当前位置:文档之家› 优化设计技术

优化设计技术

优化设计技术
优化设计技术

机械优化设计

摘要

机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案。作为一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题。优化设计为工程设计提供了一种重要的科学设计方法。因而采用这种设计方法能大大提高设计效率和设计质量。本文论述了优化设计方法的发展背景、流程,并对无约束优化及约束优化不同优化设计方法的发展情况、原理、具体方法、特点及应用范围进行了叙述。另外,选择合适的优化设计方法是解决某个具体优化设计问题的前提,而对优化设计方法进行分析、比较和评判是其关键,本文分析了优化方法的选取原则。之后对并对近年来出现的随机方向法、遗传算法、蚁群算法和模拟退火算法等新兴优化方法分别进行了介绍。本文以交通领域中建立最优交通网路为例说明了优化设计方法的应用特点。

关键词:机械优化设计;约束;特点;选取原则

目录

第一章引言 (1)

1.1优化设计的背景 (1)

1.2机械优化设计的特点 (2)

1.3优化设计的模型 (3)

1.4优化设计的流程 (4)

第二章优化设计方法的分类 (6)

2.1无约束优化设计方法 (7)

2.1.1梯度法 (7)

2.1.2牛顿型方法 (7)

2.1.3共轭梯度法 (8)

2.1.4变尺度法 (8)

2.2约束优化设计方法 (9)

2.2.1直接解法 (9)

2.2.2间接解法 (11)

2.3多目标优化方法 (13)

2.3.1主要目标法 (14)

2.3.2加权和法 (14)

第三章各类优化设计方法的特点 (15)

3.1无约束优化设计方法 (15)

3.2约束优化设计方法 (16)

3.3基因遗传算法(Genetic Algorithem,简称GA) (16)

3.4模糊优化设计方案 (17)

第四章优化方法的选择 (18)

4.1优化设计方法的评判指标 (18)

4.2优化方法的选取原则 (19)

第五章机械优化设计发展趋势 (21)

第六章 UG/PRO-E建模 (23)

参考文献 (27)

第一章引言

1.1优化设计的背景

在人类活动中,要办好一件事(指规划、设计等),都期望得到最满意、最好的结果或效果。为了实现这种期望,必须有好的预测和决策方法。方法对头,事半功倍,反之则事倍功半。优化方法就是各类决策方法中普遍采用的一种方法。

历史上最早记载下来的最优化问题可追溯到古希腊的欧几里得(Euclid,公元前300年左右),他指出:在周长相同的一切矩形中,以正方形的面积为最大。十七、十八世纪微积分的建立给出了求函数极值的一些准则,对最优化的研究提供了某些理论基础。然而,在以后的两个世纪中,最优化技术的进展缓慢,主要考虑了有约束条件的最优化问题,发展了一套变分方法。

六十年代以来,最优化技术进入了蓬勃发展的时期,主要是近代科学技术和生产的迅速发展,提出了许多用经典最优化技术无法解决的最优化问题。为了取得重大的解决与军事效果,又必将解决这些问题,这种客观需要极大地推动了最优化的研究与应用。另一方面,近代科学,特别是数学、力学、技术和计算机科学的发展,以及专业理论、数学规划和计算机的不断发展,为最优化技术提供了有效手段。

现在,最优化技术这门较新的科学分支目前已深入到各个生产与科学领域,例如:化学工程、机械工程、建筑工程、运输工程、生产控制、经济规划和经济管理等,并取得了重大的经济效

益与社会效益。

1.2机械优化设计的特点

传统设计者采用的是经验类比的设计方法。其设计过程可概括为“设计—分析—再设计”的过程,即首先根据设计任务及要求进行调查,研究和搜集有关资料,参照相同或类比现有的、已完成的较为成熟的设计方案,凭借设计者的经验,辅以必要的分析及计算,确定一个合适的设计方案,并通过估算,初步确定有关参数;然后对初定方案进行必要的分析及校核计算;如果某些设计要求得不到满足,则可进行设计方案的修改,并再一次进行分析及较和计算,如此反复,直到获得满意的设计方案为止。这个设计过程是人工试凑与类比分析的过程,不仅需要花费较多的设计时间,增长设计周期,而且只限于在少数几个候选方案中进行比较。

优化设计具有常规设计所不具备的一些特点。主要表现在两个方面:

1)优化设计能使各种设计参数自动向更优的方向进行调整,

直至找到一个尽可能完善的或最合适的设计方案,常规设

计虽然也能找到比较合适的设计方案,但都是凭借设计人

员的经验来进行的。它既不能保证设计参数一定能够向更

优的方向调整,同时也不可能保证一定能找到最合适的设

计方案。

2)优化设计的手段是采用电子计算机,在较短的时间内从大

量的方案中选出最优的设计方案,这是常规设计所不能相

比的。

机械优化设计是把数学规划理论与计算方法应用于机械设计,按照预定的目标,借助于电子计算机的运算寻求最优设计方案的有关参数,从而获得好的技术经济效果:

1) 可以降低机械产品成本,提高它的性能;

2) 优化设计过程中所获得的大量数据,可以帮助我们摸清各

项指标的变化舰律,有利于对今后设计结果作出正确的判

断,从而不断提高系列产品的性能;

3) 用优化设计方可合理解决多参数、多目标的复杂产品设计

问题。

1.3优化设计的模型

设计优化问题中有n 个设计变量为

12[,,......,]T n X x x x =

(1)

要求在可行区域内寻找晟优点*X ,使目标函数()F X 达到最小值,即

*()min (),n

F X F X X D R =∈?

(2)中可行区域D 由不等式约束条件 ()0,1,2,......,i g X i m ≥=

(3)所确定。

上述优化设计的数学摸型可表述为:

min (),n F X X R ∈

..()0,1,2,......,i s t g X i m ≥=

(4)

机械优化设计中,大多数是约束非线性规划问题。建立数学模型非常重要,如设计变量选择不当,目标函数与实际追求的目标有差距,约束条件考虑不周到,都会导致设计失败。通常选择一种解精度较高(即与实验结果较吻合),数学上表达比较方便的方法。在此基础上构造初步数学模型(设计变量和约束条件取少一些).经计算后与试验结果作比较,逐步地进行修改和完善:

(1)设计变量的确定:在机械优化设计中涉及的参数很多,可以先把他们全部列出来,然后再逐个分析,确定独立变量和非独立变量。设计变量越多,设计精度越高,但计算过程越复杂。

(2)确定目标函数:目标函数的选择具有很大的灵活性,因为它与约束条件是可以置换的。目标函数越多,对设计的评价越全面,坦计算也就越复杂。在机械产品优化设计中,不应片面强调高性能,而忽视了生产的经济教益。

(3)确定约束条件:约束条件大致上可分为两大类:工作性能约束条件和几何尺寸约束条件。在列约束条件时,应注意变量的数量级不要相差太大,不然会造成约束条件敏感程度不同。

1.4优化设计的流程

优化设计是一个系统工程的任务,全过程一般可概括为:

1)根据设计要求和目的定义优化设计问题;

2)建立优化设计问题的数学模型;

3)选用合适的优化计算方法;

4)确定必要的数据和设计初始点;

5)编写包括数学模型和优化算法的计算机程序,通过计算

机的求解计算获取最优结构参数;

6)对结果数据和设计方案进行合理性和适用性分析。

其中,最关键的是两个方面的工作是首先将优化设计问题抽象成优化设计数学模型,通常简称它为优化建模;然后选用优化计算方法及其程序在计算机上求出这个模型的最优解,通常简称它为优化计算。

优化设计数学模型是用数学的形式表示设计问题的特征和追求的目的,它反映了设计指标与各个主要影响因素(设计参数)间的一种依赖关系.它是获得正确优化结果的前提。

由于优化计算方法很多,因而它的选用是一个比较棘手的问题,在选用时一般都遵循这样的两个原则:一是选用哪种适合于模型计算的方法;二是选用哪种已有计算机程序,且使用简单和计算稳定的方法。图1给出了优化设计工作的一般流程。

图1 工程优化设计计算流程图

第二章优化设计方法的分类

优化设计的类别很多,从不同的角度出发,可以得出不同的分类。机械优化设计是通过优化方法确定机构、零件、部件乃至整个机械系统的最佳参数和结构尺寸,从而使机械产品达到最佳性能,其数学模型一般包含以下3个要素:①设计变量,即在优化过程中经过逐步调整,最后达到最优值的独立参数,其个数就是优化设计问题的维数。②目标函数,反映设计变量间的相互关系,可以直接用来评价方案的好坏,根据其个数,优化设计问题可分为单目标优化问题和多目标优化问题。③约束条件,是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束,按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束!针对优化设计数学模型要素的不同情况,可将优化设计方法分类如下:

1)按约束情况,可分为无约束优化设计方法和约束优化设计方法。

2)按维数,可分为一维优化设计方法和多维优化设计方法。

3)按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法。

4)按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法。

5)按优化设计问题能否用数学模型表达,可分为:①能用数学模型表达的优化设计问题(其寻优途径为数学方法,如数学规划法、最优控制法等);②难以抽象出数学模型的优化设计问题(如总体方案优化、结构形式优化等,多采用经验推理、方案对

比、人工智能、专家系统等方法寻优)

下面我们就最常见的按约束情况分类来进一步谈论具体的优化方法。

2.1无约束优化设计方法

2.1.1梯度法

算法: 1()(0,1,2,...)k k k k x x f x k α+=-?=

由于梯度法是以负梯度方向作为搜索方向,所以称为梯度法,又称为最速下降法。梯度法是一个求解极值问题的古老算法,早在1847年就已有柯西(Cauchy )提出。

梯度法的优点是:直观,简单;

缺点是:由于它采用了函数负梯度方向作为下一步的搜索方向,所以收敛速度较慢,越是接近极值点收敛越慢;

应用:应用梯度法可以使目标函数在开头几步下降很快,所以它可与其它无约束优化方法配合使用。特别是一些方法都是在对它改进后,或在它的启发下获得的,因此梯度法仍然是许多有约束和无约束优化方法的基础。

2.1.2牛顿型方法

算法:

121[()]()(0,1,2,...)k k k k x x f x f x k +-=-??=

其中2()k f x ?——f(x)在k x 处的海赛矩阵,该迭代方法称为牛顿

方法。

牛顿法的优点是:速度比梯度法快;

缺点是:由于每次迭代都要计算函数的二阶导数矩阵,并对该矩阵求逆,因此计算量大且需要大的计算机存储空间。

针对梯度法收敛速度比牛顿法慢,而牛顿法又存在上述缺点,近年来人们又提出了改进算法,如针对梯度法提出只用梯度信息,但比梯度法收敛速度快的共轭梯度法;针对牛顿法提出了变尺度法。

2.1.3共轭梯度法

算法:

1(0,1,2,...)k k k k x x d k α+=+=

搜索方向k k k d Q g =-,函数梯度k g 的修正因子111T k k k T k k g d Q I g g ---??=-????,所用目标函数信息是一阶导数。共轭梯度法是共轭方向法中的一种,因为在该方向中的每一个共轭向量都是依赖于迭代点处的负梯度而够造出来的,所以称作共轭梯度法,又称为旋转梯度法。

共轭梯度法是1964年由弗来彻(Fletcher )和里伍斯(Reeves )两人提出的。此法的优点是:程序简单,存储量少,具有梯度法的优点,而在收敛速度上比梯度法快,具有二次收敛性。

2.1.4变尺度法

算法:

1(0,1,2,...)k k k k x x d k α+=+=

搜索方向k k k d H g =-,k H 是变尺度矩阵,函数梯度k g 的修正因

子1k K K H H H -=+?,所用目标函数信息是一阶导数使1k K H G -≈。

对变尺度法改进为DFP 算法,该算法是无约束优化方法中最有效的方法之一,因为它不单纯是利用向量传递信息,还采用矩阵来传递信息。DFP 算法由于摄入误差和一位搜索不精确,有可能导致k H 奇异,而使数值稳定性方面不够理想。所以1970年提出更稳定的算法公式,称为BFGS 算法。1970年黄从共轭条件出发对变尺度法做了统一处理,写出了统一公式

并取 11122122(0,1,2,...)

()()k

k k

k k k k

k k

k k k T T k k k k k k u s H y k v s H y E s u H y v αααα=+==+=+

2.2约束优化设计方法

求解约束优化的方法称为约束优化方法。约束优化方法根据求解方式的不同,可分为直接解法和间接解法。直接法主要有随及方向法、复合形法、可行方向法、广义简约梯度法,间接解法有惩罚函数法和增广乘子法。

2.2.1直接解法

基本思路:直接解法通常适用于仅含不等式约束的问题,其基本思路是在m 个不等式约束条件所确定的可行域内,选择一个初始点0x ,然后决定可行搜索方向d ,且以适当的步长α,沿d 方向进行搜索,得到一个使目标函数值下降的可行的新点1x ,即完成一次迭代。再以新点为起点,重复上述搜索过程,满足收敛条件后,迭代终止。每次迭代计算均按以下基本迭代格式进行

1(0,1,2,...)k k k k x x d k α+=+=

直接解法的特点是:

⑴由于整个求解过程在可行域内进行,因此,迭代计算不论何时终止,都可以获得一个比初始点好的设计点。

⑵若目标函数为凸函数,可行域为凸集,则可保证获得全域最优解。否则,因存在多个局部最优解,当选择的初始点不相同时,可能搜索到不同的局部最优解。

⑶要求可行域为有界的非空集,即在有界可行域内存在满足全部约束条件的点,且目标函数有定义。

⑷原理简单,方法实用。

● 随机方向法

基本思想:随机方向法是一种原理简单的直接解法。它的基本思路是在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为可行搜索方向,记作d 。从初始点0x 出发,沿d 方向以一定的步长进行搜索,得到新点x ,新点x 应该满足约束条件:()0(1,2,...,)j g x j m ≤=,且0()()f x f x ≤,至此完成一次迭代。然后,将起始点移至x ,即令0x ←x 。重复以上过程,经过若干次迭代计算后,最终取得约束最优解。

特点:是对目标函数的性态无特殊要求,程序设计简单,使用方便。由于可行搜索方向是从许多随机方向中选择的使目标函数下降最快的方向,加之步长还可以灵活变动,所以此算法的收敛速度比较快。若能取得一个较好的初始点,迭代次数可以大大减少。它是求解小型机械优化设计问题的一种十分有效的算法。 可行方向法

是求解非线性规划问题的常用方法。其典型策略是,从可行点出

发,沿着下降的可行方向进行搜索,求出使目标函数值下降的新的可行点。算法的主要步骤是选择搜索方向和确定沿此方向的步长,搜索方向的选择形式不同就形成了不同的可行方向法。逐次线性近似法、Zoutendijk 可行方向法、Frank-Wolfe 方法、Wolfe 既约梯度法等是常用的可行方向法。但在实际应用中,逐次线性近似法有可能不收敛,Zoutendijk 可行方向法、Frank-Wolfe 方法等收敛较慢,而Wolfe 既约梯度法在计算过程中往往出现“基变量大量达界后,找不到新的入基变量”等问题,使计算进行不下去。

2.2.2间接解法

基本思路:约束优化问题中的约束函数进行特殊的加权处理后,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优化问题。在对新的目标函数进行无约束优化计算,从而间接地搜索到原约束问题的最优解。基本迭代过程如下:首先将式(1-2)转化为无约束目标函数

1,21211

(,)()[()][()]m l j k j k x f x G g x H h x φμμμμ===++∑∑

式中,1,2(,)x φμμ——转化后的新目标函数; 1211

[()],[()]m l j k j k G g x H h x μμ==∑∑——分别为约束函数()j g x ,()k h x 经过加权处理后构成的某种形式的复合函数或泛函数; 1μ,2μ——加权因子。

然后对1,2(,)x φμμ进行无约束极小化计算。由于在新目标函数中包含了各种约束条件,在求极值的过程中还将改变加权因子的大小。因此可以不断改变设计点,使其逐步逼近约束边界。从而间接地求得原约束问题的最优解。

间接解法的特点是:

⑴解法可靠,计算效率和数值计算稳定性较好。

⑵可以有效地处理具有等式约束的约束优化问题。

⑶间接解法存在主要问题是,选取加权因子较为困难。加权因此选确不当,不但影响收敛速度和计算精度,甚至会导致计算失败。

惩罚函数法

基本思想:惩罚函数法(SUMT )是不等式约束的一种非线性规划方法,它通过对约束条件加权将约束优化问题转化为无约束优化问题求解,所以惩罚函数法又称为序列无约束最优化方法。对于以下的约束优化问题: . .

11min ()[,,...,]

()0,1,2,....()0,1,2,...n i j f X X x x x g X i m s t h X j l =≤=????==?? 中的不等式和等式约束函数经过加权转化后,和远目标函数结合形成新的目标函数——惩罚函数

1,21211(,)()[()][()]m l

j k j k x r r f x r G g x r H h x φ===++∑∑

求解该新目标函数的无约束极小值,以期得到原问题的约束最优解。为此,按一定的法则改变加权因子1r 和2r 的值,构成一系列的无约束优化问题,求得一系列的无约束最优解,并不断地逼近原约束优化问题的最优解。因此惩罚函数法又称为序列无约束极小化方法,常称为SUMT 法。根据迭代过程是否在可行域内进行,惩罚函数法可分为内点惩罚函数法和外点惩罚函数法和混合惩罚函数法三种。

特点:

1) 内点惩罚函数法简称为内点法,只能用来求解具有不等式约

束的优化问题。

2)外点惩罚函数法简称为外点法,只能用来求解具有不等式和

等式约束的优化问题。

3)混和惩罚函数法简称为混合法,这种方法把内点法和外点法

结合起来,用来求解同时具有等式约束和不等式约束函数优化问题。

4)惩罚函数法优点:原理简单,算法易行,适用范围广,并且

可以和各种有效的无约束最优化方法结合起来,因此应用广

r→(内泛。缺点:理论上讲,只有当r→∞(外点法)或0

点法)时,算法才能收敛,因此收敛速都慢。另外,当惩罚因子的初值0r取得不合适时,惩罚函数可能变得病态,使无约束最优化计算发生困难。近年来提出的增广乘子法在计算过程中数值稳定性,计算效率上都超过惩罚函数法。

2.3多目标优化方法

机械设计问题往往是比较复杂的,为了追求总体住能的最佳,在寻求最优设计方案时,有时同时要求几项设计准则,即几个设计目标都达到最优,这就是多目标优化间题。

多目标问题的优化过程要比单目标的优化过程复杂的多,特别是当设计目标之间相互对立时,求对各设计目标都满意的方案就更加困准。在单目标函数纸优化过程中,任何两个设计方案均能根据唯一的设计准则进行优劣比较,而在多目标函数的优化过程中,则可能发生这种情况,即对某一项目标可能是优化过程增加了复杂性。

解决多目标问题的优化方法很多,适用的对象也不完全相同,

但其主要思路都是设法对所有目标函数进行统筹协调,以便求得一个对所有设计目标都比较满意的方案。下面介绍几种常用的多目标优化问题的处理方法。

2.3.1主要目标法

其基本思想是,根据各分目标的重要性,选择时设计方案的优劣影响最大的目标作为主要目标,建立目标函数,而将其余目标按照一定的原则化为辅助的约束条件,然后对主要目标函数求约束优化解。

2.3.2加权和法

其基本思想是,根据各分目标的重要程度,对每项分目标乘以加权因子f ω然后相加,以其加权和作为统一的目标函数,即

1()()i

j j j F X F X ω==∑

其特点是:由于在实际设计问题中各项设计目标函数的量纲不一定相同,各目标函数值的数量级也可能相差悬殊,因此在选择加权因子时应兼顾到几个方面。一般,应首先对各目标函数进行无量纲处理,使其变为规格化形式,然后再考虑各分目标的重要程度的数量级的差异,选择合适的加权因子。

第三章各类优化设计方法的特点

目前用于优化设计的方法很多,每种方法都有各自的特点,这里着重讨论常用的一些优化设计方法的特点。

3.1无约束优化设计方法

没有约束函数的优化设计问题为无约束化问题! 无约束优化设计方法很多,根据在寻优过程中是否利用目标函数的性态(如可微性)分为直接法和间接法。很多约束优化设计问题常转化为无约束优化设计问题求解,有些无约束优化设计方法只需要略加处理,即可用于求解约束优化问题。因此,无约束优化设计问题是常用优化设计方法的重要基础! 无约束优化设计方法的特点包括计算效率高、稳定性好等! 比较常用的无约束优化设计方法有坐标轮换法、单纯形法、共轭方向法、梯度法、牛顿法、变尺度法等[1],各种方法的适应情况如表1所示。

表1 无约束优化设计方法的适应情况

注:“△”表示“最适应”;“√”表示“有效”;N表示“维数”

3.2约束优化设计方法

机械优化设计问题一般都是约束优化问题,根据处理约束条件的方法不同,也可以分为直接法和间接法2种。

直接法的基础思想是构造—迭代过程,使每次迭代点都在可行域中,且一步步降低目标函数值,直到求得最优解。直接法的算法最简单,直观易懂,对目标函数和约束函数无特殊要求;但计算工作大,需用机时多,不适用于维数较高的问题,一般用于求解只含有不等式约束的优化设计问题。常见方法包括约束坐标轮换法、网络法、复合形法等。

间接法的基本思想是将优化设计问题转化为无约束优化问题,再利用无约束优化方法求解。或者将非线性约束优化设计问题转化为线性规划问题。间接法的算法理论性强,可靠性高,精度高,计算复杂,对目标函数、约束函数有一定要求,可求解高维优化设计问题和同时含有等式和不等式约束的优化问题。常用的方法包括罚函数法、增广拉式乘子法。

3.3基因遗传算法(Genetic Algorithem,简称GA)

GA是一种非确定性的拟自然算法,它仿造自然界生物进化的

规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。GA与传统优化设计方法不同,它是一种启发式的搜索算法,通过群体中个体的多样性实现对解空间的多点同时搜索,可以有效实现全局最优解[2]。传统的优化设计方法对于结构形式(拓朴)优化设计、总体方案优化设计等问题,往往难以抽象出合适的数学模型;对于大型复杂的机械优化设计问题,往往会出现多目标函数、多峰值的情况等,GA 恰能解决这些传统优化设计方法无法解决的问题。GA作为一种开放式的算法,其具体操作取决于所优化的问题,目前尚难以提出一种统一的或固定的GA求解模式。而且,由于在实际应用中往往使用有限的群体和样本,理论上考虑的选择概率和遗传操作是绝对的,容易导致算法过早收敛或局部收敛,所以也应该对GA算法进行深入的研究并予以改进。

3.4模糊优化设计方案

在现实优化设计中,存在大量的模糊因素或模糊对象,而传统优化设计方法在建立模型时将模糊因素精确化,甚至忽略不计,往往影响了优化设计的结果。模糊优化设计是将模糊因素和模糊主观信息量化,建立由模糊变量、模糊约束条件和模糊目标函数组成的模糊数学模型,再通过从模糊到非模糊的变化来实现模糊数学模型的转化,最终利用优化算法进行求解。

第四章优化方法的选择

4.1优化设计方法的评判指标

优化设计方法的选择是解决优化设计问题的前提,选用哪个方法好,需视优化设计方法的特性和实际设计问题具体情况而定% 一般来说,评价一种优化设计方法的优劣可以从以下几个方面进行考察。

1)可靠性,指在合理精度要求下,在一定时间内求解各种不同类型问题的成功率。

2)精度。

3)效率,指对同一问题、在统一精度要求和同一初始点的情况下,所需的机时数或函数求值次数,即相同条件下的计算成本。计算效率是影响计算成功主要因素之一。

4)通用性,指是否有对函数性态的限制,占用内存的限制等,即方法的使用范围及其对各类优化设计问题的适用性。

5)稳定性,指方法的求解稳定性。

6)全局收敛法,指方法是否会陷入局部最优。优化设计方法的适应性和收敛性影响计算效率,对整个优化设计有着重要影响。实践证明,任何一种优化设计方法都不可能在计算全过程中均保持较好的收敛性。

7)初始条件敏感性,指初始条件对能否收敛到最优的影响程度% 如果即使从一个不好的初始点出发也能够收敛到最优解,则说明其初始条件敏感性低。

8)多变量敏感性,指设计变量的个数即维数的敏感程度,特

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

优化设计技术

机械优化设计 摘要 机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案。作为一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题。优化设计为工程设计提供了一种重要的科学设计方法。因而采用这种设计方法能大大提高设计效率和设计质量。本文论述了优化设计方法的发展背景、流程,并对无约束优化及约束优化不同优化设计方法的发展情况、原理、具体方法、特点及应用范围进行了叙述。另外,选择合适的优化设计方法是解决某个具体优化设计问题的前提,而对优化设计方法进行分析、比较和评判是其关键,本文分析了优化方法的选取原则。之后对并对近年来出现的随机方向法、遗传算法、蚁群算法和模拟退火算法等新兴优化方法分别进行了介绍。本文以交通领域中建立最优交通网路为例说明了优化设计方法的应用特点。 关键词:机械优化设计;约束;特点;选取原则

目录 第一章引言 (1) 1.1优化设计的背景 (1) 1.2机械优化设计的特点 (2) 1.3优化设计的模型 (3) 1.4优化设计的流程 (4) 第二章优化设计方法的分类 (6) 2.1无约束优化设计方法 (7) 2.1.1梯度法 (7) 2.1.2牛顿型方法 (7) 2.1.3共轭梯度法 (8) 2.1.4变尺度法 (8) 2.2约束优化设计方法 (9) 2.2.1直接解法 (9) 2.2.2间接解法 (11) 2.3多目标优化方法 (13) 2.3.1主要目标法 (14) 2.3.2加权和法 (14) 第三章各类优化设计方法的特点 (15) 3.1无约束优化设计方法 (15) 3.2约束优化设计方法 (16) 3.3基因遗传算法(Genetic Algorithem,简称GA) (16) 3.4模糊优化设计方案 (17) 第四章优化方法的选择 (18) 4.1优化设计方法的评判指标 (18) 4.2优化方法的选取原则 (19) 第五章机械优化设计发展趋势 (21) 第六章 UG/PRO-E建模 (23) 参考文献 (27)

YJK软件的优化设计

Y J K软件的优化设计Prepared on 21 November 2021

一、当前软件(PKPM)主要问题 1、计算模型落后甚至不正确的若干方面 2、采用的算法不完全满足规范要求的若干方面 3、采用的过于简化的计算模型的若干方面 4、设计观念已经落后的若干方面 5、计算模型粗放忽略了结构有利要素的若干方面 6、涉及优化的关键环节缺失的若干方面 7、不开放接口的封闭观念 1、计算模型落后甚至不正确的若干方面 (1)基础筏板、桩筏或桩承台有限元计算常给出配筋异常大的结果(2)楼板按照单房间的导致支座钢筋偏大; (3)基础冲切计算流程错误导致筏板承台厚度过大; (4)承台独基与地基梁的重复计算造成重复布置 2、采用的算法不完全满足规范要求的若干方面 (1)剪力墙边缘构件配筋的单肢配筋方式配筋过大或不够; (2)柱剪跨比按简化计算方法常导致短柱过多超限过多; (3)型钢混凝土柱的配筋按不同规程才可优化 3、采用的过于简化的计算模型的若干方面 (1)对弹性时程分析结果只能作全楼统一的地震作用放大; (2)对活荷载的折减系数、重力荷载代表值系数只能设置全楼统一的数值; (3)施工模拟计算不能胜任目前多种工程需要; (4)转换梁按照梁杆件计算模型导致易发生抗剪抗弯超限; (5)地下室外墙的计算模型不合理导致地下室外墙过大的配 筋设计; (6)基础考虑上部楼层刚度的计算不全面; 4、设计观念已经落后的若干方面 认为梁设计时考虑楼板的壳元计算减少梁的配筋偏于不安全 5、计算模型粗放忽略了结构有利要素的若干方面 (1)地下1层以下地下室的不需按抗震设计; (2)梁配筋计算没有考虑支承梁的柱的宽度影响; (3)应正确区分框架梁与非框架梁; 6、涉及优化的关键环节缺失的若干方面 (1)基础承载力验算;

机械优化设计大作业2011 - 副本

宁波工程学院机械工程学院 机械优化设计大作业 班级 姓名 学号 教师

机械优化设计大作业 1.题目 行星减速器结构优化设计 NGW型行星减速器应用非常广泛。 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高; (2)传动效率高,工作高; (3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 2.已知条件 传动比u=4.64,输入扭矩T=1175.4N.m,齿轮材料均选用38SiMnMo钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02 ?u。 .0 ≤ 弹性影响系数Z E=189.8MPa1/2;载荷系数k=1.05; 齿轮接触疲劳强度极限[σ]H=1250MPa; 齿轮弯曲疲劳强度极限[σ]F=1000MPa; =2.97;应力校正系数Y Sa=1.52; 齿轮的齿形系数Y Fa 小齿轮齿数z取值范围17--25;模数m取值范围2—6。 注: 优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T

3.数学模型的建立 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约 束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z 1ˉ ̄ 太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d 1--太阳轮1的分度圆直径,mm;d 2 --行星轮2的分度圆 直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函数 则为: F(x)=0.19635m2z 1 2b[4+(u-2)2c][1] 式中u--减速器传动比;c--行星轮个数 由已知条件c=3,u=4.64,因此目标函数可简化为: F(x)=4.891x 32x 1 2x 2

系统优化设计模拟

系统优化设计 一.填空(30分) 1.系统工程是用于系统设计、实现、技术管理、运行使用和退役的专业学科方法论。 2.系统工程师在引导系统架构的开发、需求的定义和分配、设计方案的评价与权衡、系统间技术风险均衡、系统接口的定义与评估、验证和确认活动的全面监督,以及许多其他任务中起关键的作用。3.在NPR7123.1《NASA系统工程流程和需求》中包括三类技术流程:系统设计、产品实现及技术管理。 4.对飞行和地面保障项目,NASA寿命周期的两个阶段又分为以下7个递进阶段: ●A前阶段:概念探索(即确定确定可行备选方案)。 ●阶段A:概念研究和技术开发(即项目定义,明确和组织必要的 技术)。 ●阶段B:初步设计和技术完善(即建立初步设计方案,开发必要 的技术)。 ●阶段C:详细设计和制造(即完成系统设计,进行组件的建造/ 编码)。 ●阶段D:系统组装、集成、试验和投产(即集成组件,验证系统, 系统投入生产并准备运行使用)。 ●阶段E:运行使用与维护(即运行与维修系统)。 ●阶段F:退役处置(即处置系统,分析数据)。

5.产品交付流程:产品实施、产品集成、产品验证、产品确认、产品交付。 6.产品验证流程分为5个主要步骤:(1)验证计划(准备实施验证的计划); (2)验证准备(准备进行验证);(3)执行验证(进行产品验证);(4)分析验证结果;(5)获得验证工作产品。 7.技术管理:技术规划、需求管理、接口管理、技术风险管理、技术状态管理、技术数据管理、技术评估、决策分析。 二.(30分) A.直升机的主动防御系统 B.坦克的主动防御系统 三.简答题(20分) A.系统设计的关键 B.系统设计各流程间相互关系 C.产品实现流程图 D.产品实现的关键 四.(10分) 运用系统工程的方法简述对系统总师的认识

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

机械优化设计技术

学号:1310111131 姓名汪海超班级:13机制2班 机械优化设计技术 摘要:机械优化设计是一种非常重要的现代设计方法, 能从众多的设计方案中找出最佳方案, 从而大大提高设计的效率和质量。现代工程装备的复杂性使得机械优化设计变得越来越困难, 利用新的科学理论探索新的优化设计法是该研究领域的一个重要方面。在综合大量文献的基础上, 阐述机械优化设计的含义、目的及必要性, 总结机械优化设计的特点,从优化设计数学模型建立和求解算法两方面探讨现代机械优化设计的理论方法和研究现状, 并指出该领中应当进一步研究的问题和发展方向 关键词:机械;优化设计;数学模型;优化方法;智能优化 优化设计是 20世纪 60年代随计算机技术发展起来的一门新学科 , 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术 , 为机械设计提供了一种可靠、高效的科学设计方法 , 使设计者由被动地分析、校核进入主动设计 , 能节约原材料 , 降低成本 , 缩短设计周期 , 提高设计效率和水平 , 提升企业竞争力、经济效益与社会效益[ 1 - 2].国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视 , 并开展了量工作 , 其基本理论和求解手段已逐渐成熟。国内优化设计起步较晚 , 但在众多学者和科研人员的不懈努力下 , 机械优化设计发展迅猛。 1 机械优化设计研究内容 机械优化设计是一种现代、科学的设计方法 , 集思考、绘图、计算、实验于一体 , 其结果不仅“可行”, 而且“最优”。该“最优”是相对的 , 随着科技的发展以及设计条件的改变 , 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化 ,要求人们根据事物的客观规律 , 在一定的物质基础和技术条件下充分发挥人的主观能动性 , 得出最优的设计方案。 2 传统优化设计理论方法 传统优化设计方法种类很多 , 按求解方法特点分为准则优化法、线性规划法和非线性规划法。作者仅从工程应用角度对之进行归纳和整理 , 具体算法可参考其他资料。 3 现代优化设计理论方法 优化准则法对于不同类型的约束、变量、目标函数等需导出不同的优化准则 , 通用性较差 , 且多为近似最优解 ;规划法需多次迭代、重复分析 , 代价昂贵 , 效率较低 , 往往还要求目标函数和约束条件连续、可微 , 这都

YJK软件的优化设计

一、当前软件(PKPM)主要问题 ? 1、计算模型落后甚至不正确的若干方面 ? 2、采用的算法不完全满足规范要求的若干方面 ? 3、采用的过于简化的计算模型的若干方面 ? 4、设计观念已经落后的若干方面 ? 5、计算模型粗放忽略了结构有利要素的若干方面 ? 6、涉及优化的关键环节缺失的若干方面 ? 7、不开放接口的封闭观念 1、计算模型落后甚至不正确的若干方面 ?(1)基础筏板、桩筏或桩承台有限元计算常给出配筋异常大的结果?(2)楼板按照单房间的导致支座钢筋偏大; ?(3)基础冲切计算流程错误导致筏板承台厚度过大; ?(4)承台独基与地基梁的重复计算造成重复布置 2、采用的算法不完全满足规范要求的若干方面 ?( 1)剪力墙边缘构件配筋的单肢配筋方式配筋过大或不够; ? ( 2)柱剪跨比按简化计算方法常导致短柱过多超限过多; ? ( 3)型钢混凝土柱的配筋按不同规程才可优化 3、采用的过于简化的计算模型的若干方面 ? ( 1)对弹性时程分析结果只能作全楼统一的地震作用放大; ? ( 2)对活荷载的折减系数、重力荷载代表值系数只能设置全楼统一的数值; ? ( 3)施工模拟计算不能胜任目前多种工程需要; ? ( 4)转换梁按照梁杆件计算模型导致易发生抗剪抗弯超限; ? ( 5)地下室外墙的计算模型不合理导致地下室外墙过大的配 筋设计; ? ( 6)基础考虑上部楼层刚度的计算不全面; 4、设计观念已经落后的若干方面 ? 认为梁设计时考虑楼板的壳元计算减少梁的配筋偏于不安全 5、计算模型粗放忽略了结构有利要素的若干方面 ? ( 1)地下1层以下地下室的不需按抗震设计; ? ( 2)梁配筋计算没有考虑支承梁的柱的宽度影响; ? ( 3)应正确区分框架梁与非框架梁; 6、涉及优化的关键环节缺失的若干方面 ? ( 1)基础承载力验算;

机械优化设计三个案例

机械优化设计案例1 1. 题目 对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。 2.已知条件 已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。 3.建立优化模型 3.1问题分析及设计变量的确定 由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。 单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为: ] 3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.02221222122212222122121222 212221202 22222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++- ----+-=πππππππ 式中符号意义由结构图给出,其计算公式为 b c d m u m z d d d m u m z D m z d m z d z z g g 2.0) 6.110(25.0,6.110,21022122211=--==-=== 由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为 T z z T d d l m z b x x x x x x x ][][21165 4321 == 3.2目标函数为 min )32286.18.092.0858575.4(785398.0)(26252624252463163212 51261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f 3.3约束条件的建立 1)为避免发生根切,应有min z z ≥17=,得

工程控制网模拟计算分析与优化设计

一、目的与要求 1.通过实践环节,培养运用本课程基本理论知识的能力,学会分析解决工程技术问题;加深对课程理论的理解和应用,提高工程测量现场服务的技能。 2.掌握工程测量地面控制网模拟设计计算的基本理论和方法,对附合导线进行设计、模拟计算、统计分析和假设检验,对结果进行分析,发现附合导线存在的问题,提出相应得对策,通过与边角网模拟计算结果的比较,加深对地面控制网的精度和可靠性这两个重要质量指标的理解。 3.掌握基于观测值可靠性理论的控制网优化设计方法,能根据工程要求独立布设地面控制网并进行网的模拟优化设计计算。 4.掌握COSA系列软件的CODAPS(测量控制网数据处理通用软件包)的安装、使用及具体应用。 二、内容与步骤 2.1附合导线模拟计算 2.1.1模拟网的基本信息 网类型和点数:附合导线、全边角网,9个控制点。 网的基准:附合导线为4个已知点、全边角网取1个已知点和1个已知方向。 已知点坐标:自定 待定点近似坐标:自定 边长:全边角网1000 ~ 1500m 左右,附合导线 400~ 500m 2.2计算步骤 1.人工生成模拟观测方案设计文件“导线数据.FA2”在主菜单“新建”下输入等边直伸导线的模拟观测数据,格式按照 COSA2 的规定输入,另存为“导线数据.FA2”。文件如下: 1.8,3,2 D1,0,1261.778,671.640

D2,0,997.212,1086.813 D3,1,1242.007,1542.800 D4,1,1027.823,2001.479 D5,1,1258.483,2496.456 D6,1,1071.641,2921.460 D7,1,1226.964,3367.157 D8,0,1031.118,3795.525 D9,0,1114.036,4306.353 D2 L:D1,D3 S:D3 ………… 2.主菜单“设计”栏的下拉菜单,有三项子菜单项,单击“生成正态标准随机数”,将弹出一对话框,要求输入生成随机数的相关参数。第一个参数用于控制生成不相同的随机数序列,其取值可取1-10的任意整数;第二个参数即“随机数个数”只能选200,400或500,即最多可生成500个服从(0,1)分布的正态随机数。系统对所生成的随机数按组进行检验,检验通过就存放在RANDOM.DAT文件中。该文件中的随机数用于网的模拟计算时生成在给定精度下的模拟观测值。 3.生成平面网初始观测值文件“导线数据.IN2”单击“生成初始观测值文件”,选择“平面网”,在弹出的对话框中选择文件“导线数据.FA2”,则自动生成初始观测值文件“导线数据.IN2”。如下: 1.800,3.000, 2.000,1 D1, 1261.778000, 671.640000 D2, 997.212000, 1086.813000 D8, 1031.118000, 3795.525000 D9, 1114.036000, 4306.353000 D2 D1,L,0.0000 D3,L, 119.155092 D3,S, 517.543047 D3 D2,L,0.0000 D4,L, 233.153520 D2,S, 517.537413 D4,S, 506.224731

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

优化设计小论文

优化设计小论文

机械优化设计 优化设计是20世纪60年代初发展起来的一门新的学科,也是一项新的设计技术。它是将数学规划理论与计算技术应用于设计领域, 按照预定的设计目标,以电子计算机及计算程序作为设计手段,寻求最优设计方案的有关参数,从而获 得较好的技术经济效益。机械的研究和应用具有悠久的历史,它伴随甚至推动了人类社会和人类文明的发展。机构学研究源远流长, 但从古到今,机构学领域主要研究三个核心问题, 即机构的构型原理与新机构的发明创造、机构分析与设 计的运动学与动力学性能评价指标、根据性能评价指标分析和设计机构。机构 是组成机械的基本单元,一般机械都是由一个或多个机构组成。对于机构的研究, 能够为发明、创造新机械提供理论、资料和经验。而对于机构的优化设计, 使 机构具有确定的几何尺寸,能够满足运动学要求, 并能实现给定的运动规律,这 些能够为某些具体的机械设计, 使机械满足某些特定的功能提供了可靠的依 据。 机械设计是机械工程的重要组成部分,是决定机械性能最主要的因素。从 工程设计基础和目标上可将设计分为:新型设计(开发性设计)、继承设计、变 型设计(基于标准型的修改)。所谓新型设计,即应用成熟的科学技术或经过实 验证明可行的新技术,设计未曾有过的新型机械,主要包括功能设计和结构设计,是机械设计发展的方向所在,然而贯穿其中的关键环节即是设计的方法和 实现的手段。人类一直都在不断探索新方法和新设计理念。从17 世纪前形成的直觉设计过渡到经验设计和传统设计,直到目前的现代设计[1],从静态、经验、手工式的‘安全寿命可行设计’方法发展到动态、科学、计算机化、自动化的 优化设计方法,已将科学领域内的实用方法论应用于工程设计中了。 机械优化设计基本思路是在保证基本机械性能的基础上,借助计算机,应 用一些精度较高的力学/ 数学规划方法进行分析计算,让某项机械设计在规定 的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。

结构成本优化设计的技术要点和方法终极版

一、结构成本控制的意义 控制结构成本,并不会导致结构的安全储备的降低,而是要取消 掉其中的无效成本。结构成本的降低是指通过积极化的设计,在保证 工程质量的同时去除无效的结构成本,以达到最小的投入产出比。 二、结构成本控制的管理思路及方法 结构成本控制必须贯穿整个设计和策划的全过程,包括前期论证及策划阶段的地质情况调查、规划阶段的初勘、方案阶段的结构介入、扩初阶段对结构方案的优化、施工图阶段给设计院灌输成本意识及施工图配合阶段变更、签证的管理。 (一)设计院的选择(主要指扩初设计和施工图设计阶段) 1、更应注重对设计团队的选择,而不是对设计院的选择。 2、培养能长期合作的战略伙伴,但必须不只一家。 3、分阶段进行设计成果的后评估。 4、注重专业负责人的选择。 (二)设计费的合理取值 设计费可略高于当地的平均水平值、略高于设计院的心理预期,对于调动设计院的积极性,保证设计质量行之有效。 (三)设计周期的合理确定 对于一个项目来说,设计周期越短越好,因此要在保证质量、不增加成本的前提下,尽量缩短设计周期,这就需要在决策导向上予以保证,并合理利用工序的前置和搭接时间,积极推广标准化设计;另外,要想快,创新点就要尽量少。 (四)设计过程中必须控制的关键环节 1、结构体系的确定及主要平面布置图

2、基础的选型及设计图 3、电算模型及计算系数的取值 4、地下室的布置及样板配筋图 5、标准层的布置及截面配筋图 6、结构转换层的布置及配筋层图 三、事前控制的要点 事先控制是成本管理的重中之重,并且是全过程的! (一)限额设计(合同的引入及应用) 1、限额的内容——应该是那些可控的、易离散的。如钢筋和砼的含量,停车位的面积等) 2、限额的数值——应比市场水平略低 3、限额的弹性——具体项目允许适当的调整范围 4、双赢的思想——奖罚分明 (二)必须重视和提前输入的技术原则 1、《结构设计统一技术措施》 2、《结构设计总说明》 3、《标准构造做法》 (三)施工图审查公司选择 1、沟通时机——尽早沟通达成共识,避免大的设计修改和返工。 2、沟通内容——注重在规范的边界或有争议处,如超限的判断、 裂缝宽度、短肢墙体系的定义、配筋等。 (四)对一些垄断部门——供电、供水、燃气、规划、人防、审图等,

运用ANSYS Workbench快速优化设计

运用ANSYS Workbench快速优化设计 摘要:从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表。本文将结合实际应用介绍如何使用Pro/E和ANSYS软件在AWE环境下如何实现快速优化设计过程。 关键词:有限元分析、集成、ANSYS Workbench 1 前言 ANSYS系列软件是融合结构、热、流体、电磁、声于一体的大型通用多物理场有限元分析软件,在我国广泛应用于航空航天、船舶、汽车、土木工程、机械制造等行业。ANSYS Workbench Environment(AWE)是ANSYS公司开发的新一代前后处理环境,并且定为于一个CAE协同平台,该环境提供了与CAD软件及设计流程高度的集成性,并且新版本增加了ANSYS很多软件模块并实现了很多常用功能,使产品开发中能快速应用CAE技术进行分析,从而减少产品设计周期、提高产品附加价值。 现今,对于一个制造商,产品质量关乎声誉、产品利润关乎发展,所以优化设计在产品开发中越来越受重视,并且方法手段也越来越多。从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表,本文将结合实际应用介绍如何使用Pro/E 和ANSYS软件在AWE环境下如何实现快速优化设计过程。 2 优化方法与CAE 在保证产品达到某些性能目标并满足一定约束条件的前提下,通过改变某些允许改变的设计变量,使产品的指标或性能达到最期望的目标,就是优化方法。例如,在保证结构刚强度满足要求的前提下,通过改变某些设计变量,使结构的重量最轻最合理,这不但使得结构耗材上得到了节省,在运输安装方面也提供了方便,降低运输成本。再如改变电器设备各发热部件的安装位置,使设备箱体内部温度峰值降到最低,是一个典型的自然对流散热问题的优化实例。在实际设计与生产中,类似这样的实例不胜枚举。 优化作为一种数学方法,通常是利用对解析函数求极值的方法来达到寻求最优值的目的。基于数值分析技术的CAE方法,显然不可能对我们的目标得到一个解析函数,CAE计算所求得的结果只是一个数值。然而,样条插值技术又使CAE中的优化成为可能,多个数值点可

搅拌式反应器的模拟与优化设计

搅拌式反应器的模拟与优化设计 摘要 在综述了计算流体力学(CFD)技术在搅拌式反应器中的研究进展的基础上,着重讨论了搅拌式反应器中流场的模拟方法, 包括“黑箱”模型法、内外迭代法、多重参考系法和滑移网格法, 并指出了CFD技术的发展方向。在此基础上, 对反应器内流场的数学模型进行了介绍与评价。最后提出应用人工神经网络技术与遗传算法, 优化生物反应的工艺操作条件, 并结合CFD技术, 实现生物反应器的结构优化, 从而达到对生物反应系统整体优化的目的, 以指导实验与工业生产。 关键词计算流体力学,搅拌式反应器,数值模拟,人工神经网络,优化设计Simulation and optimization design of Stirred reactor Abstract: Base on the overview of computational fluid dynamics (CFD) technology in the stirred reactor research,we focused on the mixing reactor simulation of the flow field, including "black box" model of law, internal and external iteration, multiple reference frame method and the sliding mesh method, and pointed out the direction of development of CFD technology. On these basis,we described and evaluated the reactor flow mathematical model.We concludes with the application of artificial neural network and genetic algorithm to optimize the process operating conditions, biological response, and results combined CFD technology to achieve optimization of the structure of the bioreactor, so as to achieve overall optimization of the bioreactor system aims to guide experiments and industrial production. Keyword: computational fluid dynamics, stirred reactor, numerical simulation, artificial neural networks, optimization 第1章前言 搅拌式反应器( Stirred Tank Reactor, STR)因其结构灵活、操作方式多样

机械优化设计实例(人字架优化)

人字架的优化设计 一、问题描述 如图1所示的人字架由两个钢管组成,其顶点受外力2F=3×105N 。已知人字架跨度2B=152 cm,钢管壁厚T=0.25cm,钢管材料的弹性模量E=2.15 10? MPa ,材料密度p=7.8×103 kg /m ,许用压应力δy =420 MPa 。求钢管压应力δ不超过许用压应力 δy 和失稳临界应力 δc 的条件下,人字架的高h 和钢管平均直径D 使钢管总质量m 为最小。 二、分析 设计变量:平均直径D 、高度h 三、数学建模 所设计的空心传动轴应满足以下条件: (1) 强度约束条件 即 δ≤?? ????y δ 经整理得 ( ) []y hTD h B F δπ≤+2 122 (2) 稳定性约束条件: []c δδ≤ ( ) ( ) ( ) 2 22 222 122 8h B D T E hTD h B F ++≤+ππ (3)取值范围:

12010≤≤D 1000200≤≤h 则目标函数为:()22 13 57760010 5224.122min x x x f +?=- 约束条件为:0420577600106)(2 12 2 41≤-+?=x Tx x X g π () 057760025.63272.259078577600106)(2 2 212 12 2 42≤++-+?= X x x x Tx x g π010)(13≤-=x X g 0120)(14≤-=x X g 0200)(25≤-=x X g 01000)(26≤-=x X g 四、优化方法、编程及结果分析 1优化方法 综合上述分析可得优化数学模型为:()T x x X 21,=;)(min x f ;()0..≤x g t s i 。 考察该模型,它是一个具有2个设计变量,6个约束条件的有约束非线性的单目标最优化问题,属于小型优化设计,故采用SUMT 惩罚函数内点法求解。 2方法原理 内点惩罚函数法简称内点法,这种方法将新目标函数定义于可行域内,序列迭代点在可行域内逐步逼近约束边界上的最优点。内点法只能用来求解具有不等式约束的优化问题。 对于只具有不等式约束的优化问题

机械优化设计习题及答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:??? ?????????????=??+??= ??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。 解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在

优化设计的概念和原理

优化设计的概念和原理 优化设计的概念和原则 概念 1前言 对于任何设计者来说,其目的都是为了制定最优的设计方案,使所设计的产品或工程设施具有最佳的性能和最低的材料消耗和制造成本,以获得最佳的经济效益和社会效益。因此,在实际设计中,科技人员往往会先提出几种不同的方案,并通过比较分析来选择最佳方案。然而,在现实中,由于资金限制,选定的候选方案的数量往往非常有限。因此,迫切需要一种科学有效的数学方法,于是“优化设计”理论应运而生。 优化设计是在计算机广泛应用的基础上发展起来的新技术。这是一种现代设计方法,它根据优化原理和方法将各种因素结合起来,在计算机上以人机合作或“自动探索”的方式进行半自动或自动设计,以选择现有工程条件下的最佳设计方案。其设计原则是优化设计:设计手段是电子计算机和计算程序;设计方法是采用最优化数学方法。本文将简要介绍优化设计中常用的概念,如设计变量、目标函数、约束条件等。 2设计变量 设计变量是独立参数,必须在设计过程的最终选择中确定它们是选择过程中的变量,但是一旦确定了变量,设计对象就完全确定了。优化设计是研究如何合理优化这些设计变量值的现代设计方法。

机械设计中常用的独立参数包括结构的整体构型尺寸、部件的几何尺寸和材料的机械物理性能等。在这些参数中,根据设计要求可以预先给出的不是设计变量,而是设计常数。最简单的设计变量是元件尺寸,例如杆元件的长度、横截面积、弯曲元件的惯性矩、板元件的厚度等。 3目标函数 目标函数是设计中要达到的目标在优化设计中,所追求的设计目标(最优指标)可以用设计变量的函数来表示。这个过程被称为建立目标函数。一般目标函数表示为 f(x)=f(xl,xZ,?,x) 此功能代表设计的最重要特征,如设计组件的性能、质量或体积以及成本。最常见的情况是使用质量作为一个函数,因为质量的大小是最容易量化的价值度量。尽管费用具有更大的实际重要性,但通常需要有足够的数据来构成费用的目标函数。目标函数是设计变量的标量函数。优化设计的过程就是优化设计变量,使目标函数达到最优值或找到目标函数的最小值(或最大值)的过程。在实际工程设计过程中,经常会遇到多目标函数的某些目标之间存在矛盾,这就要求设计者正确处理各目标函数之间的关系目前,对这类多目标函数优化问题的研究还没有单目标函数的研究成熟。有时一个目标函数可以用来表示几个期望目标的加权和,多目标问题可以转化为单目标问题来求解。4约束 设计变量是优化设计中的基本参数。目标函数取决于设计变量。在

机械优化设计实例讲解学习

机械优化设计实例 压杆的最优化设计 压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的 尺寸限制值,求在p一定时d1、d2和l分别取何值时管状压杆的体积或重 量最小?(内外直径分别为d1、d2)两端承向轴向压力,并会因轴向压力 达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不 超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。 解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I——材料的惯性矩,EI为抗弯刚度 1、设计变量 现以管状压杆的内径d1、外径d2和长度l作为设计变量 2、目标函数 以其体积或重量作为目标函数 3、约束条件 以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型: 1) 2)

3) 罚函数: 传递扭矩的等截面轴的优化设计解:1、设计变量: 2、目标函数

以轴的重量最轻作为目标函数: 3、约束条件: 1)要求扭矩应力小于许用扭转应力,即: 式中:——轴所传递的最大扭矩 ——抗扭截面系数。对实心轴 2)要求扭转变形小于许用变形。即: 扭转角: 式中:G——材料的剪切弹性模数 Jp——极惯性矩,对实心轴: 3)结构尺寸要求的约束条件: 若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴,应采用疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。

二级齿轮减速器的传动比分配 二级齿轮减速器,总传动比i=4,求在中心距A最小下如何 分配传动比?设齿轮分度圆直径依次为d1、d2、d3、d4。第一、二 级减速比分别为i1、i2。假设d1=d3,则: 七辊矫直实验 罚函数法是一种对实际计算和理论研究都非常有价值的优化方法,广泛用来求解约束问题。其原理是将优化问题中的不等式约束和等式约束加权转换后,和原目标函数结合成新的目标函数,求解该新目标函数的无约束极小值,以期得到原问题的约束最优解。考虑到本优化程序要处理的是一个兼而有之的问题,故采用混合罚函数法。 一)、优化过程 (1)、设计变量 以试件通过各矫直辊时所受到的弯矩为设计变量: (2)、目标函数

相关主题
文本预览
相关文档 最新文档