当前位置:文档之家› 我的笔记(传热学第八章) - 辐射换热的计算

我的笔记(传热学第八章) - 辐射换热的计算

我的笔记(传热学第八章) - 辐射换热的计算
我的笔记(传热学第八章) - 辐射换热的计算

第八章 辐射换热的计算

§8-1 角系数的定义、性质及计算

两个表面之间的辐射换热量与两个表面之间的相对位置有很大关系

a 图中两表面无限接近,相互间的换热量最大;

b 图中两表面位于同一平面上,相互间的辐射换热量为零。由图可以看出,两个表面间的相对位置不同时,一个表面发出而落到另一个表面上的辐射能的百分数随之而异,从而影响到换热量。 一. 角系数的定义

角系数是进行辐射换热计算时空间热组的主要组成部分。

定义:把表面1发出的辐射能中落到表面2上的百分数称为表面1对表面2的角系数,记为X 1,2。 二. 角系数的性质

研究角系数的性质是用代数法(代数分析法)求解角系数的前提: 假定:(1)所研究的表面是漫射的

(2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的 1、角系数的相对性

一个微元表面到另一个微元表面的角系数

两微元表面角系数的相对性表达式:

1121

1112,11cos b A dA dA b A I d d dA dA X dA E d θ???Ω

==

?由发出的落到上的辐射能由发出的辐射能2

2

12,cos cos 21r dA X dA dA πθθ??=

1

221,2,1dA dA dA dA X dA X dA ?=?

2、角系数的完整性

对于由几个表面组成的封闭系统,据能量守衡原理,从任何一个表面发射出的辐射能必全部落到封闭系统的个表面上。因此,任何一个表面对封闭腔各表面的角系数之间存在下列关系:

注:若表面1为非凹表面时,X 1,1 = 0;若表面1为凹表面,X 1,1≠ 0 3、角系数的可加性

注意,利用角系数可加性时,只有对角系数符号中第二个角码是可加的,对角系数符号中的第一个角码则不存在类似的关系。

从表面2上发出而落到表面1上的辐射能,等于从表面2的各部分发出而落到表面1上的辐射能之和。

三、角系数的计算方法 1、直接积分法

按角系数的基本定义通过求解多重积分而获得角系数的方法

2、代数分析法

利用角系数的相对性、完整性及可加性,通过求解代数方程而获得角系数的方法称为代数分析法。

3、几何分析法

§8-2 被透明介质隔开的两固体表面间的辐射换热 一、两黑体表面组成的封闭腔间的辐射换热计算

1

,13,12,11,1=++++n X X X X

如图8-7所示,黑表面1和2之间的辐射换热量为

二、两漫灰表面组成的封闭系统的辐射换热计算 1、有效辐射

(1)投入辐射:单位时间内投射到单位面积上的总辐射能,记为G 。 (2)有效辐射:单位时间内离开单位面积的总辐射能为该表面的有效辐射,记为J 。

有效辐射包括:自身射辐射E 、投入辐射被反射辐射的部分

考察表面温度均匀、表面辐射特性为常数的表面1(如图8-8所示)。根据有效辐射的定义,表面1的有效辐射有如下表达式:

G

ρ的部分

的部分

到达表面到达表面的热辐射的热辐射发出

表面发出表面1221)

(212,111,2222,1112,1↓↓-=-=Φb b b b E E X A X E A X E A

在表面外能感受到的表面辐射就是有效辐射,它也是用辐射探测仪能测量到的单位表面积上的辐射功率w/m2。

从表面1外部来观察,其能量收支差额应等于有效辐射J1 与投入辐射G1之差,即

从表面内部观察,该表面与外界的辐射换热量应为: 上两式联立,消去G 1,得到J 与表面净辐射换热量之间的关系:

注意:式中的各个量均是对同一表面而言的,而且以向外界的净放热量为正值。

2、两灰表面组成的封闭腔的辐射换热

定义系统黑度(或称为系统发射率)

三种特殊情形

(1) 表面1为凸面或平面,此时,X 1,2=1,于是

(2) 表面积A 1比表面积A 2小得多,即A 1/A 2→ 0 于是

1

11111111G E G E G J q b αεα-=-=-=111

q

E G α=-????? ??-+???? ??-+=1111112212,112,1εεεA A X X s ???? ??-+=

1111

2211εεεA A s 1

εε=s

(3) 表面积A 1与表面积A 2相当,即A 1/A 2→ 1 于是 举例

(1) 两平行平壁间的辐射换热

(2) 空腔与内包壁间的辐射换热

讨论练习:

某房间吊装一水银温度计读数为15,已知温度计头部发射率(黑度)为0.9,头部与室内空气间的对流换热系数为20,墙表面温度为10,求该温度计的测量误差。如何减小测量误差?

12A A A

==1221X X =,,1221X X =,

,1

1

1

12

1

-+

=

εεεs ???

? ??-++???? ??--=

Φ11111)

(2212,112112,1εεA A X E E A b b ??

?

? ??-+=

1111

2211εεεA A s 1121,21122()

11

1b b A E E A A εε-Φ=

??+- ???

§8-3 多表面系统辐射换热的计算 1.势差与热阻 据有效辐射的计算式

又据两个表面的净换热量为

利用上述两个单元格电路,可以容易地画出组成封闭系统的两个灰体表面间辐射换热的等效网络,如图所示。根据等效网络,可以立即写出换热量计算式:

这种把辐射热阻比拟成等效的电阻从而通过等效的网络图来求解辐射换热的方法成为辐射换热的网络法。

应用网络法求解多表面封闭系统辐射换热问题的步骤:

(1)画出等效的网络图。(2)列出节点的电流方程(3)求解上述代数方

程得出节点电势。(4)按公式 确定每一个表面的净辐射换热量。

1,2111,2222,111,212()

A J X A J X A X J J Φ=-=-12

121111,222

111

b b E E A A X A εεεε-Φ=

--++

1bi i

i

i i i E J A εε-Φ=-

2.网络法的应用举例

以图(a)所示的三表面的辐射换热问题为例画出图(b)的等效网络图

3. 两个重要特例

a 有一个表面为黑体。黑体的表面热阻为零。其网络图见图8-14a。

b 有一个表面绝热,即该表面的净换热量为零。其网络图见图8-14b 和8-14c,

§8-4 辐射换热的强化与削弱

强化辐射换热的主要途径有两种:

(1) 增加发射率; (2) 增加角系数。

削弱辐射换热的主要途径有三种:

(1) 降低发射率; (2) 降低角系数; (3) 加入遮热板。

所谓遮热板,是指插入两个辐射换热表面之间以削弱辐射换热的薄板,其实插入遮热板相当于降低了表面发射率。本节主要讨论这种削弱辐射换热的方式。

辐射表面和金属板的温度、吸收比如图所示。为讨论方便,设平板和金属薄板都是灰体,并且

稳态时有:

可见,与没有遮热板时相比,辐射换热量减小了一半。

§8-5 气体辐射

本节将简要介绍气体辐射的特点、换热过程及其处理方法。在工程中常见的温度范围内 ,CO2和 H2O 具有很强的吸收和发射热辐射的本领,而其他的气体则较弱,这也是本节采用这两种气体作为例子的原因。

1 气体辐射的特点

(1) 气体辐射对波长具有选择性。它只在某谱带内具有发射和吸收辐射的本领,而对于其他谱带则呈现透明状态。如图8-16所示。

(2) 气体的辐射和吸收是在整个容积中进行的,因而,气体的发射率和吸收比还与容器的形状和容积大小有关。

??

??

?

??==-=?-=-=2

,33,12,1212,1232,3313,1)

(21)()(q q q E E q E E q E E q b b s b b s b b s εε

ε

2 气体辐射的衰减规律

当热辐射进入吸收性气体层时,因沿途被气体吸收而衰减。为了考察辐射在气体内的衰减规律,如图8-17所示,我们假设投射到气体界面 x = 0 处的光谱辐射强度为Lo ,通过一段距离x 后,该辐射变为Lx 。再通过微元气体层 d x 后,其衰减量为dLx 。

理论上已经证明,dLx/Lx 与行程 d x 成正比,设比例系数为K ,则有

进行积分可得

(1)式中,负号表示吸收,K 为光谱衰减系数,m -1,它取决于其体的种类、密度和波长.

(2)式(Beer 定律)中,s 是辐射通过的路程长度,常称之为射线程长。从上式可知,热辐射在气体内呈指数规律衰减。

3 气体辐射的光谱吸收比、光谱发射率 对于气体,反射率为零

4 气体的发射率

1)确定气体的发射率

2)利用 计算气体的发射辐射。

(还与气体的温度和气体得分压力有关)与射线程长s 关系密切,而s

取决s K s e

L L λλλ-=0

,,x K L L x x

d d ,,λλλ-=4

g g T A σε=Φg

ε

于气体容积的形状和尺寸。如图8-18所示。

3)为了使射线程长均匀,人们引入了当量半球的概念,其半径就是等效的射线程长,见图8-19所示。

在缺少资料的情况下,任意几个形状气体对整个包壁的平均射线程长可按下式计算:

式中,V 为气体容积,m 3;A 为包壁面积,m 2。

图8-18 气体对不同地区的辐射图8-19 半球内气体对球心的辐射

5 气体的吸收比

在其体发射率和吸收比确定后,气体与黑体外壳之间的辐射换热公式为:

A

V s 6

.3=α

αα

α?-+=**2

222CO CO O H O H g C C w

b g g b g E E q ,,αε-=

计算传热学

1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。(边界条件用差分代替微分和能量平衡法),画图。(内,外节点) 2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序: 00 00000()()()() L L f x x x x L fL L x x x x T T k s c x x T k h T T W x T k h T T W x T T x τρτ =====???+=????=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。 具体要求: 1) 将数学模型无量纲化; 2) 考虑各种可能的边界条件和初始条件组合 3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明 3、对于有源项的一维稳态方程, s dx d T dx d u dx d +=)()(φφρ 已知 x=0,φ=0,x=1, φ=1.源项S=0.5-X 利用迎风格式、混合格式、乘方格式求解φ的分布.

我的笔记(传热学第八章) - 辐射换热的计算

第八章 辐射换热的计算 §8-1 角系数的定义、性质及计算 两个表面之间的辐射换热量与两个表面之间的相对位置有很大关系 a 图中两表面无限接近,相互间的换热量最大; b 图中两表面位于同一平面上,相互间的辐射换热量为零。由图可以看出,两个表面间的相对位置不同时,一个表面发出而落到另一个表面上的辐射能的百分数随之而异,从而影响到换热量。 一. 角系数的定义 角系数是进行辐射换热计算时空间热组的主要组成部分。 定义:把表面1发出的辐射能中落到表面2上的百分数称为表面1对表面2的角系数,记为X 1,2。 二. 角系数的性质 研究角系数的性质是用代数法(代数分析法)求解角系数的前提: 假定:(1)所研究的表面是漫射的 (2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的 1、角系数的相对性 一个微元表面到另一个微元表面的角系数 两微元表面角系数的相对性表达式: 1121 1112,11cos b A dA dA b A I d d dA dA X dA E d θ???Ω == ?由发出的落到上的辐射能由发出的辐射能2 2 12,cos cos 21r dA X dA dA πθθ??= 1 221,2,1dA dA dA dA X dA X dA ?=?

2、角系数的完整性 对于由几个表面组成的封闭系统,据能量守衡原理,从任何一个表面发射出的辐射能必全部落到封闭系统的个表面上。因此,任何一个表面对封闭腔各表面的角系数之间存在下列关系: 注:若表面1为非凹表面时,X 1,1 = 0;若表面1为凹表面,X 1,1≠ 0 3、角系数的可加性 注意,利用角系数可加性时,只有对角系数符号中第二个角码是可加的,对角系数符号中的第一个角码则不存在类似的关系。 从表面2上发出而落到表面1上的辐射能,等于从表面2的各部分发出而落到表面1上的辐射能之和。 三、角系数的计算方法 1、直接积分法 按角系数的基本定义通过求解多重积分而获得角系数的方法 2、代数分析法 利用角系数的相对性、完整性及可加性,通过求解代数方程而获得角系数的方法称为代数分析法。 3、几何分析法 §8-2 被透明介质隔开的两固体表面间的辐射换热 一、两黑体表面组成的封闭腔间的辐射换热计算 1 ,13,12,11,1=++++n X X X X

传热学第八章答案解析

第八章 1.什么叫黑体?在热辐射理论中为什么要引入这一概念? 2.温度均匀得空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射? 3.试说明,为什么在定义物体的辐射力时要加上"半球空间"及"全部波长"的说明? 4.黑体的辐射能按波长是怎样分布的?光谱吸收力λb E 的单位中分母的"3 m "代表什么 意义? 5.黑体的辐射按空间方向是怎样分布的?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的? 6.什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释? 7.对于一般物体,吸收比等于发射率在什么条件下才成立? 8,说明灰体的定义以及引入灰体的简化对工程辐射传热计算的意义. 9.黑体的辐射具有漫射特性.如何理解从黑体模型(温度均匀的空腔器壁上的小孔)发出的辐射能也具有漫射特性呢? 黑体辐射基本定律 8-1、一电炉的电功率为1KW ,炉丝温度为847℃,直径为1mm 。电炉的效率为0.96。试确定所需炉丝的最短长度。 解:5.67×34 10 96.010*******?=??? ??+dL π 得L=3.61m 8-2、直径为1m 的铝制球壳内表面维持在均匀的温度500K ,试计算置于该球壳内的一个实验表面所得到的投入辐射。内表面发射率的大小对这一数值有否影响? 解:由 4 0100? ?? ??=T C E b =35438 W/2m 8-3、把太阳表面近似地看成是T=5800K 的黑体,试确定太阳发出的辐射能中可光所占的百分数。 解:可见光波长范围是0.38~0.76m μ 4 0100? ?? ??=T C E b =64200 W/2m 可见光所占份额 ()()()%87.44001212=---=-λλλλb b b F F F 8-4、一炉膛内火焰的平均温度为1500K ,炉墙上有一着火孔。试计算当着火孔打开时从孔向外辐射的功率。该辐射能中波长为2m μ的光谱辐射力是多少?哪种波长下的能量最多? 解:4 0100? ?? ??=T C E b =287W/2m ()3 10/5 1/1074.912m W e c E T c b ?=-=-λλ λ

传热学计算例题

、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583 mm,外表面 实测平均温度及空气温度分别为,此时空气与管道外 表面间的自然对流换热的表面传热系数h=3.42 W /(m2 K),墙壁的温度近似取为 室内空气的温度,保温层外表面的发射率 问:(1)此管道外壁的换热必须考虑哪些热量传递方式; (2)计算每米长度管道外壁的总散热量。(12分) 解: (1)此管道外壁的换热有辐射换热和自然对流换热两种方式。 (2)把管道每米长度上的散热量记为qi 当仅考虑自然对流时,单位长度上的自然对流散热 q i,c =二d h t =二dh (j - t f ) = 3.14 0.583 3.42 (48 - 23 ) 二156 .5(W / m) 近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁 之间的辐射为: q i厂d (T; -T;) = 3.14 0.583 5.67 10》0.9 [(48 273)4-(23 273)4] = 274.7(W /m) 总的散热量为q i = q i,c +q i,r = 156.5 +274.7 = 431.2(W/m) 2、如图所示的墙壁,其导热系数为50W/(m- K),厚度为50mm在稳态情况下的 墙壁内的一维温度分布为:t=200-2000x 2,式中t的单位为°C, x单位为m 试 求: t (1) 墙壁两侧表面的热流密度; (2) 墙壁内单位体积的内热源生成的热量 2 t =200 —2000x

解:(1)由傅立叶定律: ① dt W q ' (―4000x) = 4000二x A dx 所以墙壁两侧的热流密度: q x _. =4000 50 0.05 =10000 (1)由导热微分方程 茫?生=0得: dx 扎 3、一根直径为1mm 勺铜导线,每米的电阻为2.22 10 。导线外包有厚度为 0.5mm 导热系数为0.15W/(m ? K)的绝缘层。限定绝缘层的最高温度为 65°C,绝 缘层的外表面温度受环境影响,假设为40°C 。试确定该导线的最大允许电流为多 少? 解:(1)以长度为L 的导线为例,导线通电后生成的热量为I 2RL ,其中的一部分 热量用于导线的升温,其热量为心务中:一部分热量通过绝热层的 导热传到大气中,其热量为:门二 1 , d In 2 L d 1 根据能量守恒定律知:l 2RL -门 述二厶E = I 2RL -门 即 E = — L dT m = I 2RL - t w1 _tw2 4 di 1 , d 2 In 2 L d 1 q v 、d 2t ——' 2 dx =-(7000)= 4000 50 二 200000 W/m 3 t w1 - t w2 。 2 q x 卫=4000.: 0 = 0

传热学经典计算题

传热学经典计算题 热传导 1. 用热电偶测量气罐中气体的温度。热电偶的初始温度为20℃,与气体的表面传热系数为()210/W m K ?。热电偶近似为球形,直径为0.2mm 。试计算插入10s 后,热电偶的过余温度为初始过余温度的百分之几?要使温度计过余温度不大于初始过余温度的1%,至少需要多长时间?已知热电偶焊锡丝的()67/W m K λ=?,7310ρ= 3/kg m ,()228/c J kg K =?。 解: 先判断本题能否利用集总参数法。 3 5100.110 1.491067hR Bi λ--??===?<0.1 可用集总参数法。 时间常数 3 73102280.110 5.563103c cV c R hA h ρρτ-??===?= s 则10 s 的相对过余温度 0θθ=exp c ττ??-= ???exp 1016.65.56??-= ???% 热电偶过余温度不大于初始过余温度1%所需的时间,由题意 0θθ=exp c ττ??- ??? ≤0.01 exp 5.56τ?? - ???≤0.01 解得 τ≥25.6 s

1、空气以10m/s 速度外掠0.8m 长的平板,C t f 080=,C t w 030=,计算 该平板在临界雷诺数c e R 下的c h 、全板平均表面传热系数以及换热量。 (层流时平板表面局部努塞尔数 3/12/1332.0r e x P R Nu =,紊流时平板表面局部努塞尔数3/15/40296.0r e x P R Nu =,板宽为1m ,已知5105?=c e R ,定性 温度C t m 055=时的物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P ) 解:(1)根据临界雷诺数求解由层流转变到紊流时的临界长度 C t t t w f m 055)(21=+=,此时空气得物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P )(92.0101046.1810565m u R X ul R c c e c e =???==?=-ν ν 由于板长是0.8m ,所以,整个平板表面的边界层的流态皆为层流 ? ==3/12/1332.0r e x P R hl Nu λ)/(41.7697.0)105(8.01087.2332.0332.023/12/1523/12 /1C m W P R l h r e c c ?=????==-λ (2)板长为0.8m 时,整个平板表面的边界层的雷诺数为: 561033.41046.188.010?=??==-νul R e 全板平均表面传热系数: )/(9.13697.0)1033.4(8.01087.2664.0664.023/12/1523/12 /1C m W P R l h r e c ?=????==-λ 全板平均表面换热量W t t hA w f 9.557)3080(18.09.13)(=-???=-=Φ

传热学数值计算大作业

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

辐射换热的计算

电磁波波长从几万分之一米到数千米

τ ρQ Q ++1 //=+Q Q Q Q τρ

单位面积辐射体在单位时间内向半球空间发射的波长为λ(+dλ区间)的能量。 黑体辐射的理论是建立在如下几个基本定律基础上的,即: 学理论得出) 1884热力学理论)

式中 Eb λ-- 光谱辐射力,W/m3 ; λ -- 波长,m ; T -- 黑体热力学温度,K ; e -- 自然对数的底; c1 --- 第一辐射常量, 3.742×10-16 W ·m2; c2 --- 第二辐射常量, 1.438× 10-2m ·K 。 Planck 认为黑体以hv 为能量单位,不断发射和吸收频率为 v 的辐射, hv 称为能量子 2. 维恩位移定律 由Planck 定律知 E λ=f(λ,T )如图, E λ有最大值; 随着T max 向左移动 1893热力学理论得出,由Plank ’s Law 求导,并令 )(01c const c 512=??? ???-==-T T b e d d d dE λλλλλ 光谱辐射力曲线下的面积是该温度下黑体 的辐射力 例题8-1 试分别计算温度为2000K 和5800K 的黑体的最大单色辐射力所对应的波长。 解: 应用Wien 位移定律 T=2000K 时 max=2.910-3/2000=1.45 m T=5800K 时 max=2.910-3/5800=0.50 m 常见物体最大辐射力对应的波长在红外线区 太阳辐射最大辐射力对应的波长在可见光区 如不是黑体,则不完全遵守这个定律,但其变化方向是相同的,例如金属(钢锭): 当T<500oC 时,没有可见光,颜色不变;T 增大,其颜色分别为暗红、鲜红、桔黄和白色。(P365) 3. 斯忒藩-玻耳兹曼定律 1879年Stefan 实验,1884年 Boltzman 热力学理论将Plank ’s Law 积分即得: 2 40 m /W T d E E b b σλλ==?∞ 为黑体辐射常数,其值为5.67 10-8W/( m2·K4)。为计算高温辐射的方便,可 改写为: 2 4 0W/m 100C ? ?? ??=T E b s J 10626.634??=-h

我的笔记(传热学第八章)---辐射换热的计算

我的笔记(传热学第八章)---辐射换热的计算

第八章 辐射换热的计算 §8-1 角系数的定义、性质及计算 ? 两个表面之间的辐射换热量与两个表面之间的相对位置有很大关系 ? a 图中两表面无限接近,相互间的换热量最大;b 图中两表面位于同一平面上,相互间的辐射换热量为零。由图可以看出,两个表面间的相对位置不同时,一个表面发出而落到另一个表面上的辐射能的百分数随之而异,从而影响到换热量。 一. 角系数的定义 角系数是进行辐射换热计算时空间热组的主要组成部分。 定义:把表面1发出的辐射能中落到表面2上的百分数称为表面1对表面2的角系数,记为X 1,2。 二. 角系数的性质 ? 研究角系数的性质是用代数法(代数分析法)求解角系数的前提: 假定:(1)所研究的表面是漫射的 (2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的 1、角系数的相对性 ? 一个微元表面到另一个微元表面的角系数 两微元表面角系数的相对性表达式: 1121 1112,11cos b A dA dA b A I d d dA dA X dA E d θ???Ω == ?由发出的落到上的辐射能由发出的辐射能2 2 12,cos cos 21r dA X dA dA πθθ??= 1 221,2,1dA dA dA dA X dA X dA ?=?

2、角系数的完整性 对于由几个表面组成的封闭系统,据能量守衡原理,从任何一个表面发射出的辐射能必全部落到封闭系统的个表面上。因此,任何一个表面对封闭腔各表面的角系数之间存在下列关系: 注:若表面1为非凹表面时,X 1,1 = 0;若表面1为凹表面,X 1,1≠ 0 3、角系数的可加性 注意,利用角系数可加性时,只有对角系数符号中第二个角码是可加的,对角系数符号中的第一个角码则不存在类似的关系。 从表面2上发出而落到表面1上的辐射能,等于从表面2的各部分发出而落到表面1上的辐射能之和。 三、角系数的计算方法 1、直接积分法 按角系数的基本定义通过求解多重积分而获得角系数的方法 2、代数分析法 利用角系数的相对性、完整性及可加性,通过求解代数方程而获得角系数的方法称为代数分析法。 3、几何分析法 §8-2 被透明介质隔开的两固体表面间的辐射换热 一、两黑体表面组成的封闭腔间的辐射换热计算 1 ,13,12,11,1=++++n X X X X Λ

第8章 热辐射基本定律和辐射特性

第8章 热辐射基本定律和辐射特性 课堂讲解 课后作业 【8-10】一等温空腔的内表面为漫射体,并维持在均匀的温度。其上有一个面积为0.022 m 的小孔,小孔面积相对于空腔内表面积可以忽略。今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响? 【解】小孔可以当做黑体来处理,4T A Φσ= 498.4496K 02 .01067.570 484 b =??==-A E T σ 小孔的黑体特性与空腔的内表面的性质无关,故不影响小孔向外的辐射。 【8-18】暖房的升温作用可以从玻璃的光谱穿透比变化特性解释。有一块厚为3mm 的玻璃,经测定,其对波长为0.3~2.5μm 的辐射能的穿透比为0.9,而对其他波长的辐射能可以认为完全不穿透。试据此计算温度为5800K 的黑体辐射及温度为300K 的黑体辐射投射到该玻璃上时各自的总穿透比。 【解】 ()()()()()()()() [] 12212 1 2 1 2 1 2 2 1 1 ~0b ~0b ~b b b b b b b b b b b b b b 0 b 9.09.0d 9 .0d 9.0d d d d d λλλλλλ λλλλλλ λλ λλλλλλλλ λ λλτλ λτλ λτλλτλλττF F F E E E E E E E E E E E E E E -==== = + + ==???????∞ ∞ T 1=5800K ,K m 174058003.011?=?=μλT ,K m 1450058005.212?=?=μλT ()0.032854 1~0b =λF ,()0.9660652~0b =λF ()()[][]0.8398899032854 .0966065.09.09.01 2 ~0b ~0b =-=-=λλτF F T 2=300K ,K m 903003.011?=?=μλT ,K m 0573005.212?=?=μλT ()0.0000288 1~0b =λF ,()0.000242~0b =λF ()()[][]0.000190080.0000288 0.000249.09.01 2 ~0b ~0b =-=-=λλτF F 【8-21】温度为310K 的4个表面置于太阳光的照射下,设此时各表面的光谱吸收比随波 长的变化如附图所示。试分析,在计算与太阳能的交换时,哪些表面可以作为灰体处理?为什么? 【解】太阳辐射能的绝大部分集中在2μm 以下的区域,温度为310K 的物体辐射能则绝大部分在6μm 以上的红外辐射,由图可见,第一种情形与第三种情形,上述波段范围内单色吸收率相同,因而可以作为灰体处理。

最新传热学第九章答案

传热学第九章答案

第九章 思考题 1、试述角系数的定义。“角系数是一个纯几何因子”的结论是在什么前提下得出的? 答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。 2、角系数有哪些特性?这些特性的物理背景是什么? 答:角系数有相对性、完整性和可加性。相对性是在两物体处于热平衡时, 净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系 统中。任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说 明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之 和。 3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型? 答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐 射能和从各个方向投入到该表面上的辐射能。 4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性? 答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射 力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝 特定律,这都给辐射换热计算带来了复杂性。 5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体 表面系统辐射换热的计算有什么作用? 答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入 辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐 射换热计算时出现多次吸收和反射的复杂性。 6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步 骤。

人体辐射换热的计算.讲解学习

人体辐射换热的计算.

人 体 辐 射 换 热 的 计 算 方 法 The Calculation Method Of Radiative Heat Loss From Human Body 同济大学楼宇设备工程与管理系 叶海 摘要:本文简要介绍了两种情况下人体辐射换热的计算方法,即人体与室内整体环境间的辐射换热、人体与单一壁面间的辐射换热。作者力求避免繁复的理论推导,而仅仅就研究结果,研究方法作了归纳与总结,列出了一些计算参数的取值范围,可供工程技术人员在计算时参考。 在热舒适的研究中,我们经常要计算人体与室内环境间的热交换,进而对人体的热感觉进行预测。人体与环境之间主要通过对流和辐射方式换热,导热基本上可以忽略不计。在普通的室内气候条件下,人体外表温度高于环境平均辐射温度,而室内风速一般较小,因此辐射散热量可占总散热量的50%左右,对流散热为30%左右,其余为蒸发散热。 一、人体与室内环境间的辐射换热 人体与室内环境间的辐射换热量Q R 可按空腔与内包壁面间的换热计算,即 W )11(1 )(44-+-=S S eff p mrt surf eff R A A T T A Q εεσ (1) 式中,eff A ——人体的有效辐射面积,m 2; 428K W/m 1067.5??=-σ,黑体的辐射常数。 surf T ——人体外表的平均温度,K ; mrt T ——环境的平均辐射温度,K ; P ε ——人体外表的平均发射率,无因次; S A ——包围人体的室内总面 积,m 2; S ε ——环境的平均发射率,无因次;

式(1)中,由于人体面积远小于环境面积,且一般室内材料的发射率接近于1,故分母的第二项可略去不计。在热舒适研究中,对人体的产热(即代谢率)和散热计算一般取单位皮肤面积,于是得到 244W/m )(mrt surf eff cl P r T T f f Q -=σε (2) 式中,cl f ——称为服装面积系数,无因次;后面将作进一步介绍。 eff f ——人体的有效辐射面积系数,无因次;后面将作进一步介绍。 式(2)虽然给出了人体辐射换热计算的具体形式,但令人遗憾的是,式中右边的各项大多难以从理论上确定,一般依赖于经验公式来解决。两个系数的意义在于,着装增大了人体的外表面积,而人体的外表之间存在着相互辐射。至于平均辐射温度,它是假想室内环境在均一的温度下与人体进行换热。以下将对其中各项进行详细讨论。 1-1 人体外表的平均发射率 发射率有时也称为黑度、黑率或辐射系数,它表明物体表面与黑体相比辐射能量的效率。根据基尔霍夫定律,“漫-灰表面”在温度平衡时,可以认为发射率与吸收率相等,但在工程计算中,若温差不过分悬殊,这一关系仍然适用。 对于有机物材料,如皮肤、服装和建筑材料,温度变化极小,发射率可视为常数,一般在0.95以上,Mitchell 测试过人的皮肤发射率,发现数值在0.995以上。Dunkle 等测量了一些服装的发射率,指出天然纤维的发射率在0.9范围内,人造纤维则稍低些。而特殊要求的服装,如隔热服和消防服,由于外表涂有高反射涂层,其发射率往往极低。

传热过程分析与换热器的热计算(杨世铭,陶文栓,传热学,第四版,答案)

第10章 传热过程分析与换热器的热计算 课堂讲解 课后作业 【10-3】一卧式冷凝器采用外径为25mm ,壁厚1.5mm 的黄铜管做成热表面。已知管外 冷凝侧的平均传热系数 )/(700520K m W h ?=,管内水侧平均的表面传热系数)/(30042K m W h i ?=。试计算下列两种情况下冷凝器按管子外表面面积计算的总传热系数 (1) 管子内外表面均是洁净的 (2) 管内为海水,流速大于1m/s ,结水垢,平均温度小于50℃,蒸汽侧有油。 【解】 【10-13】一台1-2型壳管式换热用来冷却11号润滑油。冷却水在管内流动,C t C t ?="?='502022,,流量为3kg/s ;热油入口温度为600C ,)/(3502K m W k ?=。试计算: (1) 油的流量; (2) 所传递的热量; (3) 所需的传热面积。 【10-17】在一逆流式水-水换热器中,管内为热水,进口温度100,=t ℃出口温度为 80,,=t ℃;管外流过冷水,进口温度20,2=t ℃,出口温度70,,2=t ℃;总换热量KW 350=Φ, 共有53根内径为16mm 、壁厚为1mm 的管子。管壁导热系数()k m w */40=λ,管外流体的表面传热系数()k m w h */15000=,管内流体为一个流程。假设管子内、外表面都是洁净的。试确定所需的管子长度。 【解】计算管内平均换热系数。 ()908010021=+=f t ℃ ()()95.1Pr ,*/68.0,*/109.3146==?=-k m w s m Kg u λ ()()()28.4330/60ln 701002080=---=?m t ℃, ,38.8,2dL n A m A π== 本题中冷热流体总温差为43.3℃,管外冷流体侧占68﹪,管内侧约占32﹪,故不必考虑温差的修正。 【10-22】欲采用套管式换热器使热水与冷水进行热交换,并给出s kg q C t s kg q C t m m /0233.0,35,/0144.0,2002211=?='=?='。取总传热系数为2225.0),/(980m A K m W k =?=,试确定采用顺流与逆流两种布置时换热器所交换的热量、冷却水出口温度及换热器的效能。 【10-27】一台逆流式换热器刚投入工作时在下列参数下运行:360,1=t ℃,300,, 1=t ℃,

传热学计算例题

、室内一根水平放置的无限长的蒸汽管道, 其保温层外径d=583 mm ,外表面实测平均温度及空气温度分别为 ,此时空气与管道外表面间的自然对流换热的表面传热系数h=3.42 W /(m 2 K), 墙壁的温度近似取为室内空气的温度,保温层外表面的发射率 问:(1) 此管道外壁的换热必须考虑哪些热量传递方式; (2)计算每米长度管道外壁的总散热量。(12分) 解: (1)此管道外壁的换热有辐射换热和自然对流换热两种方式。 (2)把管道每米长度上的散热量记为l q 当仅考虑自然对流时,单位长度上的自然对流散热 近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁之间的辐射为: 总的散热量为)/(2.4317.2745.156,,m W q q q r l c l l =+=+= 2、如图所示的墙壁,其导热系数为50W/(m ·K),厚度为50mm ,在稳态情况下的墙壁内的一维温度分布为:t=200-2000x 2,式中t 的单位为0C ,x 单位为m 。试求: (1)墙壁两侧表面的热流密度; (2)墙壁内单位体积的内热源生成的热量。 ) (4241,T T d q r l -=σεπ) /(7.274] )27323()27348[(9.01067.5583.014.3448m W =+-+?????=-)(,f w c l t t dh t h d q -=??=ππ) /(5.156)2348(42.3583.014.3m W =-???=mm 50=δ x t O 2 2000200x t -=

解:(1)由傅立叶定律: 所以墙壁两侧的热流密度: (1)由导热微分方程022=+λ v q dx t d 得: 322/200000 504000)4000(m W dx t d q v =?=--=-=λλ 3、一根直径为1mm 的铜导线,每米的电阻为Ω?-31022.2。导线外包有厚度为0.5mm ,导热系数为0.15W/(m ·K)的绝缘层。限定绝缘层的最高温度为650C ,绝缘层的外表面温度受环境影响,假设为400C 。试确定该导线的最大允许电流为多少? 解:(1)以长度为L 的导线为例,导线通电后生成的热量为RL I 2,其中的一部分 热量用于导线的升温,其热量为τ πρd dT L d c E m 42=?:一部分热量通过绝热层的导热传到大气中,其热量为:1 22 1ln 21d d L t t w w πλ-= Φ。 根据能量守恒定律知:Φ-=???+Φ=RL I E E RL I 22 即1 2 2122ln 214d d L t t RL I d dT L d c E w w m πλτ πρ--==? x x x t A Φq λλλ4000)4000(m W d d 2=--=?? ? ???-== ? ?????=?==20m W 004000λx q ? ? ? ???=??==2m W 1000005.0504000δx q

第9章辐射换热计算

第9章 思考题 1、试述角系数的定义。“角系数是一个纯几何因子”的结论是在什么前提下得出的? 答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。 2、角系数有哪些特性?这些特性的物理背景是什么? 答:角系数有相对性、完整性和可加性。相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之和。 3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型? 答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个方向投入到该表面上的辐射能。 4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性? 答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。 5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用? 答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。 6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。 答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。 7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的? 答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。 8、什么是遮热板?试根据自己的切身经历举出几个应用遮热板的例子。 答:所谓遮热板是指插人两个辐射表面之间以削弱换热的薄板。如屋顶隔热板、遮阳伞都是我们生活中应用遮热板的例子。

计算传热学程序设计

中国石油大学(华东) 储运与建筑工程学院热能与动力工程系 《计算传热学程序设计》 设计报告 学生姓名: 学号: 专业班级: 指导教师 2012年 7 月 7 日

1、设计题目 有一房屋的砖墙厚δ= m ,λ= W/(m·℃),ρc =×106 J/( m 3·K),室内温度T f1 保持20℃不变,表面传热系数h 1=6W/(m 2·℃)。开始时墙的温度处于稳定状态,内墙表面温度Tw 1为15℃寒潮入侵后,室外温度T f2下降为-10℃,外墙的表面传热系数为35W /(m 2·℃)。试分析寒潮入侵后多少时间内墙壁面方可感受到外界气温的变化。 图1 墙壁简化图 已知参数 壁厚,墙壁导热系数,密度与比热容的乘积,室内和寒潮入侵后室外空气温度,室内空气和外墙的表面传热系数,开始时稳定状态下的内墙表面温度。 求解 寒潮入侵多少时间后内墙壁面可感受到外界气温的变化? 2 物理与数学模型 物理模型 该墙面为常物性,可以假设:(1)其为无限大平面,(2)只有在厚度方向传热,没有纵向传热,则该问题转化为一维常物性无限大平面非稳态导热问题。 数学模型 以墙外表面为坐标原点,沿厚度方向为坐标正方向,建立坐标系。基于上述模型,取其在x 方向上的微元作为研究对象,则该问题的数学模型可描述如下: T () T c x x ρλτ???=??? (1a ) 初始条件: (1b ) 室外 寒流入侵 室内 0 x

在两侧相应的边界条件是第三类边界条件,分别由傅立叶定律可描述如下: 左边界: 020 2()x f x T h T T X ==?-λ =-? (1c ) 右边界: 11()x f x T h T T X =δ=δ ?-λ=-? (1d ) 3 数值处理与程序设计 数值处理 采用外点法用均匀网格对求解区域进行离散化,得到的网格系统如图2所示。一共使用了0~N-1共N 个节点。 节点间距δx 为: 图2 墙壁内的网格划分 此例中墙壁导热系数为常值,无源项。则可采用有限体积法对控制方程离散化,得到离散方程为: p p E E W W a T a T a T b =++ (2a ) 式中: P W E P a a a a ++= (2b ) x a E δλ= ,x a W δλ=,τ δρ?=x c a P 0 (2c ) 00p p b a T = (2d ) 其中的上标“0”表示此为上一时刻的值,分别为节点所在控制容积左右边界上的导热系数,由于墙壁导热系数不变,故都等于λ,△τ为时间步长。由元体能量平衡法可以得知左右边界节点的离散方程分别为:

计算传热学程序

计算传热学课程报告 一、问题概述: 有限单元法是上个世纪五、六十年代首先在力学中发展起来的数值计算方法,由于它是基于变分原理,理论基础统一,对于复杂边界的适应程度比较好,所以很快的在其它领域得到运用,其中就包括了在传热学中的运用。本次计算传热学的课程就是对有限单元法在传热学中运用的一个学习与练习。 有限单元法处理问题的步骤,首先是建立有限元模型也即是将问题离散化,它的主要步骤之一就是将要计算的物体进行有限元的划分;第二步,进行单元分析也就是将变分原理运用到问题的方程与单元中,形成单元刚度矩阵;第三步,进行整体刚度矩阵的组集;最后就是引入边界条件进行求解的过程。 在计算传热学的课程中,主要完成了两个任务:第一,是将一个比较复杂的活塞进行了网格划分,并编译成一个通用性比较好的程序。第二,在前一个程序的基础上,加入计算过程,运用焓法,对一个比较简单的平面相变问题进行了计算。 二、划分单元网格: 划分单元网格是将问题进行有限元法分析的基础,但是如果在图纸上进行手工的单元划分,不但繁琐、容易出错,而且也不利于进一步计算程序的利用。因此有必要编辑一个程序,以自动完成划分网格的目的。网格的自动划分必须遵循以下的几条规则:(1).要严格区分边界单元与内部单元,并且严格区分边界单元不同的组;(2).单元标号必须先标志内部单元,然后依次标志第一类边界条件,第二类边界条件,第三类边界条件,如果同一类边界条件中有不同的组,那么也必须严格先划分第一组,然后第二组,第三组;(3). 对于边界单元,每一个边界单元必须只有一条边在边界上,而且为了程序的简单,一般是j,m边作为边界;(4).内部单元节点标号必须遵循逆时针方向的规则;(5). 一个单元中只能有一种材料组成。 遵循以上的规则,用FORTRAN 90编制了一个对形状比较复杂的活塞的网格划分,由于在编制过程中考虑了多种情况,所以这个程序有比较好的通用性,只需要输入不同的数据,程序也可以对许多其它情况进行划分。 需要指出的是,由于FORTRAN 90程序对于制图功能比较弱,所以下面的图是用VB 6.0的程序做出的,由于该网格划分程序集成了后续对第一类边界条件和第三类边界条件的焓法计算程序,故该程序源代码将在最后统一给出。网格划分的结果如图(1)。 需要输入的初始数据主要有:边界单元分组总数、边界单元分组中前一组的最后一个单元号、各组边界单元节点数、各边界单元边界节点号、

计算传热学-传热基本原理及其有限元应用讲解

1. 传热学的发展概述 18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。生产力的发展为自然科学的发展成长开辟了广阔的道路。传热学这一门学科就是在这种大背景下发展成长起来的。导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。在批判“热素说”确认热是一种运动的过程中,科学史上的两个著名实验起着关键作用。其一是1798年伦福特(B .T .Rumford)钻炮筒大量发热的实验,其二是 1799年戴维(H .Davy)两块冰块摩擦生热化为水的实验。确认热来源于物体本身内部的运动开辟了探求导热规律的途径。1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。他从傅里叶定律和能量守恒定律推出的导热微分方程是导热问题正确的数学描写,成为求解大多数工程导热问题的出发点。他所提出的采用无穷级数表示理论解的方法开辟了数学求解的新途径。傅里叶被公认为导热理论的奠基人。在傅里叶之后,导热理论求解的领域不断扩大。同样,自1823年M. Navier 提出流动方程以来,通过1845 年 G.G. Stokes 的改进,完成了流体流动基本方程的创建任务。流体流动理论是更加复杂的对流换热理论的必要前提,1909和1915年W. Nusselt 开辟了在无量纲数原则关系正确指导下,通过实验研究对流换热问题的一种基本方法。1904 年,L. Prandtl 提出的对流边界层理论使流动微分方程得到了简化,1921年 E. Pohlhausen 基于流动边界层理论引进了热边界层的概念,为对流传热微分方程的理论求解建立了基础。在辐射传热研究方面,19世纪J. Stefan 根据实验确定了黑体辐射力正比于它的绝对温度的四次方的规律,1900年M.Planck 提出的量子假说奠定了热辐射传热理论基础。上述传热理论为传热分析解析、数值以及实验研究奠定了理论基础。还要特别提到的是,由于计算机的迅速发展,用数值方法对传热问题的分析研究取得了重大进展,在20世纪70年代已经形成一个新兴分支—数值传热学。近年来,数值传热学得到了蓬勃的发展[2-4]。 2. 传热分析计算理论 热量传递主要有三种传递形式,分别是热传导、热对流和热辐射。热传导是指两个相互接触良好的物体之间的能量交换或一个物体由于其自身温度梯度而 引起的内部能量的传递。其遵循傅里叶定律[5]:dT q dx λ=-,其中λ是热导率, dT dx 是温度梯度,q 是热流密度。热对流是指在物体与其周围介质之间发生的热量交换。热对流分为自然对流和强制对流,用牛顿冷却方程描述为()w f q h t t =-,其中h 为表面传热系数,w t 为物体表面的温度,f t 为物体周围流体的温度。一个 物体或两个物体之间通过电磁波形式进行的能量传递交换称为热辐射,通常由斯

相关主题
文本预览
相关文档 最新文档