当前位置:文档之家› 2020年高考文科数学新课标第一轮总复习练习:8_3圆的方程

2020年高考文科数学新课标第一轮总复习练习:8_3圆的方程

2020年高考文科数学新课标第一轮总复习练习:8_3圆的方程
2020年高考文科数学新课标第一轮总复习练习:8_3圆的方程

课时规范练

A 组 基础对点练

1.(2018·合肥质检)已知圆C :(x -6)2+(y +8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( C ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y +4)2=25 D .(x +3)2+(y -4)2=25

2.直线x -2y -2k =0与直线2x -3y -k =0的交点在圆x 2+y 2=9的外部,则k 的取值范围为( A ) A .k <-35或k >35 B.-35

D.k <-34或k >34

3.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( A ) A .(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4

D.(x +2)2+(y -1)2=1

4.已知圆x 2+y 2-4ax +2by +b 2=0(a >0,b >0)关于直线x -y -1=0对称,则ab 的最大值是( B ) A.12 B.18 C.14

D.24

5.(2016·高考天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为45

5,则圆C 的方程为__(x -2)2+y 2=9__. 6.(2016·高考浙江卷)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是__(-2,-4)__,半径是__5__.

7.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为__x 2+(y -1)2=1__.

8.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,

当∠ACB 最小时,直线l 的方程是__x +y -3=0__.

9.在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C . (1)求圆C 的方程;

(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.

解析:(1)设圆的方程为x 2+y 2+Dx +Ey +F =0,函数f (x )=x 2-x -6的图象与两坐标轴交点为(0,-6),(-2,0),(3,0),由????

?

36-6E +F =0,4-2D +F =0,

9+3D +F =0,

解得????

?

D =-1,

E =5,

F =-6,

所以圆的方程为x 2+y 2-x +5y -6=0.

(2)由(1)知圆心坐标为? ????1

2,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-5

2=-2,即直线l 的方程为x +y +2=0.综上可得,直线l 的方程为5x +y =0或x +y +2=0. 10.(2018·广州测试)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;

(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k .当k 1k 2=3时,求k 的取值范围. 解析:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以

(x -2)2+y 2=2

(x -1)2+y 2,

整理得x 2+y 2=2.

所以动点P 的轨迹C 的方程为x 2+y 2=2.

(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .

由?????

x 2+y 2=2,y =kx +b

消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2

.②

由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+b

x 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2,

即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④

由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >3

3.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,

所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦

由⑤⑥⑦,得k 的取值范围为[-3,-1)∪? ????-1,-33∪? ??

??3

3,1∪(1,3].

B 组 能力提升练

1.(2018·贵阳监测)经过三点A (-1,0),B (3,0),C (1,2)的圆的面积S =( D ) A .π B.2π C .3π

D.4π

解析:法一 设圆的方程为x 2+y 2+Dx +Ey +F =0,将A (-1,0),B (3,0),C (1,2)的坐标代入圆的方程可得????

?

1-D +F =0,9+3D +F =0,

1+4+D +2E +F =0,

解得D =-2,E =0,F =

-3,所以圆的方程为(x-1)2+y2=4,所以圆的半径r=2,所以S=4π.故选D. 法二根据A,B两点的坐标特征可知圆心在直线x=1上,设圆心坐标为(1,a),则r=4+a2=|a-2|,所以a=0,r=2,所以S=4π,故选D.

2.圆C的圆心在y轴正半轴上,且与x轴相切,被双曲线x2-y2

3=1的渐近线

截得的弦长为3,则圆C的方程为(A)

A.x2+(y-1)2=1 B.x2+(y-3)2=3

C.x2+(y+1)2=1 D.x2+(y+3)2=3

解析:依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C的圆心坐标是(0,1)、半径是1,因此其方程是x2+(y-1)2=1,故选A.

3.方程|y|-1=1-(x-1)2表示的曲线是(D)

A.一个椭圆 B.一个圆

C.两个圆 D.两个半圆

解析:由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=1-(x-1)2表示的曲线是两个半圆,故选D.

4.已知圆M的圆心在抛物线x2=4y上,且⊙M与y轴及抛物线的准线都相切,则圆M的方程是(A)

A.x2+y2±4x-2y+1=0

B.x2+y2±4x-2y-1=0

C.x2+y2±4x-2y+4=0

D.x2+y2±4x-2y-4=0

解析:抛物线x 2=4y 的准线为y =-1,设圆心M 的坐标为(x 0,y 0)(y 0>0),则|x 0|

=y 0+1,又x 20=4y 0,

所以联立?????

|x 0|=y 0+1,

x 20=4y 0,

解得?????

x 0=±

2,y 0=1,

因此圆M 的方程

为(x ±2)2+(y -1)2=22,展开整理得x 2+y 2±4x -2y +1=0,故选A.

5.已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( D ) A .x 2+y 2=1 B .x 2+y 2=4 C .x 2+y 2=4

D .x 2+y 2=1或x 2+y 2=37 解析:如图,

易知AC 所在直线的方程为x +2y -4=0.

点O 到直线x +2y -4=0的距离d =|-4|5=45

5>1,OA =

(-2)2+32=13,

OB =

(-2)2+(-1)2=5,OC =

62+(-1)2=37,

∴以原点为圆心的圆若与△ABC 有唯一的公共点,则公共点为(0,-1)或(6,-1), ∴圆的半径为1或37,

则该圆的方程为x 2+y 2=1或x 2+y 2=37.故选D.

6.一个圆经过椭圆x 216+y 2

4=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 ? ??

??x -322+y 2=25

4 .

解析:由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),

其中a >0,由4-a =

a 2

+4,解得a =32,所以该圆的标准方程为? ??

??x -322+y 2=25

4.

7.已知平面区域???

x ≥0,

y ≥0,

x +2y -4≤0

恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2

及其内部所覆盖,则圆C 的方程为__(x -2)2+(y -1)2=5__.

解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,∴覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |

2=5,因此圆C 的方程为(x -2)2+(y -1)2=5.

8.在平面直角坐标系xOy 中,以点(2,1)为圆心且与直线mx +y -2m =0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__(x -2)2+(y -1)2=1__. 解析:直线mx +y -2m =0过定点(2,0),则以点(2,1)为圆心且与直线mx +y -2m =0(m ∈R )相切的所有圆中,半径最大的圆的半径为1,∴半径最大的圆的标准方程为(x -2)2+(y -1)2=1.

9.直线l :x 4+y

3=1与x 轴、y 轴分别相交于A ,B 两点,O 为坐标原点,则△OAB 内切圆的方程为__(x -1)2+(y -1)2=1__.

解析:由题意设△OAB 的内切圆的圆心为M (m ,m ),则半径为|m |. 直线l 的方程x 4+y

3=1可化为3x +4y -12=0,

由题意可得|3m +4m -12|

32+42=m ,解得m =1或m =6(不符合题意,舍去).

∴△OAB 内切圆的方程为(x -1)2+(y -1)2=1.

10.如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.

(1)圆C的标准方程为(x-1)2+(y-2)2=2;

(2)圆C在点B处的切线在x轴上的截距为-2-1.

解析:(1)过点C作CM⊥AB于M,连接AC(图略),则|CM|=|OT|=1,|AM|=1

2|AB|

=1,所以圆的半径r=|AC|=|CM|2+|AM|2=2,从而圆心C(1,2),即圆的标准方程为(x-1)2+(y-2)2=2.

(2)令x=0得,y=2±1,则B(0,2+1),

所以直线BC的斜率为k=(2+1)-2

0-1

=-1.

由直线与圆相切的性质知,圆C在点B处的切线的斜率为1,

则圆C在点B处的切线方程为y-(2+1)=1×(x-0),即y=x+2+1.令y=0得,x=-2-1,

故所求切线在x轴上的截距为-2-1.

11.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3.

(1)求圆心P的轨迹方程;

(2)若点P到直线y=x的距离为

2

2,求圆P的方程.

解析:(1)设P(x,y),圆P的半径为r.

由题意可得y2+2=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.

(2)设P (x 0,y 0).由已知得|x 0-y 0|2=2

2.

又P 点在双曲线y 2-x 2=1上, 从而得?????

|x 0-y 0|=1,y 20-x 20=1.

由????? x 0-y 0=1,y 20-x 20=1得?????

x 0=0,y 0=-1.

此时,圆P 的半径r = 3. 由????? x 0-y 0=-1,y 20-x 20=1得?????

x 0=0,y 0=1.

此时,圆P 的半径r = 3.

∴圆的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.

12.(2018·重庆六校联考)已知定点Q (3,0),P 为圆N :(x +3)2+y 2=24上任意一点,线段QP 的垂直平分线交NP 于点M . (1)当P 点在圆周上运动时,求点M 的轨迹C 的方程;

(2)若直线l 与曲线C 交于A ,B 两点,且OA →·OB →=0(O 为坐标原点),证明直线l 与某个定圆相切,并求出定圆的方程.

解析:(1)连接MQ ,依题意可得圆N 的圆心N (-3,0),半径为26,|MP |=|MQ |, 则|MN |+|MQ |=|MN |+|MP |=|NP |=26>23=|NQ |,

根据椭圆的定义,得点M 的轨迹是以N ,Q 为焦点,长轴的长为26的椭圆, 即2a =26,2c =23,所以b =

a 2-c 2= 3.

所以点M 的轨迹C 的方程为x 26+y 2

3=1.

(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),

联立直线与椭圆的方程?????

x 2+2y 2=6,

y =kx +m ,

消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-6=0, 由Δ=16k 2m 2-4(1+2k 2)(2m 2-6)>0,得m 2<6k 2+3.①

由根与系数的关系得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-6

1+2k 2

,所以y 1y 2=(kx 1+m )(kx 2+m )=m 2-6k 2

1+2k 2

.

因为OA →·OB →

=0,所以x 1x 2+y 1y 2=0,即2m 2-61+2k 2+m 2-6k 21+2k

2

=0, 整理得m 2=2k 2+2,满足①式, 所以

|m |k 2

+1

=2,即原点到直线的距离为2,

所以直线l 与圆x 2+y 2=2相切. 当直线l 的斜率不存在时,

设直线l 的方程为x =t (-6

?

???

t ,

6-t 22,B ?

??

??

t ,-6-t 22. 因为OA →·OB →=0,所以t 2

-3+t 22=0?t =±2.

此时直线l 的方程为x =±2,显然也与圆x 2+y 2=2相切. 综上,直线l 与定圆相切,且定圆的方程为x 2+y 2=2.

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

圆与方程基础练习题.

直线与圆的方程练习题 1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( ) A 、(1,-1) B 、(21,-1) C 、(-1,2) D 、(-2 1,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( ) A .(x -3)2+(y+1)2=4 B .(x -1)2+(y -1)2=4 C .(x+3)2+(y -1)2=4 D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是( ) A 、以(a,b)为圆心的圆 B 、点(a,b) C 、(-a,-b)为圆心的圆 D 、点(-a,-b) 4.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为( ) A .x+y+3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y+7=0 5.方程 052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<m 6.圆x 2+y 2+x -y -32 =0的半径是( )A .1 B . 2 C .2 D .2 2 7.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2 -4y =0的位置关系是( )A .外离 B .相交C .外切 D .内切 8.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4 B .3 C .2 D .1 9.设直线过点(a,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( )A .± 2 B .±2C.±2 2 D .±4 10.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0 D .x 2+y 2-2x -4y =0 11.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( ) A .6 B .4 C .3 D .2 12.已知三点A(1,0),B(0,3),C(2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53 B .213C .253 D .43 13.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0 14.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 15.若直线ax+by+c=0在第一、二、四象限,则有( ) A 、ac>0,bc>0 B 、ac>0,bc<0 C 、ac<0,bc>0 D 、ac<0,bc<0 16.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

圆与方程测试题及答案

圆与方程测试题 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(). A.5B.5 C.25 D.10 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是(). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为(). A.0或2 B.2 C.2D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是(). A.8 B.6 C.62D.43 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为(). A.内切B.相交C.外切D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有(). A.4条B.3条C.2条D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于y oz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是(). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是(). A.243B.221C.9 D.86 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为. 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为. 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是. 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值. 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为. 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

(完整版)高中数学必修2圆的方程练习题(基础训练).doc

专题:直线与圆 1.圆 C1 : x2+ y2+ 2x+ 8y- 8=0 与圆 C2 : x2+ y2- 4x+4y- 2= 0 的位置关系是 ( ) . A .相交B.外切C.内切D.相离 2.两圆 x2+ y2-4x+ 2y+ 1= 0 与 x2+ y2+ 4x-4y- 1= 0 的公共切线有 ( ) . A.1 条B.2 条C.3 条D.4 条 3.若圆 C 与圆 ( x+ 2) 2+ ( y- 1) 2= 1 关于原点对称,则圆 C 的方程是 ( ) . A . ( x- 2) 2+ ( y+ 1) 2= 1 B. ( x- 2) 2+ ( y- 1) 2=1 C. ( x- 1) 2+ ( y+ 2) 2= 1 D.( x+ 1) 2+ ( y- 2) 2= 1 4.与直线 l : y= 2x+ 3 平行,且与圆x2+ y2-2x- 4y+ 4=0 相切的直线方程是 ( ) . A . x- y± 5 = 0 B. 2x- y+ 5 = 0 C. 2x- y- 5 = 0 D.2x- y± 5 = 0 5.直线 x- y+ 4= 0 被圆 x2+ y2+ 4x-4y+ 6= 0 截得的弦长等于 ( ) . A . 2 B. 2 C.2 2 D. 4 2 6.一圆过圆 x2+ y2- 2x=0 与直线 x+ 2y- 3=0 的交点,且圆心在y 轴上,则这个圆的方程是( ) . A . x2+ y2+4y- 6= 0 B. x2+ y2+ 4x- 6= 0 C. x2+ y2- 2y= 0 D. x2+ y2+ 4y+ 6= 0 7.圆 x2+ y2- 4x-4y- 10= 0 上的点到直线 x+y- 14= 0 的最大距离与最小距离的差是( ) . A.30 B. 18 C.6 2 D. 5 2 8.两圆 ( x- a) 2+ ( y-b) 2= r 2和 ( x- b) 2+( y- a) 2= r 2相切,则 ( ) . A . ( a- b) 2= r2 B. ( a- b) 2= 2r2 C. ( a+ b) 2= r 2 D.( a+ b) 2= 2r 2 9.若直线 3x- y+ c= 0,向右平移 1 个单位长度再向下平移 1 个单位,平移后与圆 x2+ y2= 10相切,则 c 的值为 ( ) .A.14 或- 6 B.12 或- 8 C.8 或- 12 D.6 或- 14 10.设 A( 3,3,1) ,B( 1,0,5) ,C( 0,1,0),则 AB 的中点 M 到点 C 的距离 | CM| =( ) . 53 B.53 53 D. 13 A .C. 2 4 2 2 11.若直线 3x- 4y+ 12= 0 与两坐标轴的交点为A,B,则以线段AB 为直径的圆的一般方程为____________________. 12.已知直线x= a 与圆 ( x- 1) 2+y2= 1 相切,则a 的值是 _________. 13.直线 x= 0 被圆 x2+ y2― 6x― 2y―15= 0 所截得的弦长为_________. 14.若 A( 4,- 7, 1) ,B( 6, 2, z) , | AB| = 11,则 z= _______________ . 15.已知 P 是直线 3x+ 4y+ 8= 0 上的动点, PA,PB 是圆 ( x- 1) 2+ ( y- 1) 2= 1 的两条切线, A, B 是切点, C 是圆心,则四边形PACB 面积的最小值为. 三、解答题 16.求下列各圆的标准方程: ( 1) 圆心在直线y=0 上,且圆过两点A( 1, 4) , B( 3, 2) ; ( 2) 圆心在直线2x+ y=0 上,且圆与直线x+y- 1= 0 切于点 M( 2,- 1) .

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

圆的方程测试题及答案

圆的方程专项测试题 一、选择题 1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( ) <a <7 <a <4 <a <3 <a <19 2.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) 个 个 个 个 3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1) D.(2 +2,2-3) 4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A. 2 2 B .1 C.2 5.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .2 1± B .22± C .2221-或 D .2221或- 6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) B.4 2 2 7.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=2 9.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1 B.|a |< 5 1 C.|a |< 12 1 D.|a |< 13 1 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) =0,且A=C≠0 =1且D 2+E 2-4AF >0 =0且A=C≠0,D 2+E 2-4AF≥0 =0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.( 3 14 ,5) B.(5,1) C.(0,0) D.(5,-1) 12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) 5 1 <k <-1 5 1 <k <1

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

圆与方程单元测试题及答案

第四章单元测试题 (时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0

圆与方程基础练习测试题

精心整理 直线与圆的方程练习题 1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是() A 、(1,-1) B 、(21,-1) C 、(-1,2) D 、(-2 1,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为() A .(x -3)2+(y+1)2=4 B .(x -1)2+(y -1)2=4 C .(x+3)2+(y -1)2=4 D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是() A 、以 4.两圆A .5.方程 A . 41<6.圆x 27.圆O 1D .内 切 8.圆x 22D .1 9.±2 D .±4 10.当程为( A .4y =0 11.设P ( ) A .12.已知三点A(1,0),B(0,),C(2 ,),则△ABC 外接圆的圆心到原点的距离为( )A .B .C . D . 13.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0 14.圆22220x y x y +-+=的周长是()A . B .2π C D .4π 15.若直线ax+by+c=0在第一、二、四象限,则有() A 、ac>0,bc>0 B 、ac>0,bc<0 C 、ac<0,bc>0 D 、ac<0,bc<0 16.点(1,2-a a )在圆x 2+y 2 -2y -4=0的内部,则a 的取值范围是()

第四章圆与方程单元测试题及答案

第四章《圆与方程》单元测试题 (时间:60分钟,满分:100分) 班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为 (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2 3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( ) A 、相切 B 、相交 C 、相离 D 、相切或相交

最新高中数学-必修二-圆与方程-经典例题--整理

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(22=-++y x (C)9)1()2(22=++-y x (D)9)1()2(22=-++y x 二、位置关系问题 例2 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+ 三、切线问题 例3 (06重庆卷理) 过坐标原点且与圆02 52422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31= (B)x y 3=或x y 3 1-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31= 四、弦长问题 例4设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a . 五、夹角问题 例5 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( ) (A)21 (B)5 3 (C)23 (D) 0 六、圆心角问题 例6 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k . 七、最值问题 例7 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( ) (A) 30 (B) 18 (C)26 (D)25 八、综合问题 例8 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) (A)]4,12[ π π (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

圆的方程经典例题

高中数学圆的方程典型例题 (1 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系: 当 ,点在圆外 当 ,点在圆上 当 ,点在圆内 (2当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 1.若过点P(a,a)可作圆x 2+y 2-2ax+a 2+2a-3=0的两条切线,则实数a 的取值范围是 . 2.圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( ) A .(-∞,4) B .(-∞,0) C .(-4,+∞) D .(4,+∞) 3. 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关 4. 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程. 5. 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

6.已知直线l :x+y-2=0和圆C:x 2+y 2-12x-12y+54=0,则与直线l 和圆C 都相切且半径最小的圆的标准方程是 . 7、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 8.已知点P(2,2),点M 是圆O 1:x 2+(y-1)2=上的动点,点N 是圆O 2:(x-2)2+y 2=上的动点,则|PN|-|PM|的最大值是 ( ) A.-1 B.-2 类型二:直线与圆的位置关系 直线与圆的位置关系有 三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++= ,则有 k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程 1、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系. 2:直线1=+y x 与圆)0(022 2>=-+a ay y x 没有公共点,则a 的取值范围是 3:若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 . 4.圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 .

相关主题
文本预览
相关文档 最新文档