当前位置:文档之家› 原子力显微镜在纳米测量技术中的应用

原子力显微镜在纳米测量技术中的应用

原子力显微镜在纳米测量技术中的应用
原子力显微镜在纳米测量技术中的应用

原子力显微镜在纳米测量技术中的应用

摘要:纳米测量技术作为21世纪计量测试领域研究的重点,一直深受国内外专家的关注。原子力显微镜(AFM)在其研究过程中一直发挥着非常重要作用。论文根据纳米测量所涉及的两个重要领域:纳米长度测量和纳米级的表面轮廓测量,以及在实验教学过程中的教学实践,列举了AFM在纳米测量技术教学中的运用案例。实践证明,AFM在实验教学中起到了非常重要的作用,它能促进学生对课程的学习兴趣,同时又能帮助学生加强对抽象概念的理解,从而增强学生的应用能力。

关键词:纳米技术;原子力显微镜;纳米测量技术

纳米技术被誉为21世纪的科学,现已成为世界各国研究的热点领域。它的迅猛发展将在世界范围内引发一场包括生命科学、信息技术、生态环境技术、能源技术在内的几乎覆盖所有工业领域的大革命。从纳米技术的发展来看,纳米测量技术的地位和作用是不容忽视的。纳米加工和制造离不开纳米测量,精密计量已不能适应纳米技术发展的要求,而且成为了纳米技术发展的瓶颈。因此,纳米测量技术和测量装置,不仅是21世纪纳米技术实用过程中必须关注的焦点,而且也是21世纪计量测试领域研究的重中之重。在纳米技术研究中,原子力显微镜(AFM)一直发挥着重要作用。对于纳米技术的基础教学而言,AFM无疑是学生们感知纳米量级的最直接的方式之一。因此,本论文针对学生特点及教学要求,将AFM工作原理及实际扫描后得到的图片引入到课堂中进行辅助教学,取得了一定的效果。

1 AFM引入基础教学

纳米级位移测量技术至今尚未有明确的定义。通常认为测量精度或分辨率在0.5~100纳米之间的位移测量技术,统称为纳米级位移测量技术。纳米测量技术的内涵涉及纳米尺度的评价、成份、微细结构和物质特性的纳米尺度的测量,它是在纳米尺度上研究材料和器件的结构与性能、发现新现象、发展新方法、创造新技术的基础。纳米测量所涉及的两个重要领域就是纳米长度测量和纳米级的表面轮廓测量[1]。

原子力显微镜(atomic force microscope,简称AFM)是利用微悬臂感受和放大悬臂上探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率[2]。原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,其可以在空气或者液体下对样品直接进行成像,分辨率很高。因此,AFM 被广泛应用于纳米长度测量和纳米级的表面轮廓测量中。

2 AFM教学实例

针对纳米测量所涉及的两个重要领域:纳米长度测量和纳米级的表面轮廓测量。列举了AFM扫描的利用多光束激光干涉光刻制备单晶硅形貌图。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

原子力显微镜的应用

1.引言 随着人类科研的不断发展, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 所以各种研究方法和仪器手段也应运而生。原子力显微镜(Atomic Force Microscope,简称AFM)利用其微悬臂上尖细探针与样品的原子之间的作用力,从而达到检测的目的。其具有原子级的分辨率[1]。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不能观察非导体的不足。 图1 原子力显微镜 原子力显微镜的原理及其在材料科学上的应用 摘要 本文介绍了原子力显微镜的发展过程、探测原理等方面,从原子力显微镜对于材料表面形貌分析,粉体材料分析,纳米材料分析等方面,综述了原子力显微镜技术在材料科学学方面的应用,并展望原子力显微镜在未来的发展 关键词 原子力显微镜工作模式特点表面形貌 Abstract Thisarticle provide information of AFM(Atomic Force Microscope),about the development,the principle,from AFM on analyzing surface of material ,dusty material and nanometer size material. And look into the future of AFM Key word AFM working model characteristic surface

2.仪器工作原理 AFM通常由氮化硼作为一个灵敏的弹性微悬臂,在其尖端有一个用来在样品表面上扫描的很尖细的探针。假设有两个原子,一个是在微悬臂的探针尖端,另一个是在样品的表面,它们之间的作用力会随着距离的变化而变化。当原子和原子很接近时,彼此的电子云排斥力作用会大于原子核与电子云之间的吸引作用,其合力表现为排斥作用。反之,若两原子分开到一定距离时,其电子云的排斥作用小于彼此原子核与电子云之间的吸引力作用,故其合力表现为吸引作用。原子力显微镜就是利用微小探针与待测原子之间的这种交互作用力的微妙变化,来显现表面原子的形貌。[2] 在原子力显微镜中,根据利用原子间的排斥力或吸引力方式的不同,发展出了两种工作模式: (1)利用原子之间的排斥力的变化而产生样品表面轮廓,从而发展了接触式原子力显微镜(Contact AFM),其探针与样品表面的距离约为零点几个纳米。 ( 2 )利用原子之间的吸引力的变化而产生 样品表面轮廓,从而发展了非接触式原子 力显微镜(Non-Contact AFM)其探针与样 品表面的距离约为几到几十纳米。 图2 原子与原子之间的交互作用 在原子力显微镜系统中,使用一个灵活的 微悬臂来感应针尖与样品之间的交互作用 力,该作用力随样品表面形态而变化,它 会使微悬臂随之摆动。将一束激光照射在 微悬臂的末端,当微悬臂摆动时,会使反 射激光的位置改变而造成偏移量,用激光 检测器记录此偏移量,同时将此信号传递 给反馈系统,以利于系统做适当的调整, 从而将样品表面特征以影像的方式显现出 来[3]。(如图 3) 。 图3 原子力显微镜的探测原理示意图 3.原子力显微镜的结构 3.1力检测系统 原子力显微镜使用微小悬臂来检测原 子之间力的变化量。微悬臂通常由一个 100到500μm长和大约500nm到5μm厚 的硅片或氮化硅片制成。微悬臂顶端有一 个尖锐针尖,用来检测样品-针尖间的相 互作用力。 图4 原子力显微镜微悬臂 3.2位置检测系统

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

(全文)纳米测量仪器和纳米加工技术

2003年1月第5卷第1期 中国工程科学Engineering Science Jan.2003Vol 15No 11 院士论坛 [收稿日期] 2002-07-18;修回日期 2002-07-29 [作者简介] 姚骏恩(1932-),男,上海市人,中国工程院院士,中国科学院北京科学仪器研制中心研究员 纳米测量仪器和纳米加工技术 姚骏恩 (中国科学院北京科学仪器研制中心,北京 100080) [摘要] 纳米科技是当今国际上的一个热点。文章对纳米科技作了简要介绍,纳米测量和加工是纳米科技中 的一个不可缺少的重要组成部分。叙述了发展纳米测量和纳米加工技术的两个主要途径:一是发展传统技术,主要是电子显微术以及最近发展起来的聚焦离子束(FIB )-电子束数控加工中心;二是创造新的测量仪器,建立新原理和新方法,介绍了国内外电子显微镜和扫描探针显微镜这两类纳米测量分析仪器的发展、应用和生产现状。指出我国电子显微仪器和扫描探针显微镜的开发和生产面临困境,应尽快建立和加强自己的电子显微仪器和扫描探针显微镜等纳米测量和纳米加工设备制造产业,并列入国家科技发展规划。 [关键词]  纳米科技;纳米测量;电子显微镜;扫描探针显微镜;聚焦离子束-电子束装置;仪器生产[中图分类号]TN16;TN405;T B838 [文献标识码]A [文章编号]1009-1742(2003)01-0033-05 1 纳米科技是当今国际上的一个热点 纳米科技是20世纪80年代发展起来的一门新 兴科学技术。一个纳米是十亿分之一米,已接近原子尺度(012~013nm )。纳米科技涉及的尺度通常是100nm 以下,直到原子尺寸。在这种尺度上对物质和材料进行研究和处理的科学技术称为纳米科技。纳米科技实质上就是一种从原子、分子开始制造材料和产品的科学技术;也可以说是在1~100nm 范围内认识和改造自然的科学技术,是一个交叉综合学科,是一个前沿基础学科和高技术融为一体的完整体系。钱学森早在1991年就指出,纳米左右和纳米以下的结构将是下一阶段科技发展的一个重点,会是一次技术革命,从而将是21世纪又一次产业革命。目前所有的发达国家都对纳米科技的研究、开发投入大量人力物力,试图抢占这一21世纪战略制高点,它可给包括生物技术在内的几乎所有工业领域带来一场革命性变化。 2 当今高技术的核心乃是半导体芯片 技术 当今高技术的核心乃是半导体芯片技术,发展的关键是进一步微型化。元件的尺寸由毫米到微米仍可用传统的科学和技术;从微米到纳米功能元件,尺寸缩小到纳米级,即由有限个原子构成基本功能元件,再由这类新元件组成更复杂的器件,表征这种纳米功能元件的参量具有显著的量子效应和统计涨落特性,就必须发展新理论、新技术和新材料。于是纳米电子学就应运而生。芯片的集成度以每18个月硅片上功能元件数增加1倍的速度增加。元件的尺寸越小,芯片的功能越强。商用芯片的线宽在2001年达到0113~0110μm ,现已开始0110μm 的竞争,估计2004年大部分半导体制造企业都会采用0110μm 以下的制造工艺[1]。 3 21世纪将是生命科学的世纪 现今生命科学已经从描述性、实验性科学向定量科学过渡,研究的焦点是生物大分子,尤其是蛋

纳米科技的发展及未来的发展方向

纳米科技的发展及未来的发展方向 论文 理学院 08光信息科学与技术 张箐 0836017

纳米科技的发展及未来的发展方向 一:纳米科技的起源: 纳米是长度度量单位,一纳米为十亿分之一米。纳米科技这一初始概念是已故美国著名物理学家、诺贝尔物理学奖得主费恩曼(R.Feynman)于1959年在美国加州理工学院作题为“在低部还有很大空间”的讲演中提出的。费恩曼指出:如果人类能够在原子或分子尺度上来加工材料、制备装置,则将会有许多激动人心的新发现。他还强调:人们需要新型的微型化仪器来操纵纳米结构并测定其性质。费恩曼憧憬说:试想,如果有一天,人们可以按自己的意志来安排一个个原子,将会产生怎样的奇怪现象。 与所有的天才假想一样,费恩曼的科学思想起初并未被接受。然而科技的迅猛发展很快证明了费恩曼是正确的。继费恩曼之后,许多科学家又尽情发挥想像力,从不同角度继续编织纳米技术的神奇梦想。 纳米科技的迅速发展是在1980年代末1990年代初。1980年代初,宾尼希(C.Binnig)和罗雷尔(H.Rohrer)等人发明了费恩曼所期望的纳米科技研究的重要仪器--扫描隧穿显微镜(scanning tunneling microscopy,STM)。STM 不仅以极高的分辨率揭示出了“可见”的原子、分子微观世界,同时也为操纵原子、分子提供了有力工具,从而为人类进入纳米世界打开了一扇更加宽广的大门。 与此同时,纳米尺度上的多学科交叉迅速形成了一个有广泛学科内容和潜在应用前景的研究领域。1990年,纳米技术获得了重大突破。美国IBM公司阿尔马登研究中心(Almaden Research Center)的科学家使用STM把35个氙原子移动到各自的位置,组成了“IBM”三个字母,这三个字母加起来不到3纳米长。 1990年7月,第一届国际纳米科学技术大会和第五届国际扫描隧穿显微

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

纳米二氧化钛的现状与发展概要

纳米二氧化钛的现状与发展 作者:未知时间:2007-11-24 15:17:00 国外纳米TiO2的生产现状 20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。 由于纳米TiO2在催化及环境保护等方面具有广阔的应用前景,并可用于日用产品、涂料、电子、电力等工业部门,因此,纳米TiO2展现出巨大的市场前景。日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。 根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。 表1 2003年全球纳米TiO2消费量与产品应用 近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米科技的发展现状及前景

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用的一种技术。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。关键突破 1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。 纳米技术包含下列四个主要方面:

纳米材料的热学特性

纳米材料的热学特性 【摘要】:纳米材料的应用及其广泛,涉及到各个领域。本文将从纳米材料的热容,晶格参数,结合能,内聚能,熔点,溶解焓,溶解熵及纳米材料参与反应时反应体系的化学平衡等方面对纳米材料的热学性质的研究进行阐述,并对纳米材料热学的研究和应用前景进行了展望。 【关键词】:纳米材料热学特性发展前景 【正文】: (一)纳米材料 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 (二)热学特性 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和

精密测量技术 (2)

精密测量技术 一、背景研究 随着社会的发展,普通机械加工的加工误差从过去的mm级向“m级发展,精密加工则从10 p,m级向炉级发展,超精密加工正在向nm级工艺发展。由此,制造业对精密测量仪器的需求越来越广泛,同时误差要求也越来越高。精密测量是精密加工中的重要组成部分,精密加工的误差要依靠测量准确度来保证。目前,对于测量误差已经由“m级向nm级提升,而且这种趋势一年比一年迅猛[1]。 二、概述 现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,它和精密超精密加工技术相辅相成,为精密超精密加工提供了评价和检测手段;精密超精密加工水平的提高又为精密测量提供了有力的仪器保障。现代测量技术涉及广泛的学科领域,它的发展需要众多相关学科的支持,在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势,作为下世纪的重点发展目标,各国在微/ 纳米测量技术领域开展了广泛的应用研究[1]。 三、测量技术及应用特点 3.1扫描探针显微镜 1981年美国IBM公司研制成功的扫描隧道显微镜(STM),将人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm 和0.01nm,即可分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似

原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界 面纳米尺度上表现出来性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面 介绍几种具有代表性的扫描探针显微镜。 (1)原子力显微镜(AFM):AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的 位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探 针与表面10~100nm距离范围,可探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。 (2)光子扫描隧道显微镜(PSTM): PSTM的原理和工作方式与STM相似,后者 利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激 起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。 (3)其它显微镜:如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化;扫 描离子电导显微镜(SICM)适用于进行生物学和电生理学研究;扫描热显微镜(STM)已经获得血红细胞的表面结构;弹道电子发射显微镜(BEEM)则是目前唯一 能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。 3.2纳米测量的扫描X射线干涉技术 以SPM为基础的观测技术只能给出纳米级分辨率,不能给出表面结构准确的 纳米尺寸,是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量 的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为 192015.560±0.012fm和192015.902±0.019fm(飞米fm也叫费米,是长度单位,1fm相 当于10~15m)。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18 天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距有较好的稳定性。扫描 X射线干涉测量技术是微/纳米测量中一项新技术,它正是利用单晶硅的晶面间

纳米技术的现状、应用、发展趋势及存在问题

纳米技术的现状、应用、发展趋势及存在问题 21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。 纳米生物技术是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。 目前,国际上纳米生物技术在医药领域的研究已取得一定的进展。美国、日本、德国等国家均已将纳米生物技术作为21世纪的科研优先项目予以重点发展。 纳米技术:于细微之处显神奇 纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。由于纳米正好处于原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,被称为纳米世界,也是物理、化学、材料科学、生命科学以及信息科学发展的新领地。纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子"组合"在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,这种"组合"被称为"超分子"或"人工分子"。"超分子" ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。当"超分子"继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去。通俗来说,纳米材料一方面可以被当作一种"超分子",充分地展现出量子效应;而另一方面它也可以被当作一种非常小的"宏观物质",以至于表现出特性。同时,许多化学和生物反应的过程也发生在纳米尺度的层面上,因此探测纳米尺度内物理、化学和生物性质的变化,将加深对生命科学的理解。对由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合他们,是当今纳米科学技术的主要问题之一。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农业等方面。 在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

纳米材料的应用及发展前景

纳米材料的应用及发展前景 摘要 纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。本文概要的论述了纳米材料的发现发展过程,并简述了纳米材料在各方面的应用及其在涂料和力学性能材料方面的发展前景。 关键词:纳米材料、纳米技术、应用、发展前景 一、前言 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1 纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展

关于纳米技术的应用现状及展望

关于纳米技术的应用现状及展望 【论文关键词】:纳米科学纳米技术纳米管 【论文摘要】:讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。 纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。 1. 纳米结构的制备 有两种制备纳米结构的基本方法:build-up和 build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down 方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等);“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。 很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up” 方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。 2. 纳米结构尺寸、成份、位序以及密度的控制 为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。 ⑴ 电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作

相关主题
文本预览
相关文档 最新文档