当前位置:文档之家› 海岸工程学复习

海岸工程学复习

海岸工程学复习
海岸工程学复习

第一章 绪论

一、海岸线、海岸带与海岸

1、海岸线:海洋与陆地的交界线称为海岸线。

2、海岸带:海岸线两侧具有一定宽度的条形地带称为海岸带。海岸带的宽度各国规定不尽相同,我国规定:一般岸段自海岸线向陆地延伸10km 左右;向海扩展到10-15m 等深线。 海岸带组成:潮上带、潮间带和潮下带。位于高潮位之上的区域为潮上带(38%),位于高潮位和低潮位之间的区域称为潮间带(7%),位于低潮位以下的区域为潮下带(55%) 二、海岸类型:基岩海岸、砂砾质海岸、淤泥质海岸、生物海岸

1、基岩海岸

定义:一般是陆地山脉或丘陵延伸与海面相交,经过波浪作用形成的海岸。

2、砂砾质海岸

定义:又称堆积海岸,主要是平原的堆积物被搬运到海岸边,再经波浪或风的改造堆积形成。

3、淤泥质海岸

定义:主要由江河携带入海的大量细颗粒泥沙,在波浪和潮流的作用下输运沉积形成。 4 、生物海岸

生物海岸包括红树林海岸和珊瑚礁海岸。红树林海岸由红树植物与淤泥质潮滩组合而成;珊瑚礁海岸由热带造礁珊瑚虫遗骸聚积而成。 我国海岸带的环境特征:1、灾害性天气频繁2、大陆与海洋作用强烈-陆相:泥沙;海相:风浪、海啸3、人类活动影响显著:径流和入海泥沙 海岸线冲淤变化的影响因素

1.长期因素:海平面上升影响或地面沉降引起岸线蚀退。

2.短期因素:波浪、沿岸流、潮流、人类活动等

四、海岸带开发与海岸工程

(1)海岸防护工程 作用:保护沿海城镇、农田、盐场和岸滩,防止风暴潮的泛滥淹没,抵御波浪、水流的侵袭与淘刷。分类:海堤(或海塘)、护岸、丁坝和保滩工程

第二章 海岸动力因素

第一节 波浪

一、波浪

1、波浪要素:波峰(谷)、波长、周期、波速(波型传播的速度)、波高(相邻波峰和波谷的垂直距离)、振幅、波陡(波高与波长之比)、波峰线(波峰的连线)、波向线(波浪传播方向,垂直于波峰线)。

2、设计波浪:平均波高( )、累积频率波高( )、1/10大波 ( )、有效波高(

二、潮汐

一、沿海潮汐的特征

H %F H 101H 31H

1、潮汐定义:海水在天体引潮力的作用下所产生的周期性运动。习惯上将海水铅直向涨落称潮汐,水平方向的流动称潮流。

2、基本要素:高潮(在潮汐升降的一个周期中,当海面升至最高时)、低潮、潮差(相邻高潮与低潮的水位高度差)

3、设计潮位:指港口水工建筑物在正常使用条件下的潮位。包括:设计高/低水位;极端高/低水位

设计高(低)水位计算:

1)设计潮位的标准

设计高水位应采用高潮累积频率10%的潮位,简称高潮10%;设计低水位应采用低潮累积率90%的潮位,简称低潮90%。

2)资料年限

应有多年或至少完整一年逐日每小时的实测潮位资料。

3)设计潮位的推算方法

设计潮位的推算采用绘制高潮或低潮累积频率曲线。

极端高(低)水位计算:

l)极端潮位的标准

我国《海港水文规范》中规定,采用年频率统计的方法推求50年一遇的高、低潮位作为极端水位。

2)资料年限

为了确定极端高、低水位,在应用频率分析方法进行统计分析时,要求应具有不少于20年的年最高、最低潮位实测资料,并须调查历史上出现的特殊水位。

3)极端水位的推算方法

A、年频率统计的方法

B、资料中有特大值时设计高潮位的推算方法

C、资料短缺情况下设计高潮位的推算

第三章海岸防护工程

一、海堤

1、定义:在河口、海岸地区,为了防止大潮的高潮和风暴潮的泛滥及其伴随风浪的侵袭造成土地淹没,在沿岸原有地面上修筑的一种专门用来挡水的建筑物。

2、海堤工程的设计标准:Step 1:确定海堤工程的防潮标准 step2、海堤工程的级别 Step Step 4:波浪的设计标准,包括:设计波浪的重现期;设计波高的波列累积率。

3、设计潮位的确定:设计高潮位由年最高潮位频率计算法确定

4、设计波浪计潮位:(1)设计波浪的重现期T:指某一特定波列的波浪平均多少年出现一次,代表波浪要素的长期统计分布规律。(2)设计波浪的波列累积频率P:指设计波浪要素在不规则波列中的出现频率,代表...短期分布规律。T=1/P

5、海堤断面型式:斜坡式、陡墙式(包括直立式)、混合式海堤

(一)斜坡式海堤

1、形式—海堤的迎水面坡度比较缓m=ctgα>1,即<45o

2、护坡形式—干砌块石或条石、浆砌块石、抛石、混凝土预制板、现浇整体混凝土、;沥青混凝土、人工块件、水泥土及草皮护坡

3、优点:

(1)因迎水面坡度缓,则稳定性好;堤前反射小;

(2)堤身底宽大,堤基应力分布比较均匀,在海滩淤泥地基上筑堤较为有利;

(3)施工较简易,可就地取材,对风浪引起的堤身变形和局部破坏适应性强,便于修复。

4、缺点:

(1)堤身断面大,需工程量和占地面积较多;

(2)在一定的坡度范围内,迎水坡的波浪爬高较大;

(3)在滩地高程较低情况下,由于施工时往往要求先堆土方,后做护坡,结果容易导致已

堆筑的土方被冲失。

(二)陡墙式海堤

1、特点:(1)陡墙式海堤的迎水面用块石或条石砌成m<1的陡墙;(2)墙后用土方填筑;

(3)防护墙与土方之间设有反滤层或抛石渣。

2、优点:断面小,土方量少;施工中以石方掩护土方,减少土方流失,适用于小潮低潮位附近、滩面高程比较低的围堤工程;爬高小。

3、缺点: 地基应力集中,地基要求高。(一般在基床上);波浪反射大,以立波为主,时常引起底流速增大易产生堤角冲刷;堤前有破波,波浪力作用强烈,对堤身破坏性大;破坏以后难修复。

4、形式:坡度大于45度, 迎水面采用块石和条石.后方以土料填筑为主,分布于浙江舟山为主。

(三)混合式海堤

1、形式:迎水面由陡墙及斜坡混合组成。

2、特点:前两种海堤兼有。 (四)海堤断面型式确定应考虑的因素

(1)海堤型式的确定应根据水文地质、材料来源、施工条件等具体情况综合考虑,进行方案比较,选定经济、合理的结构型式。

(2)一般情况下

地质条件较差、堤身相对较高的堤段,海堤断面宜选择斜坡式;

地基条件较好、滩涂面较高的堤段,或者有软弱土层存在,但经地基加固处理后在

经济上合理的堤段,海堤断面宜选择陡墙式;

地质条件较差、水深大、受风浪影响较大的堤段,海堤断面宜选择混合式。 (五)海堤基本断面确定 堤顶高程:是指海堤沉降稳定后的高程。对于设有防浪墙的海堤,堤顶高程则是防浪墙顶面的高程,但防浪墙必须稳定、坚固。 方法:堤顶高程有潮位和波浪的重现期和波列累积频率确定,具体确定方法: 堤顶宽度 :除去防浪墙后的净宽度,不小于3-4米。考虑因素:自身稳定、地基稳定、防浪防渗要求、施工和防汛抢险要求。 堤身边坡: 考虑因素:断面型式、护坡类型及材料、堤身材料、波浪作用情况、地基条件及施工条件

(六)海堤的构造 1 堤顶及防浪墙2 护坡3 护坡垫层4 护坡基脚5 防护墙 (七)海堤设计 1 波浪在堤坡上爬高计算2 护坡计算3 防护墙稳定计算4 防浪胸墙稳定计算5 海堤抗滑稳定计算6 地基沉降计算7 软土地基加固8 海堤防渗和堵漏

二 、护岸

1、概念:在河口、海岸地区,对原有岸坡采取砌筑加固的工程措施。

2、护岸和海堤的异同:

P p F Z h R A

=++

相同点:护岸与海堤都是为了防浪、挡潮保护陆上农田、城镇。

不同点:1)护岸是对原有岸坡加以保护,防止岸坡在波浪水流作用下坍塌,维持岸线稳定;

2)海堤是在地表以上修建挡水建筑物,主要功能是防止暴潮、洪水的淹没泛滥。

3、护岸类型:消极护岸(直接护岸)和积极护岸(间接护岸)

4、护脚工程: 护脚在低水位以下部分,主要形式:抛石、沉排等。(低水位以上为护坡)

三、丁坝

1、组成

丁坝一般与岸线成丁字形相交,由坝头、坝身、坝根三部分组成。

坝头伸向海、河中;

坝根与堤岸连接;

坝身向外延伸,将水流挑离岸边,拦截沿岸漂沙,使之落淤。

2、作用

(1)丁坝自岸边向外伸出,对斜向朝着岸坡推进的波浪和顺着岸边的沿岸流都起了阻碍作用,减弱波浪和水流对岸边的冲击力。

(2)阻碍泥沙的沿岸运动,起到促淤的效果。

3、丁坝的布置(1)单丁坝的布置:三种平面布置:与水流正交、向上挑、向下挑。

下挑丁坝挑流作用没有上挑丁坝作用强烈,但是其堤头的冲刷不严重。

淹没丁坝挑流效果:上挑丁坝——表面流向离岸,底流向岸;下挑丁坝——表面流向向岸,底流离岸。

丁坝布置方向选择应该容易使坝田淤积。一般布置与岸线垂直。

(2)丁坝群的布置两个因素要确定:1)丁坝的长度:总体上说视功能而定,保护岸滩的丁坝长度50~100m,其中砾石滩取40~60m,沙质为100m;促淤作用时是1000~2000m 2)丁坝的间距:视丁坝群的作用而定。促淤作用时,丁坝间距要密一点但是具体多少应该视各地自然条件决定。一般而言,沙质海滩,丁坝间距为丁坝长度的1~1.5倍,砾石海滩,丁坝长度取1.5~2.0倍丁坝长;护滩作用,3~4倍的丁坝长度

四、顺坝

1、定义:也称为离岸堤,在海岸线外一定距离的海域中建造大致与岸线相平行的防波堤。在波浪作用为主的地区,特别是主波向垂直于岸线时,采用顺坝保滩护岸。

2、布置型式:连续布置、间断布置。比较长的顺坝,内侧设置丁坝,间距为顺坝至岸距离的2~5倍,起到促淤作用。一般情况下,对于促淤作用的顺坝是间断布置,以促使泥沙在坝田区落淤。

3、结构形式:(1)出水顺坝:最大优点是挡波作用强,促淤效果好。缺点:顺坝结构要求高,波浪作用力大。(2)潜水顺坝:潜顺坝的作用:消浪—取决于堤顶水深与堤前波高比;促淤—堤顶高程越高效果越好。

五、保滩工程

1、定义:保滩工程是根据设计方案,向海滩大量抛沙,或者同时辅以硬工程,使受侵蚀的海滩增宽或保持海岸、河口地区滩涂的稳定的工程措施。

2、海岸防护措施的选择:泥沙运动方式:沿岸输沙强——丁坝;弱(单向)——丁坝,(双

向)——离岸堤;横线泥沙运动——海滩补沙

第四章波浪对结构物的作用

一、直墙式建筑物的波态

1、波态定义:根据《海港水文规范》的有关规定,在确定波浪对直墙式建筑物的作用力时,应判别墙前的波态。

2、分类:立波、远破波和近破波

立波:波浪将在墙面上完全反射,反射波与入射波相叠加形成的波。形成立波的条件:进行波的波峰线与直立墙的轴线大致平行;墙长大于一倍波长;墙前有足够的水深。

远破波:在墙前半波长或稍远处发生破碎的波浪,称为远破波。

当基床在海底面以上的高度较小时,产生远破波。

近破波:在墙面或其附近发生破碎的波浪,称为近破波。

当基床在海底面以上的高度较大时,容易产生近破波。

二、立波作用力

1、浅水立波法

当d1>=1.8H;d/L=0.05-0.12时,可采用浅水立波法计算直墙式建筑物上波峰作用力和波谷作用力。

2、森弗罗简化法

当H/L>=1/30和d/L=0.139-0.2时,可采用森弗罗简化法计算直墙式建筑物上的立波作用力。

3、插值法

4、欧拉坐标一次近似法

5、合田良实法

三、破波作用力

1、远破波作用力

2、近破波作用力

第五章防波堤工程

1、定义对于建造在开敞海岸、海湾或岛屿的港口,为防御波浪对港域的侵蚀而建造的用于掩护水域的一种结构物。

2、功能1)防御波浪、冰棱的袭击,保证港内水域的平稳;2)阻拦泥沙,减少港内淤积,保证港内水深;3)堤的内侧可兼作码头。

3、防波堤的分类1)按平面型式:(1)突堤:一端与岸连接,另一端伸向海中,组成港口的口门。(2)岛堤:两端均不与岸连接,位于离岸一定距离的水域中,设有堤根。

2)按结构型式分:重型防波堤:斜坡式、直立式、混合式;轻型防波堤:透空式、浮式、压气式、水力式

4、防波堤的累计频率标准《海港水文规范》规定:1、重现期:斜坡式、直立式、墩柱式、桩基式 50年;护岸等非重要建筑物,25年;灯塔,100年,必要时,按照历史最大值设计2、波列累积率:不同结构型式,不同验算指标,不同部位,使用的波列累积频率可能不同

(一)斜坡式:由堤心石、护面和护底组成(一般)

(1)优点:a、消浪功能好,波浪大部分不反射;

b、对地基承载要求不高,损坏后易修复;

c、施工容易,一般不需大型起重设备,便于就地取材。

(2)缺点:a、护面块石易被波浪冲走,需经常维修,增加后期费用;

b、堤两侧不能直接做系靠船舶的码头之用;

(3)适用范围:适用于水深不大(<10-20m),当地材料价格便宜,地基较软的情况。(二)直立式:

一般由墙身、上部结构和基础组成。临港和临海两侧均为直立墙,底部基础多采用抛石基床,水下墙身一般采用混凝土沉箱。

(1)优点:a、与斜坡式相比,材料用量少;

b、不需要经常维修;

c、堤内侧可兼作码头,适用方便。

(2)缺点:a、波浪反射大,消浪效果差,可能影响港内水域平静;

b、堤前水深小于波浪的破碎水深时,波浪将破碎,对堤前产生很大的动水压

力,需加大堤身宽度和需要护底措施,增大造价;

c、地基应力大,对不均匀沉降敏感;

d、一旦破坏,修复困难。

(3)适用范围:a、水深较大(大于破碎水深,使波浪不破碎);

b、地基坚实;承载力大。

(三)混合式(即高基床直立堤):

(1)适用范围:a、水深较大(>20m-28m),地基承载能力有限的情况;

B、若作直立式,地基承载力不够;

c、若作斜坡式,材料用量太大(斜坡堤材料用量大致与水深平方成正比)(2)缺点:a、确定斜坡顶标高,要经济,进行技术比较(建议基肩上的水深不小于2.5H);

b、论证方案稳定性,需做模型试验,增加设计费用,延长设计时间。

(四)特殊型式的防波堤

1、透空防波堤:

(1)优点:比较经济,施工也容易。

(2)缺点:不能阻止泥沙进入,不能减小水流对港内水域的干扰。

(3)适用范围:水深较大,波浪小,无防砂要求的水库港、湖泊港。

2、浮式防波堤:

由有一定吃水深度的浮排和锚链系统组成。

(1)优点:不受水深,地质条件的限制;易拆除,易修建,较经济。

(2)缺点:锚链设备复杂,可靠性差,易起锚,不能阻止泥沙进入港内,不能减少水流对港内水域的影响。

(3)适用范围:波陡大,水位变幅比较大的渔港或作临时防护。

3、喷气式、喷水式防波堤:

原理:使波长变短,波陡变大,直到波浪破碎,消耗波能。

优点:施工简单,基建投资少,安装、拆迁方便。

缺点:动力消耗大,运输费用高。

适用:围堰施工,打捞沉船及临时的装卸作业。

斜坡式防波堤

一、结构形式

按材料分,大致可分为:

(1)抛石防波堤:抗浪能力差,多用于波浪不大且石料来源丰富的情况;

(2)砌石防波堤:石料来源丰富的情况;

(3)人工块体护面防波堤:抗浪能力强,多用于波浪大的情况。

二、特点

1、抛石防波堤:

(1)不分级堤

①优点:堤身密实、沉降均匀、施工简单;

②缺点:块石重量轻,容易受波浪冲击破坏、后期维修费用高,因此逐渐被分级堤替代。(2)分级堤

①优点:石料利用合理,便于有计划的开采石料;

②缺点:石料的来源和数量不易保证。

③抛石堤适用条件:水深浅、基软、石料丰富、波浪小。

对不分级堤:设计波高小于2~2.5m

对分级堤:设计波高小于3~4m

2、砼块体堆筑或护面的斜波堤:

(1)抛填砼方块斜波堤

①优点:重量大(最大可达60~80t)稳定性好,抗波能力大。

②缺点:需要大型起重设备,水泥用量大、费用高。

③抛石堤适用条件:波浪较大、缺乏石料,但有大型起重设备的情况。

(2)砼块体护面堤

块体重量轻、效果好,一般使用于波高小于3m的情况。

①栅栏板块体

缺点:①支撑棱体承载力要求较高;②对斜坡平整度要求高。

②异形方块

特点:①形状因素比较好,即具有高度的不规则性,有利于块体之间相互结合,增大块体的稳定性;②空隙率大,表面粗糙,有利于波浪在斜坡上破碎,波能消散。

缺点:块体形状复杂、制作麻烦、施工(起吊)和使用中因肢体连接部位较弱易断裂,从而失去块体的防护作用,给防波堤带来险情。

护面块体适用于:水深大、波浪大、地质条件软的情况。

三、断面设计

(一)断面尺寸:1、堤顶高程 2、堤顶宽度

⑴确定原则:

除必须保证在波浪作用下,堤顶块体的稳定性外,还应保证满足施工和使用要求。

⑵基本要求:①人工块体护面;②砌石护面堤;③抛填砼方块。

3、支承棱体和肩台宽度

⑴支承棱体

功能:(1)减少主护面块体的数量;(2)支撑护面防止其下滑;(3)保护护底块石免遭冲刷。

⑵设戗台的堤

干砌块石或浆砌块石护面的防波堤通常设有戗台。为保证护面的施工条件,戗台的高程宜设在施工水位附近,宽度不宜小于2m 。

⑶宽肩台堆石堤

为了有效的减少波浪爬高,更好的消能,肩台高程可定在设计高水位以上1~3m,宽度取

2.3~2.9H,且不小于6.0m。

4、胸墙的构造

⑴胸墙型式:一般有L型和反L型;

⑵材料:可为浆砌块石,砼或钢筋砼结构;

⑶胸墙高度:一般在堤顶面以上2m左右,胸墙底面一般嵌入堤顶以下约1m;

⑷胸墙前基本要求:一般有块石或人工块体做掩护;

⑸胸墙稳定性:由于胸墙本身承受破碎波波压力的作用,因此,胸墙本身的断面尺寸需通过稳定性验算来确定。

5、斜坡坡度设计

⑴影响因素:取决于波浪要素、护面结构的类型和块体重量等因素。

⑵确定原则:外侧<内侧(外缓内陡);上部<下部(上缓下陡)

抛石护面<安砌块石<人工块体护面;堤头<堤身

(二)构造

1、堤心

2、护面块体

3、外坡护面块体下的垫层

4、堤底垫层及堤前护底块石

5、其他部位

(三)斜坡式防波堤的计算

1、计算内容

⑴护面块体的稳定重量和护面层厚度

⑵栅栏板的强度

⑶堤前护底块石的稳定重量

⑷胸墙的强度和抗滑、抗倾稳定性

⑸地基的整体稳定性

⑹地基沉降

2、计算状态

⑴持久状况:应考虑以下的持久组合

①设计高水位:波高应采用相应的设计波高;②设计低水位:A、当有推算的外海设计波浪时,应取设计低水位进行波浪浅水变形分析,求出堤前的设计波高;B、当只有防波堤建筑物附近不分水位统计的设计波浪时,可取与设计高水位时相同的设计波高,但不超过低水位时的浅水极限波高。③极端高水位:波高采用相应的设计波高;极端低水位时,可不考虑波浪的作用。

⑵短暂状况:对未成型的斜坡堤建筑物进行施工期复核时,水位可采用设计高水位和设计低水位,波高的重现期可采用2~5年。

⑶偶然状况:应考虑地震作用的偶然组合,即进行地震力作用下斜坡堤的整体稳定验算,但不考虑波浪对堤体的作用。此时水位采用设计低水位。

直立式防波堤

一、结构型式

(一)重力式直立堤

依靠结构本身的重量来抵抗水平外力,维持建筑物的稳定性。它主要由基床、墙身和上部结构等组成。

按堤身结构分:钢筋混凝土沉箱式;普通混凝土方块式;

巨型混凝土方块式;大直径圆筒式等。

1、方块式直立堤

⑴墙身块体型式

方块式墙身主要有:普通方块(正砌方块、斜砌方块)、巨型方块和消浪方块。

⑵优点:墙身坚固耐久,施工简便,能抵御较大的波浪。

⑶缺点:自重大,地基应力大,砼用量多,水下安装和潜水工作量大,施工进度慢,堤身整

体性能差,易随地基沉降而变形,对不均匀沉降比较敏感。

⑷适用条件:施工期波浪不大,现场起重设备能力较大和地基较坚实的情况。

2、沉箱直立堤

⑴沉箱墙身主要有:矩形、圆形和带消能室的砼沉箱

⑵优点:堤身整体性好,水上安装工作量小,不需要大型起重设备,施工进度快,箱中填以

砂砾可降低造价。

⑶缺点:沉箱的预制和水下需要相应的场地和设备,要有足够的水深的航道。箱壁较薄,在

水位变动区易受海水侵蚀而损坏,而沉箱一旦破坏,修复困难。

⑷适用条件:有条件的地方(有预制能力,滑道和船坞,浮运水深足够)在实际工程中,矩

形沉箱采用较多。

3、大直径圆筒直立堤

墙身直径为3m以上的薄壁无底砼圆筒,置于抛石基床或部分沉入地基之中,筒中填充砂石。1)置于抛石基床上的圆筒机构及其工作原理与一般重力式基本相同。

2)部分沉入地基中的圆筒直立堤,适用于软基和持力层较深的情况

⑴对于沉入地基较浅(1.5~3m)的圆筒,其工作状态同重力直立堤。

⑵沉入较深的圆筒,由于受土的嵌固影响较大,其工作状态不同于重力式结构。(二)桩式直立堤

有:单排桩式、双排桩式和钢板桩格形结构等形式。

1、单排桩防波堤

它由打入地基中的排桩、桩顶部的帽梁和连接构件组成。

2、双排桩式防波堤

两侧是打入地基中的排桩,每排桩由纵向导梁架住,然后用拉杆将双排桩对拉,双排桩中间用石料填充,顶部用混凝土覆盖,然后在盖板上浇注上部结构。

3、钢板桩格形结构防波堤

组成:由打入地基中的钢板桩组成封闭的系列格形结构,在空格中填充砂或石料。

优点:格形结构防波堤整体稳定性较好,适用于水深大、波浪强的情况。

缺点:钢板桩在水位变动区易锈蚀,需要采取保护措施。

(三)消能式防波堤

1、顶部削角直立堤

在直立堤的上部结构靠海侧做成较缓的斜面,犹如直立墙削掉一个角。

优点:1)堤前波浪在斜面上破碎,即削减了一部分波能,又减少了堤前波浪的反射,从而使波浪减少;

2)作用在斜面的波压力的垂直分力还有利于堤的稳定,从而减小了堤的断面。

缺点:削角斜面上的越浪较大。

2、开孔消浪直立堤

将沉箱靠海侧的箱壁上开一系列孔洞,部分波浪水体通过孔洞进入海侧箱格的消能室,利用堤前波浪与进入消能室水体的相位差和水体进入效能室后产生的剧烈紊动来消能,

以达到减少波浪力的目的。

适用条件:水深小于6m、波浪周期小于6s的环境。

3、开孔半圆形防波堤

半圆形防波堤是由半圆形拱圈和底板组成,堤身内不抛填石料。拱圈上开孔可消耗波能,底板上开孔可减小波浪浮托力。

特点:波浪力作用小,构件受力性能好。

4、削角空心方块防波堤

结合削角斜面结构和开孔消浪结构两者的优点的一种新型结构。

三、断面尺寸和构造

(一)组成及功能

上部结构:设置交通、挡波、削波;

墙身:挡波、沙,维持港内稳定,并传递外力至基床;

基床:保护地基免受冲刷,平整地基便于安装,分布地基应力;

护底:保护堤前地基,免受海水淘刷。

(二)断面尺寸拟定

1、高程设计

(1)堤顶高程

允许少量要求(无作业要求)=设计高水位+(0.6~0.7)H

基本不越浪(有作业要求)=设计高水位+(1.0~1.25)H

(2)基床的顶面高程

防波堤总高度是一定的,所以基床和堤体的高度分配应考虑每延米的造价。

2、基床宽度

外肩宽(0.6倍计算堤身宽)+堤身宽+内肩宽(0.4倍计算堤身宽);

暗基床底宽不宜小于直立堤墙底宽度加两倍基床厚度。

3、基床厚度

非岩石地基上的抛石基床厚度应由计算确定,但粘性土地基不小于 1.5m,砂土地基不小于1.0m。

4、堤身宽度

原则上由稳定计算确定(抗倾覆、抗滑和地基承载能力及沉降等),初设时可取:B=0.8×堤高。

(三)断面构造

1、上部构造

⑴基本要求

应有足够的刚度和良好的整体性,并与墙身结构连接牢固。

⑵型式:直立式,弧形式,削角面式等

对削角面式:

①削角面与水平面的夹角α可取25°~30°

②一般情况下,削角直立堤的顶标高不应低于直立顶标高,即至少在设计高水位以上0.7H 处

③削角平面的拐点可设在设计高水位附近

⑶厚度:厚度≮1m,嵌入沉箱或大直径圆筒的深度≮30cm。

2、堤身结构

方块、沉箱、大直径圆筒、格形钢板桩等(同重力式)

对方块式,由于受到较大的波浪力作用,其最小重量应满足一定的要求。3、抛石基床结构

⑴型式:取决于波浪水深条件和地质条件

暗基床:用于水深浅,易冲刷,表面土质差,在堤前无近破波的情况;

明基床:由于水深大,地基承载力高,在堤前无近破波的情况;

混合基床:用于水深大,地基差的情况,在堤前无近破波的情况

⑵块石重量:10~100kg

⑶护底块石:基床向海一侧需修建堤前护底,取1~2层,厚度≮0.5m。

四、防波堤的计算

(一)重力式直立堤的承载能力极限状态、设计状况和作用组合

1、作用

竖向荷载仅自重力,水平荷载主要是波浪力。在进行承载能力极限状态时,应以设计波高及对应的波长确定的波浪力作为标准值。

2、设计状况及相应组合

⑴持久状况(重现期为50年)

①设计高水位时:波高采用相应的设计波高(重现期为50年),考虑持久组合。

②设计低水位时,波高采用以下两种方法:

A、当推算外海设计波浪时,应取设计低水位进行波浪浅水变形分析,求出堤前的设计

波高;

B、当只有建筑物附近部分水位统计的设计波浪时,可取与设计高水位时相同的设计波

高,但不超过低水位时的浅水极限波高。

③设计高水位时,堤前波态为立波,而设计低水位时,已为破碎波,尚应对设计低水位

至设计高水位之间可能产生最大波浪力的水位情况进行计算。

④极端高水位时,波高采用相应的设计波高;极端低水位时,可不考虑波浪力的作用。

⑵短暂状况:应考虑以下组合

对未成型的重力式直立堤进行施工期复合时,水位可采用设计高水位和设计低水位,波高的重现期可采用5~10年。

⑶偶然状况

在进行重力式直立堤地基承载力和整体稳定性计算时,应考虑地震作用的偶然组合。水位采用设计低水位,不记波浪与地震作用的组合。

(二)重力式直堤计算

1、计算内容

⑴沿堤底和堤身各水平缝的抗倾覆稳定性

⑵沿堤底和堤身各水平缝的抗滑稳定性(波峰谷)

⑶沿基床底面的抗滑稳定性(明基床沿滑动面):①明基床;②暗基床

⑷基床和地基承载力

⑸整体稳定性(应带入波浪力)

⑹地基沉降

⑺明基床护肩块石和堤前护底块石的稳定重量

⑻对沉箱结构尚应计算

①沉箱的吃水,干舷高度和浮游稳定性

②沉箱的外壁、隔墙、底板和底板悬臂的承载力和裂缝宽度。

2、护肩块石和护底块石

⑴护肩块石和坡面:参阅规范附录F计算或查表。

⑵护底块石:根据堤前最大的波浪底流速Vmax按规范表4.2.21选取。

①堤前为立波;②堤前为远破波;③堤前为近破波。

(三)直堤堤头和堤根的设计特征

1、堤头设计特征

⑴平面形状和加宽特征

①形状:方形(矩形和折角形)、圆形和半圆与矩形的组合

②加宽:向港内、向港外和向两侧。设计时宜向港内加宽

⑵堤头的结构特征

①适当加宽护底宽度(堤头处水流流速和波浪底流速都较大)。

②堤头基床的内外坡度比堤外缓,并要加强基肩部分的保护

③堤头顶部三面均要设胸墙,且比堤外胸墙高,以保护堤头设施

④堤头段和堤外段衔接处要设变形缝

⑤堤头段长度=(1.5-2)倍堤头宽度

2、堤根设计特点

⑴一般采用斜坡式

⑵当水深较大,且为岩基,堤为直立时,可考虑用直立式堤根,但在堤根部分要抛石,以免波能集中。

第六章围海工程

1、定义:在沿海修筑海堤围割部分的工程。

2、分类:按平面布局分为顺岸围垦、海湾围垦和河口围垦。主要建筑物是海堤,其次是水闸。

3、堵口工程:

1)工程内容:龙口布置、堵口方法及程序、截流堤设计及闭气等。

2)堵口时间:应根据当地具体情况来选定,避开最不利因素:台风、大潮等,在合龙后有足够时间在大潮、台风季节来到之前进行闭气和加高培厚,把挡潮大堤全线修建到设计高程。3)龙口尺寸和位置选择:①围垦面积小,吞吐量不大,海涂面平坦,无深巷情况,海堤全线底高程及地质条件均相近,可采用一个龙口或分散龙口的方法,最后在一个落潮时段内同时进行合龙。②围垦面积大,吞吐量大,有深巷情况,一般采用集中口门的方法。

4)龙口水力计算步骤:①选择堵口设计潮位与设计潮型;②推求内港水位过程线;③计算Z~t、v~t、q~t、p~t曲线

5)堵口方法:①平堵:从龙口底部逐层向上抬高堆石潜堤②立堵:从龙口两侧堤头进占缩窄口门③平立堵结合

6)闭气:①内闭气(我国广泛采用)②外闭气

7)闭气材料:应按照就地取材的原则,并综合考虑抗渗性,在水中的抗流失性及排水固结性能选定。一般常用的有海泥、黄土及砂等。有时为了提高海泥抗剪强度,加速其固结,可以采用海泥和砂混合抛投和分层抛投,以利排水,效果较好。

最新浙江大学《海岸动力学》考点整理

【名词解释】 (15题×2分=30分) 第2章 1.海浪:风作用于海面产生的风浪 2.涌浪:风平息后海面上仍然存在的波浪或风浪移动到风区以外的波浪。 3.规则波不规则波/随机波浪:规则波波形规则,具有明显的波峰波谷,二维 性质显著。不规则波波形杂乱,波高,波周期和波浪传播方向不定,空间上具有明显三维性质。 4.混合浪:风浪和涌浪叠加形成的波浪 5.深水波,浅水波,有限水深波:深水波h/L大于1/2、浅水波h/L小于1/20、 其之间的称为有限水深波 6.振荡波:波动中水质点围绕其静止位置沿着某种固有轨迹作周期性的来会往 复运动,质点经过一个周期后没有明显的向前推移的波浪。 7.推进波:振荡波中若其波剖面对某一参考点作水平运动,波形不断向前推移 的波浪。 8.立波:振荡波中若波剖面无水平运动,波形不再推进,只有上下振荡的波浪。 9.推移波:波动中水质点只朝波浪传播方向运动,在任一时刻的任一断面上, 沿水深的各质点具有几乎相同的速度的波浪。 10.振幅:波浪中心至波峰顶的垂直距离;波高:波谷底至波峰顶的垂直距离 11.波长:两个相邻波峰顶之间的水平距离 12.波周期:波浪推进一个波长距离所需要的时间 13.波速、波数、波频等概念。 14.波的色散现象:不同波长(或周期)的波以不同速度进行传播最后导致波的 分离的现象 15.波能流:波浪在传播过程中通过单宽波峰线长度的平均的能量传递率 16.波能:波浪在传播过程中单宽波峰线长度一个波长范围内的平均总波能 17.波群:波浪叠加后反映出来的总体现象 18.波频谱(频谱)波能密度相对于组成波频率的分布函数 19.驻波:当两个波向相反,波高、周期相等的行进波相遇时,形成驻波。 20.孤立波:波峰尖陡、波谷平坦、波长无限大的波。 第3章 1.摩阻损失:海底床面对于波浪水流的摩阻力引起的能量损失; 2.浅水变形:当波浪传播至水深约为波长的一半时,波浪向岸传播时,随着水 深的减小,波长和波速逐渐减小,波高逐渐增大,此现象即为浅水变形; 3.波浪守恒:规则波在传播中随着水深变化,波速,波长,波高和波向都将发 生变化,但是波周期则始终保持不变。 4.波浪折射:当波浪传播进入浅水区时,如果波向线与等深线不垂直而成一偏 角,将发生波向线逐渐偏转,趋向于与等深线和岸线垂直的现象; 5.辐聚:在海岬岬角处,波向线将集中;辐散:在海湾里,波向线将分散; 6.波浪的绕射:波浪在传播中遇到障碍物如防波堤、岛屿或大型墩柱时,绕过 障碍物继续传播,这种现象称为波浪绕射; 7.绕射系数:绕射区内任一点波高与入射波高之比; 8.破波带:波浪破碎点至岸边这一地带称为破波带。 9.崩破波,激破波,卷破波(P78)

海岸工程海堤设计——计算说明书

《海岸工程》课程设计 计算说明书 学院: 港口海岸与近海工程 专业: 港口航道与海岸工程 班级: 大禹港航班 姓名: 学号: 1420190

第1章设计资料分析 1.1工程背景介绍 1.1.1主要依据 乐清湾港区的开发建设需要对港区前沿的滩地进行大面积疏浚开挖,从而产生大量的疏浚土方。从环境保护、减少工程投 资的角度,采用就近吹泥上岸的疏浚土处理方式替代传统的外抛 方式,既实现了宝贵疏浚土资源的综合利用,又缓解了土地供求 的矛盾和压力,大大提高了疏浚弃土的综合经济效益和社会效益。 为了尽早形成拟建港区港池、航道疏浚工程的纳泥区,同时为临 港产业经济用地的开发建设创造条件,拟通过围垦提供约1500 亩的后备土地资源。 1.1.2主要规范、规程 1.《海堤工程设计规范》(SL 435—2008) 2.《浙江省海塘工程技术规定》(上、下) 1.1.3工程项目内容和规模 本工程尽可能实现筑堤与吹泥工程的同步实施,二者相互依托、互为条件,因此,作为工程项目必需内容的一部分,需在本 研究阶段提出吹泥上岸工程的实施方案。因此,本项目工程建设 的主要内容包括围堤、吹泥上岸和临时排水工程。

工程规模如下: (1)围(海)涂面积约99.2万m2,合1487.7亩;围堤总长度 3.200km; (2)围堤建设符合国家规范及地方规程要求,顺堤按照50年 一遇标准建设,防洪高程+7.8m(85高程,下均同);南侧堤按照50年一遇标准建设,防洪高程+7.8~7.6m。 (3)围区内允许纳泥标高按+3.0m控制,纳泥容量约为660.53 万m3。 1.1.4工程平面布置 本工程位于乐清湾中部西侧打水湾山附近,因打水湾与连屿矶头的控制,该段区域为乐清湾最窄处,宽约4.5km,涨落潮流在此汇合、分流,水动力特性复杂、敏感。根据项目前期研究工作成果和结论意见,结合土地开发需要,围涂工程顺堤位置推荐布置在-6m等高线处,走向为18°~198°,堤长约577.5m。 南侧堤布置时考虑东干河出口顺直,沿老海塘延长线向东以132°~312°走向延伸,后以110°~290°向东延伸500m后与顺堤垂直相交,南侧堤长度约2622.7m。 1.2设计内容 乐清湾海堤工程设计:确定海堤设计条件、断面尺寸,并进行波浪爬高计算、护坡计算、防浪胸墙稳定设计、海堤抗滑稳定

港口海岸水工建筑物课程教学大纲

港口海岸水工建筑物课程教学大纲 课程代码:74120110 课程中文名称:港口海岸水工建筑物 课程英文名称:Harbor Coastal and Hydraulic Engineering Construction 学分:2.5 周学时:2.0-1.0 面向对象: 预修要求:理论力学、材料力学、结构力学、土力学、钢筋混凝土结构基本原理、工程地质与水文地质、工程水文学、海岸动力学等 一、课程介绍 (一)中文简介 《港口海岸水工建筑物》课程是港口、航道与海岸工程专业的一门主要专业课,课程主要讲授港口水工建筑物设计计算的基本理论和构造知识。通过本课程的学习,需要掌握港口水工建筑物上的作用及其组合,掌握港口水工建筑物上各种荷载的计算方法,掌握重力式码头、板桩码头、高桩码头、修造船水工建筑物、防波堤设计计算的基本原理、内容、方法、步骤和构造知识,掌握码头设备的性能、作用、设备选型及设备的布置方式,掌握直立式、斜坡式防波堤结构型式及计算方法,掌握防波堤新的结构型式及计算方法。为将来从事港口工程的设计、施工、科研和管理等工作奠定基础。 (二)英文简介 The course “Harbor Coastal and Hydraulic Engineering Construction”is one of the most important basic undergraduate courses in Harbor, Coastal and Offshore Engineering. The course mainly introduces the calculation principle of the different structure design in coastal and offshore engineering. After taking this course, the basic theoretical principles and method for the design and plan of different ports and breakwaters will be well understood. The student will be capable of design the structures after several structure designs will be performed using the above methods during the course. 二、教学目标 (一)学习目标 了解各种型式码头结构构造、受力特点、适用条件以及国内外新型码头结构的发展情况,

海岸工程(复习资料)教案资料

海岸工程(复习资料)

海岸带的组成:潮上带,潮间带和朝下带三部分。 我国海岸的类型:基岩海岸,砂砾质海岸,淤泥质海岸,红树林海岸和珊瑚礁海岸。 海岸带资源分类:空间资源,物质资源和环境资源。 影响海岸冲淤变化的因素分为长期作用和短期作用两类。总的有以下几种:1.海平面升降2.河流改道3.波浪作用4.沿岸流5.潮流作用6.风力搬运7.人类活动影响。 海堤断面按临水面外形特点来区分,可分为斜坡式,陡墙式(包括直立式)和混合式海堤三类。挖泥法顺流挖泥,逆流挖泥,分跳挖泥,分段挖泥,分层挖泥等方法。 复坡的平台高程一般在高潮位附近。 斜坡式海堤的外坡分为单坡,折坡和复坡。 在外坡设置消浪平台的作用:减小波浪爬高。 护坡的主要作用:保护堤身填土免受风浪,潮流的冲刷,同时也防止雨水的侵蚀。 浆砌块石护坡应设置变形缝和排水孔。 基脚的作用主要是支撑护坡体,防止其沿堤坡面发生滑移。基脚的结构型式有埋入式,抛石棱体和桩石基脚等。 埋入式用于滩面较高的情况,滩地较低时可采用抛石棱体。 一般平台位置或上、下坡转折点位置最好设置在静水面附近或略高于静水面,此时平台消能效果最好。 堵漏措施常有以下几种:1.粘土铺盖2.粘土截水墙3.压力灌砂4.减压井。

护岸工程的分类:按平面布置和抵御波流作用的方式分为直接护岸和间接护岸;按建筑物的类型非为斜坡式,陡墙式和混合式。 平顺护岸按其位置和施工条件不同分为护坡和护脚两部分。常见的护脚形式有抛石、沉辊和排沉。 丁坝由坝头、坝身和坝根三部分组成。 丁坝可分为透水,半透水和不透水丁坝。 顺坝根据顶高程不同可分为出水顺坝和潜顺坝两种。 潜顺坝(潜堤)的主要功能:1.消浪2.促淤。 滩涂是不断再生的资源,它是江河入海泥沙不断沉积塑造的结果。 围海工程按其所在位置不同可分为:1.顺岸滩涂型2.海湾型3.河口型 转化口门线:围海工程龙口水利要素最大值等值线图中各等值线的转折点的连线。 堵口程序是指龙口从起始口门(大龙口)逐步压缩(缩窄、抬高)至最后合龙截流的过程。 堵口过程中压缩口门的方法有平堵、立堵和平立堵结合等三种。 截流堤是在堵口段用来截断潮流的戗堤。 水力稳定断面有两种形式:密集断面和扩展断面。 闭气分内闭气和外闭气两种。 设计水位计算方法:1.综合历时曲线法2.保证率频率法 入射波能的计算:E r(反射波能)+E t(传递波能)+E f(消散波能)=E i(入射波能) 岸坡上的破波分为:崩波型破波、卷波型破波、涌波型破波和坍波型破波。

供热工程课程设计

供热工程课程设计设计题目:天津某办公楼供热系统设计 班级:建筑节能 姓名: 学号: 指导老师: 日期:

目录 1.工程概况及设计依据 (3) 工程概况 (3) 设计计算参数 (3) 2.供热热负荷计算 (4) 围护结构基本耗热量计算 (4) 围护结构附加耗热量 (4) 门窗缝隙渗入冷空气的耗热量 (5) 以一层101会议室进行举例计算 (6) 其他房间热负荷计算 (9) 3.采暖系统的选择及管道布置 (16) 热水供暖系统分类 (16) 机械循环系统与重力循环系统的主要区别 (16) 选择及布置 (16) 膨胀水箱的计算 (17)

4.散热器的选择及安装 (17) 散热器的选择 (17) 散热器的安装 (17) 散热器的计算 (17) 5.系统水力计算 (20) 水力计算方法 (20) 水力计算举例 (20) 其他管路水力计算 (21) 水力平衡校核 (26) 6.个人总结 (31) 参考文献 附录施工图 一、工程概况及设计依据 1.1工程概况 该项目是位于天津市(属于寒冷地区)的一座三层办公楼,包括会议室、办公室、值班室、阅览室、厕所等功能房间。一层建筑层高,二三层层高。设计计

算参数

气象资料: 冬季采暖室内计算温度办公室为20℃,会议室18℃,走廊、楼梯间、卫生间为16℃ 冬季室外计算温度-9℃ 冬季室外平均风速s 围护结构: 1)外墙:保温外墙(37墙),传热系数为K=(m2·K) 2)内墙:两面抹灰一砖墙(37墙),传热系数为K=(m2·K);一楼卫生间隔墙:两面抹灰一砖墙(24墙),传热系数为K=(m2·K); 3)外窗:双层铝合金推拉窗,传热系数为K=(m2·K) 4)门:双层木门;K=(m2·K) 5)屋顶:保温屋顶,传热系数K=(m2·K); 6)地面为不保温地面,K值按地带决定。其中第一地带传热系数K1=(m2·K);第二地带传热系数K2=(m2·K);第三地带传热系数K3=(m2·K);第四地带传热系数K4=(m2·K); 热源:

海岸动力学复习

填空 1波浪按波浪形态分为规则波和不规则波。大洋中的风浪是不规则波或随机波;离开风区后自由传播的的涌浪可视为规则波。 2波浪按传播海域的水深分为深水波、有限水深波和浅水波。分别将h/L =1/2和h/L =1/20作为它们之间的界限。 3波浪非线性的程度取决于波高、波长、水深的相互关系,在深水中影响最大的特征比值是波陡,在浅水中影响最大的是相对波高。 4波长较短的风浪进入水流较大的水域,或骑在波长较长的涌浪或潮波之上时,其波长、波速、波高及波向均将发生变化,而波周期保持不变。 5对波群速度与波速的关系而言,浅水波的波群速度为 C g =C s = gh ,深水波的波群速度为C g =12C 0。 6一般把h/L <1/20的波浪称为浅水波,其群速为C g =C = gh 7斯托克斯波的水质点运动轨迹不封闭,运动一个周期后有一净水平位移,造成一种水平流动,称为漂流或质量输移;造成泥沙净输运。 8近岸水流速度的垂向分布,可采用对数分布或指数分布两种形式。垂向水流结构的分层描述中常采用Boussinesq 假定。 9重力波周期的范围在1至30秒之间,周期为200秒的是低频波,潮波的周期大于 12小时 。 10海岸线是指 陆地与海水的边界线。从海岸动力学的角度,海岸带的范围是从波浪所能作用的海底,向陆延至暴风浪所能达到的上界。 12当两列波向相反,波高、周期相等的行进波相遇时,形成驻波。驻波的动能是入射行进波的2倍。 13非线性的有限振幅波理论主要有斯托克斯波理论、椭余波理论、孤立波理论等。 14一般认为,波浪破碎的运动学条件是波峰处水质点运动速度大于波峰相速度;动力学条件是质点离心力大于约束力重力,出现溢出现象。 15引潮力主要包括月球和太阳对地球上海水的引力,以及地球与月球绕其公共质心旋转产生的惯性离心力。 16辐射应力向岸的分量xx S 梯度驱动产生波浪增减水,xy S 梯度驱动产生沿岸流,yy S 梯度驱动 产生裂流和近岸环流。 17海洋潮波运动包括海面周期性升降,称为潮汐,和海水周期性流动称为潮流。 18沙质海岸的短期演变主要是指海岸横剖面在波浪和水流作用下的季节性冲淤变化。沙质海岸的典型剖面形式为沙坝剖面和滩肩剖面,也称为风暴陪面和常浪剖面。 19淤泥质海岸的地形变化与沙质海岸的变化有所不同,其主要特征往往是在动力较强的地方发生冲刷,在动力较弱的地方发生淤积。 20一列简单波浪进入浅水区后,在传播中随水深变化,其波速、波长、波高和波向都将发生变化,但是其波周期则始终保持不变,波浪这一性质为分析它从深水传播到浅水的变化提供方便。 21沿岸输沙是波浪和波生流共同作用引起的纵向泥沙运动,主要发生在破波带内,其机理是波浪掀沙和沿岸流输沙;沿岸流量最大输沙率出现在破波线和沿岸流速最大值之间。 22辐射应力可定义为波浪运动引起的剩余动量流。 23沿岸沙坝和滩肩是沙质海岸剖面形态的重要特性构造。卷破波是形成沿岸沙坝的主要原因。 24近岸流包括 向岸流 、沿岸流 和 离岸流 25海岸可分为 沙质 海岸和 淤泥质 海岸

海岸动力学 内容汇总 (1)

海岸动力学 第一章概论 1、海岸带宽度按从海岸线向内陆扩展10km,向外海延伸到-15~-20m水深计算。 2、海岸的类型: 按照岸滩的物质组成可以把海岸分作基岩海岸、沙质海岸、淤泥质海岸和生物海岸等类型。 基岩海岸,特征是:岸线曲折、湾岬相间;岸坡陡峭、滩沙狭窄。此类海岸水深较大,掩蔽较好,基础牢固,可以选作兴建深水泊位的港址。 沙质海岸:岸线平顺,岸滩较窄,坡度较陡,常伴有沿岸沙坝、潮汐通道和泻湖。此类海岸常是发展旅游、渔港的良好场所。 淤泥质海岸:此类海岸岸线平直,一般位于大河河口两侧,岸坡坦缓、潮滩发育好、宽而分带,潮流、波浪作用显著,以潮流作用为主;潮滩冲淤变化频繁,潮沟周期性摆动明显。淤泥质海岸滩涂资源丰富,有利于发展海洋水产养殖、发展海涂圈围成为陆用于发展农业与盐业或畜牧业等其他产业。 生物海岸:包括红树立海岸和珊瑚礁海岸。 海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受海浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延至暴风浪所能达到的地带。 外滩:指破波点到低潮线之间的滩地。 离岸区:破波带外侧延伸到大陆架边缘的区域。 淤泥质海岸从陆到海由三部分组成:潮上带,位于平均大潮高潮位以上;潮间带,为平均大潮高潮位到平均大潮低潮位之间的海水活动地带;和潮下带,在平均大潮低潮位向海一侧。 海岸侵蚀:指海水动力的冲击造成海岸线的后退和海滩的下蚀。 引起海岸侵蚀的原因主要有两种:一是由于自然原因:如河流改道或入海泥沙减少、海面上升或地面沉降、海洋动力作用增强等;二是由于为人原因,如拦河坝的建造、滩涂围垦、大量开采海滩沙、珊瑚礁,滥伐红树林,以及不适当的海岸工程设施等。 常见的海岸动力因素主要有:

海岸工程学复习资料(膨胀版)

绪论 一、海岸线、海岸带与海岸 1、海岸线:海洋与陆地的交界线称为海岸线。 2、海岸带:海岸线两侧具有一定宽度的条形地带称为海岸带。海岸带的宽度各国规定不尽相同,我国规定:一般岸段,自海岸线向陆地延伸10km左右;向海扩展到10-15m等深线。 海岸带包括潮上带、潮间带和潮下带。位于高潮位之上的区域为潮上带,位于高潮位和低潮位之间的区域称为潮间带,位于低潮位以下的区域为潮下带。 3、海岸:由后滨、前滨、外滨组成。 后滨(或后滩)常位于高潮位之上,属于潮上带。前滨又称滩面,位于波浪冲击的上限与低潮海滨线之间的地区,也称潮间带,是受拍岸波浪作用强烈的地区。外滨又称滨面,属潮下带,从低潮海滨线向外延伸,经过宽度不等的破波区或破波带。这个区域是破碎的波浪强烈作用下的泥沙运动区域。 二、海岸类型 根据海岸的形态、成因、物质组成和发展阶段等特征分为: 基岩海岸:一般是陆地山脉或丘陵延伸与海面相交,经过波浪作用形成的海岸。砂砾质海岸:又称堆积海岸,主要是平原的堆积物被搬运到海岸边,再经波浪或风的改造堆积形成。 淤泥质海岸:主要由江河携带入海的大量细颗粒泥沙,在波浪和潮流的作用下输运沉积形成。 生物海岸:包括红树林海岸和珊瑚礁海岸。红树林海岸由红树植物与淤泥质潮滩组合而成;珊瑚礁海岸由热带造礁珊瑚虫遗骸聚积而成。 三、海岸线变化的影响因素 1)河流影响:河流入海的泥沙在近海沉积和岸滩堆积,造成海岸线的推进。2)波浪作用:当波浪冲击海岸时,造成岸滩的侵蚀与后退,砂砾质海岸尤为严重。 3)潮汐作用:潮汐相伴产生潮流,潮流冲击岸滩,从而造成对海岸的冲蚀。4)人类在沿海生产活动的影响:在沿海兴建突堤、丁坝等海工建筑物时会破坏原有的沿岸输沙平衡,岸线必然会改变其轮廓以求达到新的平衡 第二章、潮汐 一、波浪 1.波型: 风浪:在风场中风直接作用下形成和传播的波浪。 涌浪:离开风场继续传播的波浪称为涌浪。 混合浪:涌浪在传播进入另一个风场后的波浪。 特征: 涌浪和风浪的频率比 风浪:波面粗糙,波长和周期短,波峰陡峭,波峰线短,常出现波浪溢浪(白帽)现象。 涌浪:波面光滑,波峰线长,波长和周期长于风浪。 2.波向: 常浪向:波浪出现频率最多的波向为常浪向。 强浪向:最大波高出现的波向为强浪向。 波浪玫瑰图:将波浪的出现频率、最大波高、平均波高分别标在16个方 位,得到波浪玫瑰图。

供热工程课程设计

摘要 Jilin Jianzhu University 课程设计计算书 设计名称供热工程课程设计学院市政与环境工程学院专业城市燃气工程 班级 姓名 学号 指导教师 设计时间2015.7.03

吉林建筑大学本科毕业设计 摘要 本次设计的是拉萨市某六层两单元住宅区的热水供暖系统。针对该住宅楼的功能要求和特点,以及该地区气象条件和供暖要求,参考有关文献资料对该楼的热水供暖系统进行了概况分析、设计计算和方案布置。 本系统为单户循环采暖系统。采暖方案是采暖系统采用室外同程式,室内异程式,室内为单管跨越式。 关键词住宅;采暖;设计

目录 目录 摘要 (1) 第1章设计概况 (3) 第2章设计负荷 (4) 2.1计算参数 (4) 2.2室外气象参数 (4) 2.3室内空气计算参数 (4) 2.4房间围护结构传热耗热量计算 (4) 2.5冷风渗透耗热量 (4) 2.6冷风侵入耗热量 (5) 2.7整个建筑或房间总耗热量 (5) 2.8附加修正耗热量 (5) 2.8.1朝向修正 (6) 2.8.2风力附加修正 (6) 2.8.3房高附加修正 (6) 2.8.4通过维护结构的总传热耗热 (6) 2.9地面传热带的划分 (7) 2.10散热器计算 (8) 2.10.1散热器面积的计算 (8) 2.10.2散热器内热媒的平均温度 (8) 2.10.3散热器的传热系数 (8) 2.10.4散热器片数的计算 (9) 第3章方案布置 (10) 3.1方案选择 (10) 第4章水力计算 (11) 4.1系统原理图 (11) 4.2系统水力计算 (12) 4.2.1选择最不利环路 (12) 4.2.2最不利环路的作用压力 (12) 4.2.3确定最不利环路管段管径 (12) 参考文献 (14) 附录 (15)

海岸动力学复习提纲

第一章 1.▲按波浪形态可分为规则波和不规则波。 2.按波浪破碎与否波浪可分为:破碎波,未破碎波和破后波 3.★根据波浪传播海域的水深分类:①h/L=0.5深水波与有限水深波界限②h/L=0.05有限水深波和浅水波的界限,0.5>h/L>0.05为有限水深;h/L≤0.05为浅水波。 4.波浪运动描述方法:欧拉法和拉格朗日法;描述理论:微幅波理论和斯托克斯理论 5.微幅波理论的假设:①假设运动是缓慢的u远小于0,w远小于0②波动的振幅a远小于波长L或水深h,即H或a远小于L和h。 6.(1)基本参数:①空间尺度参数:波高H:波谷底至波峰顶的垂直距离;振幅a:波浪中心至波峰顶的垂直距离;波面η=η(x,t):波面至静水面的垂直位移;波长L:两个相邻波峰顶之间的水平距离;水深h:静水面至海底的垂直距离②时间尺度参数:波周期T:波浪推进一个波长所需的时间;波频率f:单位时间波动次数f=1/T;波速c:波浪传播速度c=L/T (2)复合参数:①波动角(圆)频率σ=2π/T②波数k=2π/L③波陡δ=H/L④相对水深h/L或kh 7.(1)势波运动的控制方程(拉普拉斯方程): (2)伯努利方程: 8.定解条件(边界条件):①在海底表面水质点垂直速度为零,②在波面z=η处,应满足两个边界条件:动力边界条件:自由水面水压力为0;运动边界条件:波 面的上升速度与水质点上升速度相同。自由水面运动边界条件:③波 场上、下两端面边界条件:对于简单波动,常认为它在空间和时间上呈周期性。 9.①自由水面的波面曲线:η=cos(kx-σt)*H/2②弥散方程:σ2=gktanh(kh)③弥散方程推得的几个等价关系式:L=tanh(kh)*gT2/(2π),c=tanh(kh)*gT/(2π),c2=tanh(kh)*g/k 10.★弥散(色散)现象:水深给定时,波周期愈长,波长愈长,波速愈大,这样使不同波长的波在传播过程中逐渐分离。这种不同波长(或周期)的波以不同速度进行传播最后导致波的分散现象称为波的弥散(或色散)现象。 11.①深水波时:波长L0=gT2/(2π);波速c0=gT/(2π)②浅水波时:波长L s=T;波速c s= 12.微幅波水质点的轨迹为一个封闭椭圆,但不是一直为椭圆,在深水情况下,水质点运动轨迹为一个圆,随着质点距水面深度增大,轨迹圆的半径以指数函数形式迅速减小。 13.波浪压力p z=-ρgz+ρgHcosh[k(z+h)]/[2cosh(kh)],等号右边第1项为静水压力部分,其值始终为正值,第二项为动水压力部分。此公式值在波峰时为最大,波谷时为最小。 14.一个波长范围内,单宽波峰线长度的平均总波能:=E/L=ρgH2/8,单位为J/m2 15.★波能流:波浪传播过程有能量传递,通过单宽波峰线长度的平均能量传递率称波能流。 16.★辐射应力:作用在垂直于底面的单位水柱体四个侧面上的由于动量交换而产生的应力的时均值,单位是N/m。 17.描述波系大小有两种方法:①对波高、周期等进行统计分析,采用有某种统计特征值的波作为代表波的特征波法;②谱表示法。

海岸动力学考试复习大纲

海岸动力学考试复习大纲 一、考试类型:闭卷 二、考试题型 包括 1、名词解释 2、证明或推导题 3、问答题 4、计算题 三、复习考试时间 十七、十八周 四、期末考试所占分数(60%) 五、考试范围 1、名词解释 小振幅波理论深水波及浅水波、波能流辐射应力有效波高能谱方向谱 波浪守恒波能守恒波浪浅水变形波浪折射 波浪增水减水、边缘波、低频波浪、海岸垂向环流 港湾共振开尔文波潮流椭圆无潮点 载沙量体积输沙率平衡输沙、不平衡输沙 2、证明推导 P61-62页,2.4、2.5、2.7题 1)根据波能守恒推导浅水系数

2)根据有限水深极限波陡的表达式推导浅水波浪破碎的判别指标3)试推导河口潮汐的格林定律 4)证明平直海岸破波带外沿岸流速为0 5)p82, 3-7题。5-5题 3、问答题 2-2题; 1)、试利用小振幅波理论解释水质点运动的特征 2)、有限斯托克斯波的主要特征 3)、试解释动水压力在不同水深(浅水、深水、有限水深)的分布特征 4)、试解释深水波与浅水波的差异(波浪要素、水质点速度及轨迹、压力)? 5)、何谓波浪破碎?有什么判别准则?波浪破碎的特点是什么?6)、简述辐射应力在碎波带内外的变化规律 7)、简述近岸流方程中各项的意义 8)、简述波浪增减水在碎波带内外的变化规律 9)、简述沿岸流在碎波带内的分布特征 10)、请利用简化的潮波理论,阐述地形、径流对一个喇叭形状的、水深由口外向河口湾顶端逐渐减少的河口湾潮汐的影响 教材4.2~4.4题 5.3 -5.4 题,7-1~7-4题,7-7~7-8题

4、计算题 1)掌握深水、浅水波的判别方法,计算深水波和浅水波的波长、波速 2)计算水质点的最大速度、水质点轨迹直径及近底层最大速度 3)计算波能、波动压力 4)掌握波浪浅水系数、折射系数的计算,计算给定水深的波高,判断波浪是否破碎 5)掌握正向入射波浪辐射应力的计算公式及掌握波浪最大减水公式及增水公式,计算给定波浪的增减水 6)掌握沿岸流的计算,如 若等深线平行,深水波高m H 20=,周期s T 8=,深水波向角 300=α,不考虑海滩坡度的影响,请计算并判断5m 水深处波浪是否破碎?1.0m 水深处呢?计算碎波带内平均沿岸流流速。(如b b m b l u v ααcos sin 7.2=) 7)掌握水流强度参数及希尔兹参数的计算公式,泥沙起动的一种判别方式,并判别给定波浪、水深,其泥沙是否被起动? 8)均匀平直的海岸等深线,深海入射波高2 m ,周期5 sec ,波浪入射角为?15,碎波线处入射角为?5,试求一日的沿岸输沙量。(()b b b g a y EC Q θθα=cos sin 取 06.0=αa ) 9)综合:从波长~波高~水质点速度、轨迹~泥沙起动(沿岸流、沿岸输沙等)

最新煤化学复习资料

煤化学复习资料 一、名词解释 1、真相对密度:在20℃时,单位体积(不包括煤的所有孔隙)煤的质量与同体积水的质量之比。 2、视相对密度:在20℃时,单位体积(不包括煤粒间的空隙,但包括煤粒内的孔隙)的质量与同体积水的质量之比。 3、反应性:在一定温度下煤与不同气体介质(如二氧化碳、水蒸气、氧气等)相互作用的反应能力。 4、结焦性:在工业条件下将煤炼成焦炭的性能。 5、粘结性:煤在隔绝空气条件下加热时,形成具有可塑性的胶质体,黏结本身或外加惰性物质的能力。 6、热稳定性:块煤在高温下保持原来粒度的性能。 7、煤的风化:靠近地表的煤层受大气和雨水中氧长时间的渗透、氧化和水解,性质发生很大变化的过程。 8、内在水分:煤在一定条件下达到空气干燥状态时所保持的水分。 9、外在水分:在一定条件下煤样与周围空气湿度达到平衡时失去的水分。10、透光率:煤样和稀硝酸溶液,在100℃(沸腾)的温度下,加热90min后,所产生的有色溶液,对一定波长的光(475nm)透过的百分数。11、孔隙率:煤粒内部存在一定的孔隙,孔隙体积与煤的总体积之比。12、高位发热量:由弹筒发热量减去硝酸生成的热和硝酸校正热后得到的发热量。13、恒容低位发热量:由高位发热量减去水(煤中原有的水和煤中氢燃烧生成的水)的汽化热后得到的发热量。 二、填空1、由高等植物形成的煤称作腐殖煤,由低等植物形成的煤称作腐泥煤。 2、影响变质作用的因素主要有:温度、压力、时间。 3、煤的大分子结构是由多个结构相似的基本结构单元通过桥键连接而成的。 4、由泥炭逐渐转变为岩石状的褐煤的这一过程称为煤的成岩作用。 5、煤的有机显微组分有镜质组、壳质组、惰质组。 6、工业分析将煤分为水分、灰分、挥发分、固定碳四种组分。 7、煤灰中主要的成分有SiO2、Al2O3、Fe2O3、MgO、CaO。 8、胶质体的性质有:热稳定性、透气性、流动性、膨胀性。 9、常见的气化介质有二氧化碳、水蒸气、氧气。10、粘结性烟煤热解过程分为干燥脱吸、活波分解、二次脱气三个阶段。10、煤的宏观煤岩成分包括镜煤、亮煤、暗煤、丝炭。

海岸动力学复习要点

海岸动力学复习要点 第二章波浪理论的复习要点 1、名词解释 波能流、深水波、浅水波、波浪频散关系、波群、驻波、波动压力、有效波高、波浪能谱、 波浪方向谱 2、证明推导 12(1)证明线性波单位水柱体内平均动能和势能都为(10分) gH,16 (2)P61 2-4\2-7 3、计算题 1)、深海入射波高2 m,周期8 s,海底泥沙粒径D=0.2mm,计算水深h=30米、h=5m处的 波长、波速及水质点近底层最大速度及轨迹直径。 2-12题 2-11题 2-17题 3、简答题 1)、试利用小振幅波理论解释水质点运动的特征 2)、有限斯托克斯波的主要特征 3)、试解释动水压力在不同水深(浅水、深水、有限水深)的分布特征 第三章波浪的传播和破碎的复习要点 1、名词解释 波浪守恒、波能守恒、波浪折射、破波带 2、证明推导题

1)、证明,若岸滩具有平直且相互平行的等深线时,该岸滩任一点(水深为h)的折射 coscos,,00k,,系数为 rcos,,khcosarcsinsintanh(),,,,i0,, c02)、推导浅水变形系数 k,s2cnii 3、简答题 1)、水深(地形)对波浪传播的影响表现在哪些方面,请结合小振幅波理论阐述地形(水深)要素是怎样影响的, 2)、请简述水流运动(如潮流运动)对波浪传播的影响 3)、3-1题、3-2题 4、计算题 1)、均匀平直的海岸,等深线平行,深海入射波高2 m,周期10 sec, (1) 若波浪垂直入射海岸,计算水深5.0米处的波高,判断该处波浪是否破碎, (2)若波浪斜向入射,入射角为15:,碎波线处入射角为5:,计算破波波高及破波水深。 2)3-3题 3)3-4题、3-9题、3-10题 近岸波浪流复习要点 1、名词解释 辐射应力、波浪增水、波浪减水、沿岸流 2、证明推导 1,,,H1) 证明碎波带外波浪作用下发生减水现象,碎波点减水最大, bb120,,H2) 证明碎波带内、岸线位置增水最大 maxb43) 根据线性波理论,证明碎波带外沿岸流为0 ,,,5tg4) 证明,不考虑侧向混合的影响,碎波带内的平均沿岸流为 V,usin,lmbb16Cf 3、思考题 1) 简述辐射应力在浅水区和碎波带的变化规律 2) 波浪增减水是如何发生的,

心得体会 港航课程设计心得体会

港航课程设计心得体会 港航课程设计心得体会 航道工程课程设计 题目:高良涧二线船闸总体设计学院:海洋环境与工程学院专业:港口航道与海岸工程学号:姓名: 设计书目录 第一部分:设计基本资料第一部分:设计基本资料1.1设计依据1.2设计标准、规范1.3地形资料1.4地质资料1.5水文资料1.6经济资料1.7交通及建筑材料供应情况1.8公路及桥梁 第二部分:船闸总体设计2.1船闸基本尺度的确定2.2船闸各部分高程的确定2.3引航道平面布置及尺度确定2.4船闸通过能力计算2.5船闸总体布置原则第三部分:船闸布置图3.1船闸总平面布置图(附一)3.2船闸纵断面布置图(附二) 1.1设计依据 本工程以国家计委关于《开发淮河运输两淮煤矿水运建设任务书》的批复(计交[xx]979文号)主要依据,并按照1978年9月交通部会同煤炭部和安徽省、江苏省共同编制上报的《两淮煤炭淮申线水运建设计划任务书》及xx年9月18日交通部《关于报送对两淮煤炭淮申线水运建设计划任务书的调整意见的报告》以及安徽省交通厅、交通部水运规划设计院编制的《两淮煤炭淮申线水运建设可行性研究报告》等文件的有关规定进行设计。1.2设计标准、规范 高良涧二线船闸按III级船闸、II级建筑物(闸首、闸室)、III级附属

建筑物标准设计。 设计采用中华人民共和国行业标准《船闸总体设计规范JTJ305-xx》1.3地形资料 本船闸位于洪泽湖南面,其南面是苏北灌溉总渠,夹于两水系之间,同时两水系之间还隔有一道防洪大堤。 在大堤的北面与洪泽湖水边线之间有一片洼地,标高在12.0~14.0之间。另外,在大堤上有一条淮阴通往南京方向的公路。1.4地质资料 高良涧二线船闸位于洪泽湖大堤,土质较为复杂。上部为人工夯实的湖堤,多为黄色粘土,持力层为粘土、亚粘土、粉砂夹层,但层次划分不明,软硬变化较大,下卧层基本上为承载力较高的砂性土。通过对有代表性的02号钻孔(下闸首部位)土层分布及试验成果的分析,范围为 1.5~17.10的地基土的平均允许承载力为0.27MPa,平均变形模量为5054KPa,泊松比为0.32。 回填土的力学性能指标表1-1 1.5水文资料 1.5.1特征水位 1.5.2水位组合 1.5.3风力、风向 最大风力8级,偏西方向,风速达21m/s。 1.6经济资料 1.6.1过闸货流

海岸动力学复习题word资料29页

第一章 波浪理论 1.1 建立简单波浪理论时,一般作了哪些假设? 【答】:(1)流体是均质和不可压缩的,密度ρ为一常数; (2)流体是无粘性的理想流体; (3)自由水面的压力均匀且为常数; (4)水流运动是无旋的; (5)海底水平且不透水; (6)作用于流体上的质量力仅为重力,表面张力和柯氏力可忽略不计; (7)波浪属于平面运动,即在xz 水平面内运动。 1.2 试写出波浪运动基本方程和定解条件,并说明其意义。 【答】:波浪运动基本方程是Laplace 方程:02222=??+??z x φ φ或写作:02=?φ。该方程属 二元二阶偏微分方程,它有无穷多解。为了求得定解,需有包括初始条件和边界条件的定解条件: 初始条件:因波浪的自由波动是一种有规则的周期性运动,初始条件可不考虑。 边界条件: (1)在海底表面,水质点垂直速度应为0,即 =-=h z w 或写为在z=-h 处, 0=??z φ (2)在波面z=η处,应满足两个边界条件,一是动力边界条件、二是运动边界条件 A 、动力边界条件 0212 2=+??? ???????? ????+??? ????+??==ηφφφ η η g z x t z z 由于含有对流惯性项??? ? ??????? ????+??? ????2221z x φφ,所以该边界条件是非线性的。

B 、运动边界条件,在z=η处 0=??-????+??z x x t φφηη。该边界条件也是非线性的。 (3)波场上下两端面边界条件 ),(),,(z ct x t z x -=φφ 其中c 为波速,x -ct 表示波浪沿x 正向推进。 1.3 试写出微幅波理论的基本方程和定解条件,并说明其意义及求解方法。 【答】:微幅波理论的基本方程为:02=?φ 定解条件:z=-h 处, 0=??z φ z=0处, 022=??+??z g t φ φ z=0处,?? ? ????-=t g φη1 求解方法:分离变量法 1.4 线性波的势函数为()[]() ()t kx kh z h k gH σσφ-?+?= sin cosh cosh 2, 证明上式也可写成()[]() ()t kx kh z h k Hc σφ-?+?= sin sinh cosh 2 【证明】: 由弥散方程:()kh gk tanh 2?=σ以及波动角频率σ和k 波数定义: T πσ2= , L k π 2= 可得:()kh L g T tanh 22π πσ?=? , 即 ()()kh kh L T g cosh sinh ? ?=σ 由波速c 的定义:T L c = 故:()()c kh g kh sinh cosh ?=?σ 将上式代入波势函数: ()[]() ()t kx kh z h k gH σσφ-?+?= sin cosh cosh 2 得: ()[]() ()t kx kh z h k Hc σφ-?+?= sin sinh cosh 2 即证。

港口航道与海岸工程-海岸工程学:任务书

海岸工程学课程设计 任务书 (港口航道与海岸工程专业) XXXXX 大学 20xx年5月

海岸工程学课程设计任务书——第九组 一、工程概况 1、工程位置 拟建电厂位于印度尼西亚国南部爪哇岛的西南海岸Palabuhan Ratu 湾内,面对印度洋。地理概位为:07°02′E,106°32′N。 2、工程内容 防波堤设计内容包括南防波堤和北防波堤,南防波堤总长1284.628m,北防波堤总长778.627m。 二、自然条件 1、气象 本地区属热带雨林气候,高温、多雨、风小、湿度大,每年1~3月份为雨季,6~9月份为旱季,其它月份为旱湿转换期。 1)气温 工程点气温特征值表 2)降水 单位:mm 各月降水量统计表(1996年~2005年) 2、水文 1)设计水位(平均海平面为基准) 设计高水位: 0.84m 设计低水位: -0.77m 极端高水位: 1.07m 极端低水位: -1.01m

海啸增水考虑 2m~3m 2)波浪 注:阴影部分为极限波高 3)潮流 最大流速为0.24cm/s。 3、工程地质 1)地质分层 根据中交三航设计院勘察公司编制的地质报告,拟建场区50m以浅从上到下主要发育以下地层: Ⅰ细砂 浅褐~浅灰色,饱和,松散~稍密,土质较均匀,含铁质矿物。局部颗粒较粗,为中细砂。颗粒级配不良。该层主要分布在拟建码头区和拟建防波堤的近岸段,而防波堤的其他区域基本缺失。顶部的砂粒一般随海潮和海浪移动,一般直接出露于海底。层厚一般2.0~5.0m,F9~M7段较薄,仅为0.7m左右,M3处较厚,为8.7m左右。实测标贯击数5~12击。 Ⅱ粉砂 灰~浅灰褐色,饱和,松散~稍密(局部为中密状)。土质不匀。混少量粘性土;近岸的码头区和防波堤近岸区(是指防波堤靠岸钻孔F1和F9及其附近,以下所指相同)偶含少量中粗砂或小砾石,局部近中细砂;局部粉土含量高,为砂质粉土;在防波堤区局部为粉砂混淤泥质粉质粘土或为砂质粉土。该层分布较广,除在南防波堤F1处缺失外,一般均有分布,且在防波堤区除近岸段外分布一般都较厚。码头区和防波堤近岸区而厚度一般为3.0~6.0m,顶板标高一般为-4.0~-6.0m左右,局部(F9~M7)较高为-2.2m左右,局部(M3)较低为-10.0m左右;在防波堤远岸区域,厚度一般为5.0~10.0m,顶板标高一般为-8.0~-13.0m左右。实测标贯击数一般为5~13击,总体呈现码头区和防波堤近岸区击数相对较大些,局部可达14~20击,而防波堤其他区域相对较为松散,击数小些,局部近3~5击。 Ⅱt 淤泥质粉质粘土混砂 灰~浅灰色,饱和,流塑(局部近粉质粘土混砂,呈软塑状)。局部混粉砂较少,近淤

海岸动力学复习资料

1 海岸动力学复习资料 第一章 1.海岸带宽度按从海岸线向内陆扩展10KM,向外海延伸到-15~-20m 水深计算。 2.海岸类型:基岩海岸,砂质海岸,淤泥质海岸,生物海岸。 3.海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受波浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延伸至暴风浪所能到达的地带。 4.海岸动力因素:波浪的作用、 海岸波生流、潮流的作用、径流的作用、海流的作用、风暴潮和海啸、风的作用、海平面上升。 5.波浪是引起海岸变化的主要因素。 6.近岸波生流——波浪传至近岸地区发生变形、折射与破碎,不仅其尺度改变了,同时还形成的一定水体流. 7.沿岸流——斜向入射的波浪进入海滨地带后,在破波带引起一股与海岸平行的平均流。 8.裂流流速很高,会带动强烈的向外海输移的泥沙运动。 9.潮流对海岸的作用:影响海岸带波浪的作用范围及作用强度;影响海岸带地貌类型的发育;潮流流速影响海岸带的侵蚀与淤积。 10.河流径流挟带着大量的泥沙在河口外扩散和沉积,是海岸淤涨的主要物质来源之一,导致在河口外发育着河口三角洲或三角港。 第二章 1.风浪的大小取决于风速、风时和风距的大小。由于风速风向复杂多变,风所引起的海浪在形式上也极为复杂,波形极不规则,传播方向变化不定,不可能用简单的确定性数学公式来描述,所以经常把风浪称为不规则波。 2.波浪的分类: 1)按形态分类:规则波和不规则波 2)按传播海域的水深分类:深水波、有限水深波、潜水波(深水波与有限水深波界限为h/L=1/2,潜水波与有限水深波界限为h/L=1/20)。 3)按运动状态分类:震荡波、推进波、推移波 4)按破碎与否分类:破碎波、未破碎波、破后波 5)按运动学和动力学的处理方法:微幅波和有限振幅波 3.波浪运动控制方程 0x 222 2=??+??z φ φ 4.定解条件: 1)海底表面设为固壁,因此水质点垂直速度为零。0z =??φ z=-h 2)在波面 z=η处,应满足动力学边界条件 运动学边界条件。动力学边界条件为水面上压力为常数,因此取 z=η,并令p=0,得到自由表面动力学边界条件。 3)流场左右两端的边界条件可根据简单的波动在空间和时间上呈周期性来却确定。在空间上看的波要素是相同的,在时间上看一个周期后的要素也应相等,故波场上下两端面边界条件可表示为 ),,(),,(,,T t z x t z L x t z x +=+=φφφ)(。 5.建立简单波理论时,一般作如下规定:流体是均质和不可压缩的,其密度为常数;流体是无粘性的理想液体;自由水面的压力是均匀的且为常数;水流运动是无旋的;海底水平、不透水;质量力仅为重力,表面张力和柯氏力可忽略不计;波浪属于平面运动,在xz 平面内坐二维运动。 6.微幅波理论的控制方程和定解条件 控制方程:0x 222 2 =??+??z φφ 定解条件:海底部边界条件:0t =??φ z=-h 自由水面处: 动力学边界条件:t g 1??- =φ η z=0(能量守恒) 运动学边界条件: 0g t 22=??+??z φ φ z=0 边界条件:),(),,(z ct x t z x -==φφ 7.微幅波理论的意义:假设运动是缓慢的,波动的振幅A 远小于波长L 或水深h 。 8.微幅波势函数:σ φAg =)sin(cosh ) (cosh t kx kh h z k σ-+ 9.色散方程:kh gk tanh 2 =σ L=kh gT tanh 22 π c=T L =k σ 10.波的色散现象:不同波长或周期的波以不同的速度进 行传播最后导致的分散现象。该现象表明了:波浪的传播还与水深有关,水深变化时,波长和波速也将随之变化。 11.微幅波单宽波峰线长度一个波长范围内平均的波浪动能和势能相等。 12.波能流:波浪在传播过程中存在能量传递,通过单宽波峰线长度的平均的能量传递率。

相关主题
文本预览
相关文档 最新文档