进程概念; 2、进程的控制: (1)生成一个进程:fork (2)进程的同步:wait waitpid (3)进程的退出:exit _exit (4)进程“脱胎换骨”:exec函数族 3、进程通信 (1)进程为什么需要通信? (2)linux下进程如何通信 ●早期的unix通信方式 无名管道;有名管道;信号 ●sysem v的通信方式:共享内存、消息队列、信号量 ●BSD的通信方式:socket 4、无名管道:适用于有血缘关系进程通信 小任务1:父进程通过无名管道向子进程发送字符串“Hello,you man!”,子进程接收到后显示出来,然后子进程退出,最后父进程退出。 (1)创建子进程:fork (2)创建管道 #include int pipe(int pipefd[2]); 参数说明(当管道创建成功后): pipefd[0]:读端的文件描述符; pipefd[1]:写端的文件描述 返回值:0表示创建成功,-1表示创建失败 (3)父亲写管道 write (4)儿子读管道 read (5)父亲等待儿子退出 wait 参考代码: #include #include #include #include #include int main() { int pid; int pipefd[2]; int ret;

char buf[]="Hello,young man!"; ret=pipe(pipefd);//创建管道(1) if(ret<0) { perror("Failed to create pipe:"); return -1; } pid=fork(); //能够把(1)语句放此注释的下一样?? if(pid<0) { perror("Failed to create child process:"); return -1; } if(pid>0) { close(pipefd[0]);//父进程中关闭无关的读端 write(pipefd[1],buf,strlen(buf)); wait(NULL); printf("Parent process exit!\n"); } else { char receive_buf[100]; int count; close(pipefd[1]);//子进程中关闭无关的写端 count=read(pipefd[0],receive_buf,100); if(count>0) { receive_buf[count]='\0'; printf("Child process receive a string:%s\n",receive_buf); } printf("Child process exit!\n"); } return 0; } 5、有名管道(fifo) (1)文件系统中可见,可以通过mkfifo 命令来创建一个有名管道 eg: mkfifo -m 0666 myfifo (2)有名管道的使用跟普通文件一样:open read write close,不用使用lseek!!!! 任务2: 进程1通过有名管道把键盘输入字符串发送给进程2,进程2收到后显

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

进程同步与通信作业习题与答案

第三章 一.选择题(50题) 1.以下_B__操作系统中的技术是用来解决进程同步的。 A.管道 B.管程 C.通道 2.以下_B__不是操作系统的进程通信手段。 A.管道 B.原语 C.套接字 D.文件映射 3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__。 4.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__。 ,2,1,0,-1 ,1,0,-1,-2 C. 1,0,-1,-2,-3 ,3,2,1,0 5.下面有关进程的描述,是正确的__A__。 A.进程执行的相对速度不能由进程自己来控制 B.进程利用信号量的P、V 操作可以交换大量的信息 C.并发进程在访问共享资源时,不可能出现与时间有关的错误 、V操作不是原语操作 6.信号灯可以用来实现进程之间的_B__。 A.调度 B.同步与互斥 C.同步 D.互斥 7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__。 A.没有进程进入临界区 B.有1个进程进入了临界区 C. 有2个进程进入了临界区 D. 有1个进程进入了临界区并且另一个进程正等待进入 8. 信箱通信是一种_B__方式 A.直接通信 B.间接通信 C.低级通信 D.信号量 9.以下关于临界区的说法,是正确的_C__。

A.对于临界区,最重要的是判断哪个进程先进入 B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以 打断进程A而自己进入临界区 C. 信号量的初值非负,在其上只能做PV操作 D.两个互斥进程在临界区内,对共享变量的操作是相同的 10. 并发是指_C__。 A.可平行执行的进程 B.可先后执行的进程 C.可同时执行的进程 D.不可中断的进程 11. 临界区是_C__。 A.一个缓冲区 B.一段数据区 C.一段程序 D.栈 12.进程在处理机上执行,它们的关系是_C__。 A.进程之间无关,系统是封闭的 B.进程之间相互依赖相互制约 C.进程之间可能有关,也可能无关 D.以上都不对 13. 在消息缓冲通信中,消息队列是一种__A__资源。 A.临界 B.共享 C.永久 D.可剥夺 14. 以下关于P、V操作的描述正确的是__D_。 A.机器指令 B. 系统调用 C.高级通信原语 D.低级通信原语 15.当对信号量进行V源语操作之后,_C__。 A.当S<0,进程继续执行 B.当S>0,要唤醒一个就绪进程 C. 当S<= 0,要唤醒一个阻塞进程 D. 当S<=0,要唤醒一个就绪 16.对临界区的正确论述是__D_。 A.临界区是指进程中用于实现进程互斥的那段代码 B. 临界区是指进程中用于实现进程同步的那段代码 C. 临界区是指进程中用于实现进程通信的那段代码 D. 临界区是指进程中访问临界资源的那段代码 17. __A__不是进程之间的通信方式。 A.过程调用 B.消息传递 C.共享存储器 D.信箱通信 18. 同步是指进程之间逻辑上的__A__关系。

Windows进程间各种通信方式浅谈

Windows进程间各种通信方式浅谈 1、Windows进程间通信的各种方法 进程是装入内存并准备执行的程序,每个进程都有私有的虚拟地址空间,由代码、数据以及它可利用的系统资源(如文件、管道等)组成。 多进程/多线程是Windows操作系统的一个基本特征。Microsoft Win32应用编程接口(Application Programming Interface, API) 提供了大量支持应用程序间数据共享和交换的机制,这些机制行使的活动称为进程间通信(InterProcess Communication, IPC),进程通信就是指不同进程间进行数据共享和数据交换。 正因为使用Win32 API进行进程通信方式有多种,如何选择恰当的通信方式就成为应用开发中的一个重要问题, 下面本文将对Win32中进程通信的几种方法加以分析和比较。 2、进程通信方法 2.1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。 Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。 应用程序有三种方法来使多个进程共享一个文件映射对象。 (1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。 (2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。第二个进程可通过这个名字打开此文件映射对象。另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。 (3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、

linux进程间通讯的几种方式的特点和优缺点

1. # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。#共享内存( shared memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 管道的主要局限性正体现在它的特点上: 只支持单向数据流; 只能用于具有亲缘关系的进程之间; 没有名字; 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等; 2. 用于进程间通讯(IPC)的四种不同技术: 1. 消息传递(管道,FIFO,posix和system v消息队列) 2. 同步(互斥锁,条件变量,读写锁,文件和记录锁,Posix和System V信号灯) 3. 共享内存区(匿名共享内存区,有名Posix共享内存区,有名System V共享内存区) 4. 过程调用(Solaris门,Sun RPC) 消息队列和过程调用往往单独使用,也就是说它们通常提供了自己的同步机制.相反,共享内存区

进程之间的通信实验

实验:进程之间的通信管道 1.Pipe函数与进程通信 下面实验为使用管道进行父子进程间通信。程序首先判断参数是否合法,因为输入的字符将从父进程通过发送到子进程中。然后,调用pipe函数创建父子进程用于通信的管道。使用fork函数创建子进程时,子进程会获得与父进程相同的资源,其中包括文件描述符信息。因此,调用fork函数须在pipe函数调用前。 当父子进程通过管道进行通信时,files[1]为用于数据写入的文件描述符.因此,在子进程中,要读取管道中的数据可以调用read函数,而读取得文件描述符为files[0]。对于父进程而言,写入数据需要调用write 函数,要写入的文件描述为files[1]。 #include #include int main(int argc,char* argv[]) { int f_des[2]; int pid; char msg[BUFSIZ]; if(argc!=2){ printf("Usage: %s message\n",argv[0]); return 1; } if(pipe(f_des)==-1){ perror("cannot create the IPC pipe"); return 1; } pid=fork(); if(pid==-1){ perror("cannot create new process"); return 1; }else if(pid==0){ close(f_des[1]); if(read(f_des[0],msg,BUFSIZ)==-1){ perror("child process cannot read data from pipe"); return 1; }else printf("in child process, receive message: %s\n",msg); _exit(0); }else { close(f_des[0]); if(write(f_des[1],argv[1],strlen(argv[1]))==-1){ perror("parent process cannot write data to pipe"); return 1; }else printf("in parent process, send message: %s\n",argv[1]); wait(NULL); _exit(0); }

Linux下的进程间通信-详解

Linux下的进程间通信-详解 详细的讲述进程间通信在这里绝对是不可能的事情,而且笔者很难有信心说自己对这一部分内容的认识达到了什么样的地步,所以在这一节的开头首先向大家推荐著 名作者Richard Stevens的著名作品:《Advanced Programming in the UNIX Environment》,它的中文译本《UNIX环境高级编程》已有机械工业出版社出版,原文精彩,译文同样地道,如果你的确对在Linux下编程有浓 厚的兴趣,那么赶紧将这本书摆到你的书桌上或计算机旁边来。说这么多实在是难抑心中的景仰之情,言归正传,在这一节里,我们将介绍进程间通信最最初步和最 最简单的一些知识和概念。 首先,进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法。但一般说来, 进程间通信(IPC:InterProcess Communication)不包括这种似乎比较低级的通信方法。Unix系统中实现进程间通信的方法很多,而且不幸的是,极少方法能在所有的Unix系 统中进行移植(唯一一种是半双工的管道,这也是最原始的一种通信方式)。而Linux作为一种新兴的操作系统,几乎支持所有的Unix下常用的进程间通信 方法:管道、消息队列、共享内存、信号量、套接口等等。下面我们将逐一介绍。 2.3.1 管道 管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者用于父进程和子进程间的通信,后者用于运行于同一台机器上的任意两个进程间的通信。 无名管道由pipe()函数创建: #include int pipe(int filedis[2]); 参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。下面的例子示范了如何在父进程和子进程间实现通信。 #define INPUT 0 #define OUTPUT 1 void main() { int file_descriptors[2]; /*定义子进程号 */ pid_t pid; char buf[256]; int returned_count; /*创建无名管道*/ pipe(file_descriptors); /*创建子进程*/ if((pid = fork()) == -1) { printf("Error in fork\n"); exit(1); } /*执行子进程*/ if(pid == 0) { printf("in the spawned (child) process...\n"); /*子进程向父进程写数据,关闭管道的读端*/ close(file_descriptors[INPUT]); write(file_descriptors[OUTPUT], "test data", strlen("test data"));

进程间通信方式比较

进程间的通信方式: 1.管道(pipe)及有名管道(named pipe): 管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 2.信号(signal): 信号是在软件层次上对中断机制的一种模拟,它是比较复杂的通信方式,用于通知进程有某事件发生,一个进程收到一个信号与处理器收到一个中断请求效果上可以说是一致得。 3.消息队列(message queue): 消息队列是消息的链接表,它克服了上两种通信方式中信号量有限的缺点,具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息。 消息缓冲通信技术是由Hansen首先提出的,其基本思想是:根据”生产者-消费者”原理,利用内存中公用消息缓冲区实现进程之间的信息交换. 内存中开辟了若干消息缓冲区,用以存放消息.每当一个进程向另一个进程发送消息时,便申请一个消息缓冲区,并把已准备好的消息送到缓冲区,然后把该消息缓冲区插入到接收进程的消息队列中,最后通知接收进程.接收进程收到发送里程发来的通知后,从本进程的消息队列中摘下一消息缓冲区,取出所需的信息,然后把消息缓冲区不定期给系统.系统负责管理公用消息缓冲区以及消息的传递. 一个进程可以给若干个进程发送消息,反之,一个进程可以接收不同进程发来的消息.显然,进程中关于消息队列的操作是临界区.当发送进程正往接收进程的消息队列中添加一条消息时,接收进程不能同时从该消息队列中到出消息:反之也一样. 消息缓冲区通信机制包含以下列内容:

(1) 消息缓冲区,这是一个由以下几项组成的数据结构: 1、消息长度 2、消息正文 3、发送者 4、消息队列指针 (2)消息队列首指针m-q,一般保存在PCB中。 (1)互斥信号量m-mutex,初值为1,用于互斥访问消息队列,在PCB中设置。 (2)同步信号量m-syn,初值为0,用于消息计数,在PCB中设置。(3)发送消息原语send (4)接收消息原语receive(a) 4.共享内存(shared memory): 可以说这是最有用的进程间通信方式。它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。 这种通信模式需要解决两个问题:第一个问题是怎样提供共享内存;第二个是公共内存的互斥关系则是程序开发人员的责任。 5.信号量(semaphore): 主要作为进程之间及同一种进程的不同线程之间得同步和互斥手段。 6.套接字(socket); 这是一种更为一般得进程间通信机制,它可用于网络中不同机器之间的进程间通信,应用非常广泛。 https://www.doczj.com/doc/0c15096308.html,/eroswang/archive/2007/09/04/1772350.aspx linux下的进程间通信-详解

进程间的通信

实验三进程间的通信 【实验类型】 综合性实验 【目的要求】 学习如何利用管道机制、消息缓冲队列、共享存储区机制进行进程间的通讯,并加深对上述通信机制的理解。 【内容提要】 1、了解系统调用pipe()、msgget()、msgsnd()、msgrcv ()、msgctl()、shmget()、shmat()、shmdt()、shmctl()的功能和实现过程。 2、编写一段程序,使其用管道来实现父子进程之间的进程通讯。子进程向父进程发送自己的进程标识符,以及字符串“is sending a message to parent!”。父进程则通过管道读出子进程发来的消息,将消息显示在屏幕上,然后终止。 3、编写一段程序,使用系统调用fork()来创建两个子进程CLIENT进程和SERVER进程,使其用消息缓冲队列来实现CLIENT进程和SERVER进程之间的通信。SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。SERVER每接收到一条消息后显示一句“(server) received”。CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,即是SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client) sent”。父进程在SERVER和CLIENT均退出后结束。 4、编写一个与3具有类似功能的程序,使其用共享存储区来实现两个进程之间的通讯。 【主要仪器设备】 每人一台计算机,硬件要求:CPU PII以上,64M内存,1OOM硬盘空间即可;软件要求: Linux操作系统。

进程控制与进程间通信操作系统实验报告

工程大学实验报告 专业班级:姓名:学号: 课程名称:操作系统 实验成绩:指导教师:蔡敦波 实验名称:进程控制与进程间通信 一、实验目的: 1、掌握进程的概念,明确进程和程序的区别。 2、认识和了解并发执行的实质。 3、了解什么是信号。 4、熟悉LINUX系统中进程之间软中断通信的基本原理。 二、实验内容: 1、进程的创建(必做题) 编写一段程序,使用系统调用fork( )创建两个子进程,在系统中有一个父进程和两个子进程活动。让每个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 <参考程序>

运行的结果是bca. 首先创建进程p1,向子进程返回0,输出b.又创建进程p2,向子进程返回0,输出c,同时向父进程返回子进程的pid,输出a 2、修改已编写的程序,将每个进程的输出由单个字符改为一句话,再观察程序执行时屏幕上出现的现象,并分析其原因。(必做题) <参考程序> # include int main() { int p1, p2, i; while((p1=fork())= = -1); if(p1= =0) for(i=0;i<500;i++) printf(“child%d\n”,i); else { while((p2=fork())= =-1); If(p2= =0) for(i=0;i<500;i++) printf(“son%d\n”,i); else for(i=0;i<500;i++) printf(“daughter%d\n”,i); } }

运行的结果是如上图所示. 首先创建进程p1,向子进程返回0,并for语句循环输出child +i字符串.又创建进程p2,向子进程返回0,输出字符串son+i,同时向父进程返回子进程的pid,输出字符串duaghter +i ,各打印5次。

进程间的通信

# 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。# 共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 windows进程通信的几种方式(转) 2008-10-13 16:47 1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。 Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。 应用程序有三种方法来使多个进程共享一个文件映射对象。 (1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。 (2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。第二个进程可通过这个名字打开此文件映射对象。另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。 (3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、邮件槽等)把对象句柄传递给第二个进程。第二个进程复制该句柄就取得对该文件映射对象的访问权限。 文件映射是在多个进程间共享数据的非常有效方法,有较好的安全性。但文件映射只能用于本地机器的进程之间,不能用于网络中,而开发者还必须控制进程间的同步。 2 共享内存 Win32 API中共享内存(Shared Memory)实际就是文件映射的一种特殊情况。进程在创建文件映射对象时用0xFFFFFFFF来代替文件句柄(HANDLE),就表示了对应的文件映射对象是从操作系统页面文件访问内存,其它进程打开该文件映射

04--Linux系统编程-进程间通信

IPC方法 Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间。任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间不能相互访问,要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信(IPC,InterProcess Communication)。 在进程间完成数据传递需要借助操作系统提供特殊的方法,如:文件、管道、信号、共享内存、消息队列、套接字、命名管道等。随着计算机的蓬勃发展,一些方法由于自身设计缺陷被淘汰或者弃用。现今常用的进程间通信方式有: ①管道(使用最简单) ②信号(开销最小) ③共享映射区(无血缘关系) ④本地套接字(最稳定) 管道 管道的概念: 管道是一种最基本的IPC机制,作用于有血缘关系的进程之间,完成数据传递。调用pipe系统函数即可创建一个管道。有如下特质: 1. 其本质是一个伪文件(实为内核缓冲区) 2.由两个文件描述符引用,一个表示读端,一个表示写端。 3. 规定数据从管道的写端流入管道,从读端流出。 管道的原理: 管道实为内核使用环形队列机制,借助内核缓冲区(4k)实现。 管道的局限性: ①数据自己读不能自己写。 ②数据一旦被读走,便不在管道中存在,不可反复读取。 ③由于管道采用半双工通信方式。因此,数据只能在一个方向上流动。 ④只能在有公共祖先的进程间使用管道。

常见的通信方式有,单工通信、半双工通信、全双工通信。 pipe函数 创建管道 int pipe(int pipefd[2]); 成功:0;失败:-1,设置errno 函数调用成功返回r/w两个文件描述符。无需open,但需手动close。规定:fd[0] →r;fd[1] →w,就像0对应标准输入,1对应标准输出一样。向管道文件读写数据其实是在读写内核缓冲区。 管道创建成功以后,创建该管道的进程(父进程)同时掌握着管道的读端和写端。如何实现父子进程间通信呢?通常可以采用如下步骤: 1.父进程调用pipe函数创建管道,得到两个文件描述符fd[0]、fd[1]指向管道的读端和写端。 2.父进程调用fork创建子进程,那么子进程也有两个文件描述符指向同一管道。 3.父进程关闭管道读端,子进程关闭管道写端。父进程可以向管道中写入数据,子进程将管道中的数据读出。由于管道是利用环形队列实现的,数据从写端流入管道,从读端流出,这样就实现了进程间通信。 练习:父子进程使用管道通信,父写入字符串,子进程读出并,打印到屏幕。【pipe.c】 思考:为甚么,程序中没有使用sleep函数,但依然能保证子进程运行时一定会读到数据呢? 管道的读写行为 使用管道需要注意以下4种特殊情况(假设都是阻塞I/O操作,没有设置O_NONBLOCK标志): 1.如果所有指向管道写端的文件描述符都关闭了(管道写端引用计数为0),而仍然有进程从管道的读端读数据,那么管道中剩余的数据都被读取后,再次read会返回0,就像读到文件末尾一样。

进程间通讯机制

进程间通讯机制 进程在核心的协调下进行相互间的通讯。Linux支持大量进程间通讯(IPC) 机制。除了信号和管道外,Linux 还支持Unix系统V中的IPC机制。 信号 信号是Unix系统中的最古老的进程间通讯方式。它们用来向一个或多个进程发送异步事件信号。信号可以从键盘中断中产生,另外进程对虚拟内存的非法存取等系统错误环境下也会有信号产生。信号还被shell程序用来向其子进程发送任务控制命令。 系统中有一组被详细定义的信号类型,这些信号可以由核心或者系统中其它具有适当权限的进程产生。使用kill命令(kill -l)可以列出系统中所有已经定义的信号。在我的系统(Intel系统)上运行结果如下: 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 当我在Alpha AXP中运行此命令时,得到了不同的信号个数。除了两个信号外,进程可以忽略这些信号中的绝大部分。其一是引起进程终止执行的SIGSTOP信号,另一个是引起进程退出的SIGKILL信号。至于其它信号,进程可以选择处理它们的具体方式。进程可以阻塞信号,如若不阻塞,则可以在自行处理此信号和将其转交核心处理之间作出选择。如果由核心来处理此信号,它将使用对应此信号的缺省处理方法。比如当进程接收到SIGFPE(浮点数异常)时,核心的缺省操作是引起core dump和进程的退出。信号没有固有的相对优先级。如果在同一时刻对于一个进程产生了两个信号,则它们将可能以任意顺序到达进程并进行处理。

用socket实现进程间通信

实验报告 班级011291 班 学生姓名 学号 实验成绩

一、实验题目: 实现最简单实用的通信程序socket. 二、实验目的: 通过对socket的编写,了解socket通信的原理.了解TCP通信的整个过程.以及Linux下C语言的socket函数. 三、实验设备及环境: 1. 硬件设备:PC机一台 2. 软件环境:安装Linux操作系统,并安装相关的程序开发环境,如C \C++\tsh\bsh等编程语言环境。 四、实验内容及要求: 用C语言编程实现linux简单的聊天室功能。 ?用户程序命名为2.c;服务器程序命名为1.c ?要求client可以通过socket连接server ?Client与server可以相互通信,实现交互 五.代码(针对实验1,2,请将最终源代码粘贴至此;正式报告中将下面例子删除) 服务端: #include

#include #include #include #define UNIX_DOMAIN "/tmp/UNIX.domain" int main(void) { socklen_t clt_addr_len; int listen_fd; int com_fd; int ret; int i; char recv_buf[1024]; char send_buf[1024]; int len; struct sockaddr_un clt_addr; struct sockaddr_un srv_addr; listen_fd=socket(PF_UNIX,SOCK_STREAM,0); if(listen_fd<0) { perror("cannot create communication socket"); return 1;

实验三进程间通信(1)

实验三进程间通信班级: xxx 学号: xxx 姓名: xxx 分数: 1、实验目的: Linux系统的进程通信机构(IPC)允许在任意进程间大批量的交换数据。本实验的目的是了解和熟悉Linux支持的通信机制、共享存储区机制及信号量机制。 2、实验预备内容: 阅读Linux系统的msg.c sem.c shm.c等源码文件,熟悉Linux的三种通信机制。3、实验内容: (1)消息的创建,发送和接收 (2)使用系统调用msgget(),msgsnd(),msgrev()及msgctl()编制一长度为1k的消息发送和接收程序。 <程序设计> (1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。 (2)SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。SERVER 每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后一个消息,即是SERVER端需要的结束信号。CLIENT每发送一条 信息后显示一句“(client)sent”。 (4)父进程在SERVER和CLIENT均退出后结束。 4、源代码及运行截图: #include #include #include #include #define MSGKEY 75 struct msgform { long mtype; char mtext[1030]; }msg; int msgqid,i; void CLIENT() { int i; msgqid=msgget(MSGKEY,0777); for (i=10;i>=1;i--) { msg.mtype=i;

进程间通信的几种方式

进程间通信的几种方式 2009-06-19 23:28 (1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。 (2)命名管道(named pipe):命名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。命名管道在文件系统中有对应的文件名。命名管道通过命令mkfifo或系统调用mkfifo来创建。 (3)信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数)。 (4)消息(Message)队列:消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺 (5)共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。 (6)内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它。 (7)信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。 (8)套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字

相关主题
文本预览
相关文档 最新文档