当前位置:文档之家› 开关电源高频电磁波干扰解析-EMI

开关电源高频电磁波干扰解析-EMI

开关电源高频电磁波干扰解析-EMI
开关电源高频电磁波干扰解析-EMI

转载+整理《开关电源高频电磁波干扰概论》解析(一)

第一节

这个是说EMI的传播过程,干扰源-干扰途径-接收器,就向传染病:传染源-传染途径-易感人群。

对于开关电源来说,最后一部分是不需要考虑的,干扰源也不能消灭,因为它也是开关电源之所以能工作的源头,但是可以通过软开关、加缓冲等方式来使干扰源的干扰小一些。控制干扰途径是降低开关电源EMI的重要一环,也是本讲义的重点讲解之处。

信号源波形产生的频谱

电压波形产生的频谱

周期信号的频谱是没有偶次谐波的,正负对称的波形产生的频率分量更少,像桥式电路。高数都忘光了,有兴趣的做一下FFT.

占空比和波形斜率的影响

占空比越大时,干扰的幅度也大一些,这个可由FFT的系数算出来。

波形的斜率对干扰的高频部分影响非常大。低频部分几乎没有影响。低频部分主要由波形的幅度和高电平部分的宽度决定的,但高频部分大幅度下降的转折点为1/(3.14*tr),所以tr越大时,转折点的频率越低,高频下降越大。

所以我们应该想到降低斜率的措施,缓冲电路。

第一节小结:

电压和电流波形都有很丰富的频率成分

超过200M时由于幅值已经很低,所以影响很小

波形影响低频部分

上升沿和下降沿影响高频部分

占空比对个频谱幅值有一点影响

第2节:

下以部分13-42页,介绍的内容比较杂,有传导和辐射的场地、设备的放置,Log的概念等。

重点说一下这个图,这个介绍的是干扰的耦合途径,左边为传导干扰,右边为辐射干扰。辐射分为远场和近场。一般用蝶型天线辐射测量只测量电场,而不是磁场,磁场是用大圆环来测量的,灯具常用。

电场除了直接辐射到天线外,还可能辐射到地面再反射到天线,天线接受到的是直射波和反射波的矢量合成,所以需要上下移动寻找最大合成量。除此以外,由于电磁波有极化,所以天线需要改变方向以检测最大值(一般只测试水平和垂直)。

LISN网络。

LISN网络是用来拾取噪音的。差模噪音会在Line1--Line2之间流动,经过50欧姆电阻拾取。共模电流经过下面的地线再通过50欧姆的电阻回到电源,共模噪音也是经过50欧姆电阻拾取。50uH电感和10uF电容是用来阻止电网的干扰进入被测电源和防止被测的噪音跑到外面去。0.25 uF的电容保证只有交流噪音信号可以流过去。在150KHz频率以上时其阻抗很小,近似短路。

线对线(差模)和线对地(共模)的噪音检测。

都是通过测量50欧姆电阻的电压信号来检测的,但仪器并不会区分差模和共模,实际为两个信号的矢量叠加(个人意见,仪器里面我不清楚)。

两种辐射测试:

场强辐射测试,通过组合天线来测量辐射的电场强度,蝶型天线(两个耳朵)测量30-300MHz,对数天线测量300-1GHz,对开关电源来说,主要是耳朵测量,300MHz以后一般电源辐射很小。

功率辐射测试(吸收钳),这个一般带长引线的设备需要做这个试验,如DVD等。

有效检测部分只有前面的一个环,后面是做吸收用的,范围30-300MHz。共模电流通过高频变压器后送到检测设备。

电流波形产生的频谱

第三节

下面几页说的是峰值、准峰值和平均值在仪器内部的测试方法,不是我们关心的重点。

从上面可以看出(看原文),3中检测主要是包络检波的冲放电时间常数不一样。标准要求测试的是QP和AV。但由于扫描时间过长,一般摸底是用PK和QP测量。

第四节

下面的内容主要是讲述容性和感性耦合的机理。首先开始的是容性耦合!

这个图告诉我们,在电源里面两个分离的物体是有电容效应的,当有交流信号时,就会有电流流过。

在电源里面相对并有电压变化的物体是很多的,如漏极和次级;漏极和初级的L,N线等,它们都会引起电流流动,被LISN检测到就是EMI干扰。仿真的结果和实际是基本上相符的。

看不见的耦合-感性耦合,第一个图描述了两个电路,前面是个振荡电路,后面就是上面容性耦合的电路,看似两个电路不相干,但是由于距离比较近,两个电路会通过磁场耦合,就向一个变

压器一样,互感的公式如第二个图所示,随两个电路的距离增大而减小,随振荡电路面积(r为代表)的增大而增大。

第一幅图把上面的计算电感等效的变压器带入电路里面,第二幅图是测量和模拟的结果,可以看到互感的模型是很正确的,感性耦合确实向变压器一样。

这样的耦合在开关电源里面比比皆是,向反激里面的高压电容、变压器初级和开关管组成的环路,变压器初级嵌位电路形成的环路,次级整流管形成的环路。除了常见的这3个外其实还有很多,如初级、次级和Y电容组成的环路,变压器初级、初级和屏蔽层的电容及屏蔽层的电感组成的环路等。

容性耦合的一个例子:

这个例子是说漏极和输入的接线端有一个耦合,尽管电容很小(0.1pF),但由于漏极电压高,差模干扰还是会超过标准。

这个很容易理解。不再赘述。

容性耦合的另一个例子:

此处的例子是指漏极和地的电容,漏极虽然很小,但地很大,虽然传导并不要求屏蔽室,在实际的EMI测试中还是在一个屏蔽的屋子里面,这实际上加大了图中的Cs。同样由于电压高,假设C s很小,实际测试的干扰(实际为共模)也会超标。

根据以上的分析得出减少容性耦合的一个方法,就是减小高压点的面积,从而减小电容。

中间的图由于高压部分的面积大而被认为Wrong。其实最右边的图也不是很好,最好往左边靠。

此处介绍的PCB的布线规则。线的面积尽量小,当然要满足电流的要求,平衡走线,这样两线对高压点的电容是平衡的,容性干扰会对消。输入部分尽量远离MOS的漏极。漏极的面积尽量小。

感性耦合的例子:

开关电源纹波、噪音详解——这篇文章令你眼前一亮(民熔)

开关电源纹波、噪声浅谈 纹波与噪声 纹波 开关电源的输出并不是真正恒定的,输出存在着周期性的抖动,这些抖动看上去就和水纹一样,称为纹波。 纹波可以是电压或电流纹波。 通常用2个参数来描述纹波: 最大纹波电 压:纹波的峰峰值。 纹波系数:交流分量的有效值与直流分量之比。 纹波产生的原因 开关电源的纹波来自2个地方: 低频纹波:来自AC输入的周期,电源对输入的抑制比不是完美的,当输入变化,输出也会变化。 高频纹波:来自开关切换的周期,开关电源不是线性连续输出能量,而是将能量组成一个个包来传输,因此会存在和开关周期相对应的纹波。 如果是线性电源,是没有开关纹波的,只有低频纹波。 纹波与噪声

纹波是由于AC周期或开关周期引起的输出抖动,而噪声是随机耦合到输出上的高频信号,是不一样的。 恒流 LED恒流驱动 为什么照明用LED都是电流驱动? LED是二极管,而二极管的PN结的正向导通阻抗是负温度系数,随着温度的升高,二极管正向导通阻抗降低。 如果用恒压源驱动LED,随着LED工作,温度开始升高,温度升高后,正向导通阻抗降低,由于I=U/R,电流升高,且由于功率P=U*I,功率也增加,LED发热更厉害,进一步刺激温度升高,陷于恶性循环,直到LED损坏。 恒压源驱动时,温度和电路是一对正反馈。 所以照明LED都是恒流驱动,如果是非照明,LED几乎没有温升,此时可以用恒压驱动。 恒流精度 恒流精度和其他电影的恒压效果一样,体现在几个方面。 当负载发生变化时,电源输出的电流的恒定程度。 在实际应用时,多个不同的LED串不可能阻抗特性完全相同,将这些不同的负载接到电源上后,电流的误差就定义为恒流精度。 不光是多负载,同一个LED,温度不同时,阻抗特性也不同,不同温度下电流也是有误差的,但这和前面的条件本质还是一样,都是负载变化。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

开电源纹波噪声的产生及抑制

电源纹波噪声的产生及抑制 一、纹波 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。它主要有以下害处: 1.1.容易在用电器上产生谐波,而谐波会产生更多的危害; 1.2.降低了电源的效率; 1.3.较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 1.4.会干扰数字电路的逻辑关系,影响其正常工作; 1.5.会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 单位通常为:mV 例如: 一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV 就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 三、纹波的测试方法 3.1.以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面: 4.1.输入低频纹波; 4.2.高频纹波; 4.3.寄生参数引起的共模纹波噪声; 4.4.功率器件开关过程中产生的超高频谐振噪声;

4.5.闭环调节控制引起的纹波噪声。 4.1、输入低频纹波: 低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。 交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。 电流型控制DC/DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。要实现开关电源的低纹波输出,必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC/DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数。 △●电容上的纹波有两个成分,一个是充放电时的电压升降量,一个是电流进出电容时ESR上的I*R电压降量。 △●通过输出纹波与输出电容的关系式:vripple=Imax/(Co×f)可以看出,加大输出电容值可以减小纹波。 △●或者考虑采用并联的方式减小ESR值,或者使用LOW ESR电容。 b、采用前馈控制方法,降低低频纹波分量。 △●feed forward control(FFC)前馈控制是按照扰动产生校正作用的一种调节方式,主要用于一些纯滞后或容量滞后较大的被控参数的控制。 △●其目的是加速系统响应速度,改善系统的调节品质。 4.2、高频纹波: 高频纹波噪声来源于高频功率开关变换电路 在电路中,通过功率器件对输入直流电压进行高频开关变换后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关; 设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。高频纹波抑制常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,其纹波电流△I可由下式算 出: 可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。 b、加大输出高频滤波器,可以抑制输出高频纹波。 c、采用多级滤波。 一般滤波多采用C型、LC型、CLC型,为了更好的抑制纹波,可以采用增加多一级LC滤波。 4.3、寄生参数引起的共模纹波噪声: 由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生

开关电源的纹波和噪声测试方法

开关电源的纹波和噪声(图) 开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声

开关电源的纹波和噪声

开关电源的纹波和噪声 开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。

开关电源的纹波和噪声的控制问题

开关电源的纹波和噪声 时间:2009-09-07 09:10:59 来源:今日电子/21ic作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。 由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

开关电源纹波分析及抑制(精华)

主题: 开关电源纹波的产生与控制 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。电流型控制DC / DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC / DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。 b、采用前馈控制方法,降低低频纹波分量。 2、高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。 高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波 b、加大输出高频滤波器,可以抑制输出高频纹波。 C、采用多级滤波。 3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。 减小输出共模纹波噪声的常用方法: a、输出采用专门设计的EMI滤波器。 b、降低开关毛刺幅度。 4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器件结电容与线路寄生电感的谐振,频率一般为1-10MHz,通过选用软恢复特性二

如何降低电源纹波噪声的分析与应用

如何降低电源纹波噪声的分析与应用 一、什么叫纹波? 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量; 它主要有以下害处: 1、容易在用电器上产生谐波,而谐波会产生更多的危害; 2、降低了电源的效率; 3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 4、会干扰数字电路的逻辑关系,影响其正常工作; 5、会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压 =10mv/12V=0.12 %; 三、纹波的测试方法 以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关

反激式开关电源设计

反激式开关电源设计

反激式开关电源变压器设计 2011年04月25日来源:网络 [责任编辑:wangpan] 中心议题: * 反激式开关电源变压器的设计步骤 解决方案: * 选定原边感应电压V * 确实原边电流波形的参数 * 选定变压器磁芯 * 计算变压器的原边匝数 * 确定次级绕组的参数,圈数和线径 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电

压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOFF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(80+90)=0.47 第二步,确实原边电流波形的参数。 原边电流波形有三个参数,平均电流,有效值电流,峰值电流。首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊。这是一个梯形波横向表示时间,纵向表示电流大小,这

关于开关电源输出纹波问题

关于开关电源输出纹波问题 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关.电容的容量不可能无限制地增加,导致输出低频纹 波的残留.交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC 变换器的变比和控制系统的增益决定.电流型控制DC / DC变换器的纹波抑制比电压型稍有提高.但其输出端的低频交流纹波仍较大.若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施.可采用前级预稳压和增大DC / DC变换器闭环增益来消除. 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标. b、采用前馈控制方法,降低低频纹波分量. 2、高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频 开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求. 高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波 b、加大输出高频滤波器,可以抑制输出高频纹波. C、采用多级滤波. 3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩 形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声.减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声. 减小输出共模纹波噪声的常用方法: a、输出采用专门设计的EMI滤波器. b、降低开关毛刺幅度. 4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器 件结电容与线路寄生电感的谐振,频率一般为1-10MHz,通过选用软恢复特性二极管、结电容小的开关管和减少布线长度等措施可以减少超高频谐振噪声. 开关电源都需对输出电压进行闭环控制,调节器参数设计的不适当也会引起纹波.当输出端波动时通过反馈网络进入调节器回路,可能导致调节器的自激振荡,引起附加纹波.此纹波电压一般没有固定的频率. 在开关直流电源中,往往因调节器参数选择不适当会引起输出纹波的增大. 这部分纹波可通过以下方法进行抑制: a、在调节器输出增加对地的补偿网络,调节器的补偿可抑制调节器自激引起的纹波增大. b、合理选择闭环调节器的开环放大倍数和闭环调节器的参数,开环放大倍数过大有时会引起调节 器的振荡或自激,使输出纹彼含量增加,过小的开环放大倍数使输出电压稳定性变差及纹波含量增加. 所以调节器的开环放大倍数及闭环调节器的参数要合理选取,调试中要根据负载状况进行调节. c、在反馈通道中不增加纯滞后滤波环节.使延时滞后降到最小.以增加闭环调节的快速性和 及时性,对抑制输出电压纹波是有益的.

开关电源噪声及纹波产生原因和测量方法

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。 由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装 置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。

RCC开关电源设计详细讲解39308

目录 摘要 ABSTRACT 绪论 第一章.RCC电路基础简介 1.1RCC电路工作原理 1.2RCC电路的稳压问题 1.3RCC电路占空比的计算 1.4RCC电路振荡频率的计算 1.5RCC电路变压器的设计 第二章.简易RCC基极驱动的缺点及改进设计 2.1 简易RCC电路的缺点 2.2 开关晶体管恒流驱动的设计 第三章.RCC电路的建模及仿真 3.1 RCC电路的建模及参数设计 3.1.1 主要技术指标 3.1.2 变压器的设计 3.1.3 电压控制电路的设计

3.1.4 驱动电路的设计 3.1.5 副边电容、二极管参数的设计 3.1.6 其他辅助电路的设计 3.2 RCC电路的仿真 3.2.1 RCC电路带额定负载时的仿真及设计标准的验证 3.2.2 RCC电路带轻载时的仿真 3.3 RCC电路的改进及改进后的仿真 3.3.1 RCC电路的恒流设计 3.3.2带有恒流源的RCC电路的仿真 第四章RCC电路间歇振荡的应用实例 4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究 摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大范围内变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。 Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

开关电源产生纹波和噪声的原因和测量方法

开关电源产生纹波和噪声的原因和测量方法 关键字:噪声纹波开关电源 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。 由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。 用示波器测量纹波和噪声的装置的框图如图2所示。它由被测开关电源、负载、示波器及测量连线组成。有的测量装置中还焊上电感或电容、电阻等元件。

开关电源中干扰噪声引起的纹波问题的解决

开关电源中干扰噪声引起的纹波问题的解决 最近遇到一个电源干扰噪声引起的输出纹波问题,输出波形表现为变压器次级输出的电压波形,开关噪声出现的频率为fs,2fs,0.5fs,显然是开关噪声被传到了次级。噪声的幅度有1Vpp,经过pi滤波之后仍然有300mVpp。一开始我直接使用每个人都会想到的改善滤波参数的方法,增加pi滤波的滤波电容以及滤波电感,但是收效甚微。由于知道是干扰噪声,我再次尝试在变压器次级并上一个小的瓷片电容680pf滤出干扰,然后再pi滤波,这样情况有所改善,干扰被瓷片吸收了很大一部分,反馈主路输出噪声pp值为80mVpp左右,似乎问题解决了,但是瓷片由于吸收了过多的噪声,产生了很尖锐的音频噪声。测量开关的最小占空比在0.2左右,应该不会引起过大的振荡或不稳定。看来光靠吸收是很难达到要求的了。 于是决定从源头出发,首先是要观察pwm控制的驱动信号,但是由于使用top244整合mos管,无法测量mos栅极波形,但是测量DS波形,观察开关波形,发现开关打开和关断并没有太大的延时,而且边沿没有高频振荡尖峰。 接下来只有怀疑loop不稳定了,我采用的是齐纳二极管稳压方式。首先我假设loop存在不稳定,于是我用调压器改变输入电压,观察输出波形,电压还是比较稳的。 当我把控制芯片端光耦的集电极的电阻100换成磁珠B62后,发现这次音频干扰变得很小,在最小输入42vac时也基本上没有听到了,这给了我信心! 既然知道是loop的问题,我就怀疑是loop的频带太窄了,按照pi的设计,我改变芯片control端并的“47uF串6.8欧姆”电路参数,这给loop提供补偿一个零点和极点,加大6.8欧姆的阻值,可以把零点带到更低的频率,从而提高频带范围。于是我把6.8欧姆改到20欧姆,再次试验发现输出pp值在30mVpp 左右!音频干扰也很小! 总结:到现在为止我意识到的减小干扰,提高纹波性能的方法: 1.pi滤波,需要合适的参数; 2.变压器输出并瓷片电容吸收高频干扰,但是吸收的量不能太大,不然瓷片会产生压电效应,影响音频干扰; 3.在变压器输出,整流二极管前串一个非晶磁珠,非晶对干扰吸收非常有效,但是在小电流时效果没有大电流明显; 4.在环路loop的输入或输出串小型磁珠,吸收高频噪声,减小高频噪声被loop 放大的量,从而避免噪声振荡放大。但是会使得环路响应变慢; 5.有些情况,MOS管驱动不合适,会产生边沿尖峰,这样会使得次级存在大尖峰,影响EMI,可以的话,在栅极串一个合适阻值的小电阻是必要的,过小的阻值会

反激式开关电源设计与考试步骤精

反激式开关电源设计与测试步骤(精)

————————————————————————————————作者:————————————————————————————————日期:

初次设计反激电源式电源步骤 准备 在初次设计电源之前,应确保电源所采用的印刷电路板符合Power Integrations器件数据手册中指定的布局指南。如果在实验用面包板或原始样板上搭建设计的电路,会引入很多寄生元件,这样会影响电源的正常工作。而且,许多实验用面包板都无法承载开关电源所产生的电流水平,并可能因而受损。此外,在这些电路板上非常难以控制爬电距离和电气间隙。 所需设备 在本课程中,您将用到以下设备: 1.一个隔离式交流电源供应器或一个自耦变压器 2.一个瓦特表 3.至少四个数字万用表,其中两个具有高精度电流量程 4.一个带有高压探针的示波器 5.一个电流探针 6. 还有您的实际负载 第1章:术语 本课中将频繁使用的两个术语是“稳压”和“自动重启动”。当电源处于稳压状态时,控制器持续接收反馈,所有输出电压均保持稳定不变,并处于指定的容差限值内。自动重启动是Power Integrations器件中内置的一种保护模式。 处于稳压状态的输出 自动重启动 在工作期间,如果所消耗的功率大于电源所能提供的功率限值,或者在启动后,电源的输出电压在指定的时间内不能达到稳压,Power Integrations器件将进入自动重启动保护模式。这种设计通过限制电源在故障情况下提供的平均功率,可防止元件受损。有关特定的自动重启动导通时间,请参见相关的Power Integrations器件数据手册。 在测试期间,如果发现电源性能与本课程中所描述的情况不符,或者表现出任何异常特征,请停止测试程序,并参照其他PI大学故障诊断课程中的内容排查问题,或者联系当地PI代表解决问题。 第2章:设计信息

纹波的抑制方法

纹波的抑制方法 [摘要]开关电源因具有效率高,输出电压可调范围大、损耗小、体积小、重量轻而得到了广泛的应用。但开关电源体积小,输出直流电压的纹波含量比同功率线性电源大,如何降低纹波含量成为开关电源应用中的一个关键技术难点,本文阐述开关电源纹波产生的原因和通常的解决方法,具体介绍了开关电源设计中降低输出纹波所采用的一系列措施,并对其有效性进行了理论分析。 关键词开关电源;纹波;噪声 一、开关电源的概念 习惯上,高频开关整流AC-DC和DC-DC变换器被称作开关电源。由于其高工作频率,带来了设备的体积和重量的减小。由于开关电源的变换效率高,能量损耗减少,降低了电源环境温度,改善了工作人员的环境。工作性能的提高。相对于相控电源来说,开关电源不仅节省能源,也节省了材料和体积。 开关电源产品主要应用领域有计算机、通信办公设备、控制设备、电子仪器、电视、摄像机、电子游戏机等产品。在电脑、电子仪器和通信系统中应用极为广泛的开关电源,在近半个世纪的发展过程中,因具有轻、小、高效等优点而逐渐取代传统的线性电源和相控电源,成为电子电源中的主流产品。 开关电源发展中一个永恒的主题是实现电源的高频率、高效率、小体积、低成本。高工作频率,可以提高动态响应,也是减少体积和重量的重要途径;高效率,减少热损耗,实现高功率密度;小体积,减少变压器,电感和电容的体积,同时还要兼顾高可靠性和低成本。 二、开关电源纹波产生的机理和解决方案 1、纹波产生的机理 常规AC/DC,关电源的工作模式是把电网电压全波整流变为直流电,经高频开关变换由开关变压器隔离并升、降压,经高频二极管整流滤波后以直流电输出。开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声。 低频纹波 低频纹波是与输出电路的滤波电容容量相关。由于开关电源体积的限制,电解电容的容量不可能无限制地增加,导致输出低频纹波的残留,该输出纹波频率随整流电路方式的不同而不同。 一般的开关电源由AC/DC和DC/DC两部分组成。AC/DC的基本结构为整流滤波电路,它输出的直流电压中含有交流低频纹波,其频率为输入交流电源频率的二倍,幅值与电源输出功率及滤波电容容量有关,一般控制在10%以内。该交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。例如:对普通24V电源来说,电压型控制DC/DC变换器的纹波抑制比一般为45~50dB,其输出端的低频交流纹波有效值为60~120mV。电流型控制DC/DC变换器的纹波抑制比稍有提高,但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC/DC变换器闭环增益来消除。 高频纹波 高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有

开关电源噪声和纹波测试

示波器相关问题“一周一问”之十,十一—— (2011年10月23日更新) 测试电源纹波和噪声的时候,选择20MHZ的带宽是为了测试电源自身是否满足要求,对于电源这种低频信号而言,20MHZ带宽已经足够了。有一疑问:为什么不在示波器上选择全带宽?选择全带宽是怕受到高频信号的干扰,而无法测试出电源本身的问题?但是电源对于电路板而言很重要,如果高频信号也对此有大的干扰,那么电路板就不能正常工作,是不是也应当测试高频信号对电源的干扰? 我个人认为,为了准确的测量电源纹波信号,就需要把直流以上的噪声完全测试出来,所以不进行带宽限制是最好的,不知道我这个观点是否正确?我的问题的出发点就是想尽量准确的把IC端电源噪声测量出来。如果来一个20M的带宽限制,其测试到的结果明显偏小,就反应不了真实的情况。此时,很有可能随着IC的门电路的翻转,电源上有20M以上,且幅度比较大的噪声存在,这个噪声有可能使IC的输出特性变差。如果我测不到这个噪声,我就可能无法找出合适的电容来把这个噪声滤掉,从而不能解决电源噪声引起的问题。不知我的这个理解是否正确? 选择20M的目的只是要将纹波测试出来,这个是电源的指标。但是对于单板来讲,测试电压的纹波还是需要使用全带宽去测试,验证单板电源的稳定性。 因为电源的纹波和噪声主要来自开关管,而电源的开关管工作在40多KHz,所以选择20MHz的带宽来测试。 扰在电路板中主要指的是EMI问题,从能量的角度考虑,电源的能量是最强的,它可以产生很强的磁场,对其它信号的干扰最大,而高频信号的电压一般在700mv左右,且信号能产生的磁场很弱,相对于电源而言,对电源的影响很小,可以不计。

开关电源的纹波噪声的产生和测试方法

开关电源的纹波噪声的产生和测试方法随着电子技术的发展,开关电源在向着小体积、高功率密度方面发展,这就要求电源的开关频率更一步提高,从而导致电源在开关动作时产生较高的噪声干扰。由于目前还没有测试开关电源纹波和噪声的工业标准,测试结构和方法的不同会导致严重的错误和混淆。 1.开关电源纹波噪声产生的原因 开关电源输出的不是纯正的直流电压,里面含有交流成分,这就是纹波和噪声。噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 图1纹波噪声波形 如上图1所示,纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍(上面叠加了很多高频谐波分量)。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压。 2、纹波和噪声的测试 在开关电源纹波和噪声的测试时首先应先确保示波器获得极少的高频成分,由于高频成分可由示波器的探头地形成的地线环放大,这就意味着示波器探头的地线可能在不正确的线路时导致几百毫伏的噪声尖峰。通常客户在对电源纹波噪声测试时直接将示波器探头地线夹在开关电源地线上,另一端直接接在正输出电压端,这是一种不正确的方法,因为探头的地线夹获取了辐射噪声,示波器探头的地线构成的环路像天线一样工作,从而引入了并放大了外界的噪声干扰。所以必须采用正确的测试方法得到开关电源实际的纹波噪声。为了防止高频噪声通过示波器探头影响测试结果,在进行纹波噪声测试时先将示波器带宽设置为20MHz。目前业内对纹波噪声的测试方法主要有邮电部推荐的双绞线测试法和贝尔实验室推荐的平行线测试法。 2.1双绞线测试法

图2双绞线测试法 如图3所示双绞线测试法,采用300mm(12英寸)长、#16AWG线规组成的双绞线与被测开关电源的+OUT及-OUT连接,在+OUT与-OUT之间接上阻性假负载。在双绞线末端接一个4TμF电解电容(钽电容)后输入带宽为20MHz 的示波器。在测量点连接时,一端要接在+OUT上,另一端接到地平面端。2.2平行线测试法 图3平行线测试法 平行线测试法如图3所示。C1是多层陶瓷电容(MLCC),容量为1μF,C2是钽电解电容或铝电解电容,容量是10μF。两条平行铜箔带的电压降之和小于输出电压值的2%。该测量方法与实际工作环境比较接近。 在对纹波噪声测试中,外界环境及测试方法对结果的影响是比较大的,所以应按照开关电源厂商给出的测试方法进行测试,但在开关电源的应用中,由于系统对纹波噪声的不同要求,在某些场合下需要很小纹波噪声的开关电源,应用时应根据实际需求对电源的纹波噪声进行抑制,一般情况可在电源的输入输出端加Π型滤波电路抑制纹波噪声。

相关主题
文本预览
相关文档 最新文档