当前位置:文档之家› DDR系列内存详解及硬件设计规范-Michael

DDR系列内存详解及硬件设计规范-Michael

DDR系列内存详解及硬件设计规范-Michael
DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件

设计规范

By: Michael

Oct 12, 2010

haolei@https://www.doczj.com/doc/0414111829.html,

目录

1.概述 (3)

2.DDR的基本原理 (3)

3.DDR SDRAM与SDRAM的不同 (5)

3.1差分时钟 (6)

3.2数据选取脉冲(DQS) (7)

3.3写入延迟 (9)

3.4突发长度与写入掩码 (10)

3.5延迟锁定回路(DLL) (10)

4.DDR-Ⅱ (12)

4.1DDR-Ⅱ内存结构 (13)

4.2DDR-Ⅱ的操作与时序设计 (15)

4.3DDR-Ⅱ封装技术 (19)

5.DDR-Ⅲ (21)

5.1DDR-Ⅲ技术概论 (21)

5.2DDR-Ⅲ内存的技术改进 (23)

6.内存模组 (26)

6.1内存模组的分类 (26)

6.2内存模组的技术分析 (28)

7.DDR 硬件设计规范 (34)

7.1电源设计 (34)

7.2时钟 (37)

7.3数据和DQS (38)

7.4地址和控制 (39)

7.5PCB布局注意事项 (40)

7.6PCB布线注意事项 (41)

7.7EMI问题 (42)

7.8测试方法 (42)

摘要:

本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。

关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT

, DLL, MRS, ODT Notes :

Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

1.概述

DDR SDRAM全称为Double Data Rate SDRAM,中文名为“双倍数据流SDRAM”。DDR SDRAM在原有的SDRAM的基础上改进而来。也正因为如此,DDR能够凭借着转产成本优势来打败昔日的对手RDRAM,成为当今的主流。本文着重介绍DDR的原理和DDR SDRAM相对于传统SDRAM(又称SDR SDRAM)的不同。

DDR SDRAM可在一个时钟周期内传送两次数据

2.DDR的基本原理

我们看DDR正规的时序图。

DDR SDRAM读操作时序图

从中可以发现它多了两个信号: CLK#与DQS,CLK#与正常CLK时钟相位相反,形成差分时钟信号。而数据的传输在CLK与CLK#的交叉点进行,可见在CLK的上升与下降沿(此时正好是CLK#的上升沿)都有数据被触发,从而实现DDR。在此,我们可以说通过差分信号达到了DDR的目的,甚至讲CLK#帮助了第

二个数据的触发,但这只是对表面现象的简单描述,从严格的定义上讲并不能这么说。之所以能实现DDR,还要从其内部的改进说起。

SDRAM内存芯片的内部结构图

DDR内存芯片的内部结构图,注意比较上文中SDRAM的结构图 这也是一颗128Mbit的内存芯片,标称规格也与前文的SDRAM一样为32×4bit。从图中可以看出来,白色区域内与SDRAM的结构基本相同,但请注意灰色区域,这是与SDRAM的不同之处。首先就是内部的

L-Bank规格。SDRAM中L-Bank存储单元的容量与芯片位宽相同,但在DDR SDRAM中并不是这样,存储单

元的容量是芯片位宽的一倍,所以在此不能再套用讲解SDRAM时 “芯片位宽=存储单元容量” 的公式了。也因此,真正的行、列地址数量也与同规格SDRAM不一样了。

以本芯片为例,在读取时,L-Bank在内部时钟信号的触发下一次传送8bit的数据给读取锁存器,再分成两路4bit数据传给复用器,由后者将它们合并为一路4bit数据流,然后由发送器在DQS的控制下在外部时钟上升与下降沿分两次传输4bit的数据到输出。这样,如果时钟频率为100MHz,那么在I/O端口处,由于是上下沿触发,那么就是传输频率就是200MHz。

这就是DDR SDRAM的工作原理,这种内部存储单元容量(也可以称为芯片内部总线位宽)=2×芯片位宽(也可称为芯片I/O总线位宽)的设计,就是所谓的两位预取(2-bit Prefetch),有的公司则贴切的称之为2-n Prefetch(n代表芯片位宽)。

3.DDR SDRAM与SDRAM的不同

DDR SDRAM与SDRAM的不同主要体现在以下几个方面。

DDR SDRAM与SDRAM的主要不同对比表

DDR SDRAM与SDRAM一样,在开机时也要进行MRS,不过由于操作功能的增多,DDR SDRAM在MRS之前还多了一EMRS阶段(Extended Mode Register Set,扩展模式寄存器设置),这个扩展模式寄存器控制着DLL的有效/禁止、输出驱动强度、QFC 有效/无效等。

3.1 差分时钟

差分时钟(参见上文“DDR SDRAM读操作时序图”)是DDR的一个必要设计,但CK#的作用,并不能理解为第二个触发时钟,而是起到触发时钟校准的作用。由于数据是在CK的上下沿触发,造成传输周期缩短了一半,因此必须要保证传输周期的稳定以确保数据的正确传输,这就要求CK的上下沿间距要有精确的控制。但因为温度、电阻性能的改变等原因,CK上下沿间距可能发生变化,此时与其反相的CK#就起到纠正的作用(CK上升快下降慢,CK#则是上升慢下降快)。而由于上下沿触发的原因,也使CL=1.5和2.5成为可能,并容易实现。

与CK反相的CK#保证了触发时机的准确性

3.2 数据选取脉冲(DQS)

DQS是DDR SDRAM中的重要功能,它的功能主要用来在一个时钟周期内准确的区分出每个传输周期,并便于接收方准确接收数据。每一颗芯片都有一个DQS信号线,它是双向的,在写入时它用来传送由北桥发来的DQS信号,读取时,则由芯片生成DQS向北桥发送。完全可以说,它就是数据的同步信号。

我们分别从数据的读和写两个方面来分析DQS的不同作用。

读数据过程

读数据过程

在读取时,DQS与数据信号同时出现(也是在CK与CK#的交叉点);即在读取时,DQS的上/下沿作为数据周期的分割点。但是数据有效却是在DQS的高/低电平期中部,也就是CK的中间。

DDR内存中的CL也就是从CAS发出到DQS生成的间隔,数据真正出现在数据I/O总线上相对于DQS 触发的时间间隔被称为tAC。注意,这与SDRAM中的tAC的不同。实际上,DQS生成时,芯片内部的预取已经完毕了,tAC是指上文结构图中灰色部分的数据输出时间,由于预取的原因,实际的数据传出可能会提前于DQS发生(数据提前于DQS传出)。由于是并行传输,DDR内存对tAC也有一定的要求,对于DDR-266,tAC的允许范围是±0.75ns,对于DDR-333,则是±0.7ns,有关它们的时序图示见前文,其中CL里包含了一段DQS的导入期。

写数据过程

写数据过程

在写入时,以DQS的高/低电平期中部为数据周期分割点,而不是上/下沿。但数据的接收触发有效却为DQS的上/下沿。这和上面的读DDR的过程正好相反。

为什么会有这种差异?在写的过程,如果以DQS的上下沿区分数据周期的危险很大。由于芯片有预取的操作,所以输出时的同步很难控制,只能限制在一定的时间范围内,数据在各I/O端口的出现时间可能有快有慢,会与DQS有一定的间隔,这也就是为什么要有一个tAC规定的原因。而在接收方,一切必须保证同步接收,不能有tAC之类的偏差。这样在写入时,芯片不再自己生成DQS,而以发送方传来的DQS为基准,并相应延后一定的时间,在DQS的中部为数据周期的选取分割点(在读取时分割点就是上下沿),从这里分隔开两个传输周期。这样做的好处是,由于各数据信号都会有一个逻辑电平保持周期,即使发送时不同步,在DQS上下沿时都处于保持周期中,此时数据接收触发的准确性无疑是最高的。

3.3 写入延迟

在上面的DQS写入时序图中,可以发现写入延迟已经不是0了,在发出写入命令后,DQS与写入数据要等一段时间才会送达。这个周期被称为DQS相对于写入命令的延迟时间(tDQSS, WRITE Command to the first corresponding rising edge of DQS),对于这个时间大家应该很好理解了。

为什么要有这样的延迟设计呢?原因也在于同步,毕竟一个时钟周期两次传送,需要很高的控制精度,它必须要等接收方做好充分的准备才行。tDQSS是DDR内存写入操作的一个重要参数,太短的话恐怕接受有误,太长则会造成总线空闲。tDQSS最短不能小于0.75个时钟周期,最长不能超过1.25个时钟周期。有人可能会说,如果这样,DQS不就与芯片内的时钟不同步了吗?对,正常情况下,tDQSS是一个时钟周期,但写入时接受方的时钟只用来控制命令信号的同步,而数据的接受则完全依靠DQS进行同步,所以DQS与时钟不同步也无所谓。不过,tDQSS产生了一个不利影响——读后写操作延迟的增加,如果CL=2.5,还要在tDQSS基础上加入半个时钟周期,因为命令都要在CK的上升沿发出。

当CL=2.5时,读后写的延迟将为tDQSS+0.5个时钟周期(图中BL=2) 另外,DDR内存的数据真正写入由于要经过更多步骤的处理,所以写回时间(tWR)也明显延长,一般在3个时钟周期左右,而在DDR-Ⅱ规范中更是将tWR列为模式寄存器的一项,可见它的重要性。

3.4 突发长度与写入掩码

在DDR SDRAM中,突发长度只有2、4、8三种选择,没有了随机存取的操作(突发长度为1)和全页式突发。这是为什么呢?因为L-Bank一次就存取两倍于芯片位宽的数据,所以芯片至少也要进行两次传输才可以,否则内部多出来的数据怎么处理?而全页式突发事实证明在PC内存中是很难用得上的,所以被取消也不稀奇。

但是,突发长度的定义也与SDRAM的不一样了,它不再指所连续寻址的存储单元数量,而是指连续的传输周期数,每次是一个芯片位宽的数据。对于突发写入,如果其中有不想存入的数据,仍可以运用DM 信号进行屏蔽。DM信号和数据信号同时发出,接收方在DQS的上升与下降沿来判断DM的状态,如果DM 为高电平,那么之前从DQS中部选取的数据就被屏蔽了。有人可能会觉得,DM是输入信号,意味着芯片不能发出DM信号给北桥作为屏蔽读取数据的参考。其实,该读哪个数据也是由北桥芯片决定的,所以芯片也无需参与北桥的工作,哪个数据是有用的就留给北桥自己去选吧。

3.5 延迟锁定回路(DLL)

DDR SDRAM对时钟的精确性有着很高的要求,而DDR SDRAM有两个时钟,一个是外部的总线时钟,一个是内部的工作时钟,在理论上DDR SDRAM这两个时钟应该是同步的,但由于种种原因,如温度、电压波动而产生延迟使两者很难同步,更何况时钟频率本身也有不稳定的情况(SDRAM也有内部时钟,不过因为它的工作/传输频率较低,所以内外同步问题并不突出)。DDR SDRAM的tAC就是因为内部时钟与外部时钟有偏差而引起的,它很可能造成因数据不同步而产生错误的恶果。实际上,不同步就是一种正/负延迟,如果延迟不可避免,那么若是设定一个延迟值,如一个时钟周期,那么内外时钟的上升与下降沿还是同步的。鉴于外部时钟周期也不会绝对统一,所以需要根据外部时钟动态修正内部时钟的延迟来实现与外部时钟的同步,这就是DLL的任务。

DLL不同于主板上的PLL,它不涉及频率与电压转换,而是生成一个延迟量给内部时钟。目前DLL有两种实现方法,一个是时钟频率测量法(CFM,Clock Frequency Measurement),一个是时钟比较法(CC,Clock Comparator)。CFM是测量外部时钟的频率周期,然后以此周期为延迟值控制内部时钟,这样内外时钟正好就相差了一个时钟周期,从而实现同步。DLL就这样反复测量反复控制延迟值,使内部时钟与外部时钟保持同步。

CC的方法则是比较内外部时钟的长短,如果内部时钟周期短了,就将所少的延迟加到下一个内部时钟周期里,然后再与外部时钟做比较,若是内部时钟周期长了,就将多出的延迟从下一个内部时钟中刨除,如此往复,最终使内外时钟同步。

CFM式DLL工作示意图

CC式DLL工作示意图

CFM与CC各有优缺点,CFM的校正速度快,仅用两个时钟周期,但容易受到噪音干扰,并且如果测量失误,则内部的延迟就永远错下去了。CC的优点则是更稳定可靠,如果比较失败,延迟受影响的只是一个数据(而且不会太严重),不会涉及到后面的延迟修正,但它的修正时间要比CFM长。DLL功能在DDR SDRAM中可以被禁止,但仅限于调试与评估操作,正常工作状态是自动有效的。

4.DDR-Ⅱ

DDR-Ⅱ相对于DDR 的主要改进如下:

由于DDR-Ⅱ相对DDR-I的设计变动并不大,因此很多操作就不在此详细介绍了,本文重点阐述DDR-Ⅱ的一些重要变化。

4.1 DDR-Ⅱ内存结构

DDR-Ⅱ内存的预取设计是4bit,通过DDR的讲述,大家现在应该知道其含义。

上文已经说过,SDRAM有两个时钟,一个是内部时钟,一个是外部时钟。在SDRAM与DDR时代,这两个时钟频率是相同的,但在DDR-Ⅱ内存中,内部时钟变成了外部时钟的一半。以DDR-Ⅱ 400为例,数据传输频率为400MHz(对于每个数据引脚,则是400Mbps/pin),外部时钟频率为200MHz,内部时钟频率为100MHz。因为内部一次传输的数据就可供外部接口传输4次,虽然以DDR方式传输,但数据传输频率的基准——外部时钟频率仍要是内部时钟的两倍才行。就如RDRAM PC800一样,其内部时钟频率也为100MHz,是传输频率的1/8。

DDR-Ⅱ、DDR与SDRAM的操作时钟比较

所以,当预取容量超过接口一次DDR的传输量时,内部时钟必须降低(除非数据传输不是DDR方式,而是一个时钟周期4次)。如果内部时钟也达到200MHz,那外部时钟也要达到400MHz,这会使成本有大幅度提高。因此,DDR-Ⅱ虽然实现了4-bit预取,但在实际效能上,与DDR是一样的。在上面那幅比较图

中,可以看出厂商们的一种误导,它虽然表示出在相同的核心频率下,DDR-Ⅱ达到了两倍于DDR的的带宽,但前提是DDR-Ⅱ的外部时钟频率也是DDR和SDRAM的两倍。在DDR的时钟频率已经达到166/200MHz的今天,再用100MHz去比较,显然意义不大。这点也请大家们注意识别,上图更多的是说明DDR-Ⅱ内外时钟的差异。毕竟内部时钟由外部决定,所以外部时钟才是比较的根本基准。

总之,现在大家要明确认识,在外部时钟频率相同的情况下,DDR-Ⅱ与DDR的带宽一样。

4.2 DDR-Ⅱ的操作与时序设计

Off--Chip Driver

,Off

Chip Driver)

1、片外驱动调校

OCD,

片外驱动调校(

(OCD

DDR-Ⅱ内存在开机时也会有初始化过程,同时在EMRS中加入了新设置选项,由于大同小异,在此就不多说了。在EMRS阶段,DDR-Ⅱ 加入了可选的OCD功能。OCD的主要用意在于调整I/O接口端的电压,来补偿上拉与下拉电阻值。目的是让DQS与DQ数据信号之间的偏差降低到最小。调校期间,分别测试DQS 高电平/DQ高电平,与DQS低电平/DQ高电平时的同步情况,如果不满足要求,则通过设定突发长度的地址线来传送上拉/下拉电阻等级(加一档或减一档),直到测试合格才退出OCD操作。

OCD的作用在于调整DQS与DQ之间的同步,以确保信号的完整与可靠性

不过,据一些厂商的技术人员介绍,一般情况下有DQS#(差分DQS时)就基本可以保证同步的准确性,而且OCD的调整对其他操作也有一定影响,因此在普通台式机上不需要用OCD功能,它一般只会出现在高端产品中,如对数据完整性非常敏感的服务器等。

On--Die Termination

Die Termination)

,On

ODT,

片内终结(

2、片内终结

(ODT

所谓的终结,就是让信号被电路的终端被吸收掉,而不会在电路上形成反射,造成对后面信号的影响。在DDR时代,控制与数据信号的终结在主板上完成,每块DDR主板在DIMM槽的旁边都会有一个终结电压岛的设计,它主要由一排终结电阻构成。长期以来,这个电压岛一直是DDR主板设计上的一个难点。而ODT的出现,则将这个难点消灭了。

顾名思义,ODT就是将终结电阻移植到了芯片内部,主板上不再有终结电路。ODT的功能与禁止由北桥芯片控制,ODT所终结的信号包括DQS、RDQS(为8bit位宽芯片增设的专用DQS读取信号,主要用来简化一个模组中同时使用4与8bit位宽芯片时的控制设计)、DQ、DM等。需要不需要该芯片进行终结由北桥控制。

那么具体的终结操作如果实现呢?首先要确定系统中有几条模组,并因此来决定终结的等效电阻值,有150和75Ω两档,这一切由北桥在开机进行EMRS时进行设置。

在向内存写入时,如果只有一条DIMM,那么这条DIMM就自己进行终结,终结电阻等效为150Ω。如果为两条DIMM,一条工作时,另一条负责终结,但等效电阻为75Ω

在从内存读出时,终结操作也将在北桥内进行,如果有两条DIMM,不工作的那一条将会终结信号在另一方向的余波,等效电阻也因DIMM的数量而有两种设置

两个DIMM 在交错工作中的ODT 情况,第一个模组工作时,第二个模组进行终结操作,等第二个模组工作时,第一个模组进行终结操作

现在我们应该基本了解了ODT 的功能,它在很大程度上减少了内存芯片在读取时的I/O 功率消耗,并简化了主板的设计,降低了主板成本。而且ODT 也要比主板终结更及时有效,从而提高信号质量。但是,由于为了确保信号的有效终结,终结操作期将会比数据传输期稍长,从而多占用一个时钟周期的时间而造成总线空闲。不过,通过精确设置tDQSS,可以避免出现总线空闲。

3、前置CAS CAS、、附加潜伏期附加潜伏期(AL)(AL)(AL)与写入潜伏期与写入潜伏期与写入潜伏期(WL)(WL)(WL)

前置CAS(Posted CAS)是为了解决DDR 内存中指令冲突而设计的功能。它允许CAS 信号紧随RAS 发送,相对于以往的DDR 等于将CAS 前置了。这样,地址线可以立刻空出来,便于后面的行有效命令发出,避免造成命令冲突而被迫延后的情况发生,但读/写操作并没有因此而提前,仍有要保证有足够的延迟/潜伏期,为此,DDR-Ⅱ引入了附加潜伏期的概念(AL,Additive Latency),与CL 一样,单位为时钟周期数。AL+CL 被定义为读取潜伏期(RL,Read Latency),相应的,DDR-Ⅱ 还对写入潜伏期(WL,Write Latency)制定了标准,WL 是指从写入命令发出到第一笔数据输入的潜伏期,不要将它和tDQSS 弄混了,后者是指DQS 而不是数据。按规定,WL=RL-1,即AL+CL-1。

在没有前置CAS 功能时,对其他L-Bank 的寻址操作可能会因当前行的CAS 命令占用地址线而延后,并使数据I/O 总线出现空闲,当使用前置CAS 后,消除了命令冲突并使数据I/O 总线的利率提高。

设置Posted-CAS后,必须附加潜伏期以保证应有延迟,此时读取潜伏期(RL)就等于AL+CL,从中可以看出AL的值为CL+tRCD-1

DDR-Ⅱ中CL最低值为3,最高为5,并且不再有x.5的设计,而AL值则为0-4。当AL设为0时,前置CAS无效,即为传统DDR模式的操作。不过前置CAS在解决命令冲突的时间也带来了新的问题——在背靠背式读取时,仍将经过AL+CL的潜伏期才能读取数据,比传统的只有CL相比,读取的延迟反而增加了。因此,AL=0是默认设置,只有在那些读写命令非常频繁的操作场合,才建议启动前置CAS功能(如服务器等),对于台式机用户,前置CAS的优点不足以抵消其带来的不利影响。

由于有了AL,在同一行中进行再读取时,在CL的基础上仍将增加AL造成的延迟,从而影响了性能

4.3 DDR-Ⅱ封装技术

TSOP-II将在DDR-Ⅱ时代彻底退出内存封装市场。并且将会出现改良型的CSP——WLP(Wafer Level Packaging,晶圆级封装),它是比CSP更为贴近芯片尺寸的封装方法,由于在晶圆上就做好了封装布线,因此在可靠性方面达到了更高的水平。不过,外在的模样仍与现在的CSP封装差不多,WLP更多的改进是在其内部。

电子硬件工程师要求

电子硬件工程师要求 基于实际经验与实际项目详细理解并掌握成为合格的硬件工程师的最基本...基本上就可以成为一个合格的电子工程师:第一部分:硬件知识一、数字信... 基于实际经验与实际项目详细理解并掌握成为合格的硬件工程师的最基本知识。 1)基本设计规范 2)CPU基本知识、架构、性能及选型指导 3)MOTOROLA公司的PowerPC系列基本知识、性能详解及选型指导 4)网络处理器(INTEL、MOTOROLA、IBM)的基本知识、架构、性能及选型 5)常用总线的基本知识、性能详解 6)各种存储器的详细性能介绍、设计要点及选型 7)Datacom、Telecom领域常用物理层接口芯片基本知识,性能、设计要点及选型 8)常用器件选型要点与精华 9)FPGA、CPLD、EPLD的详细性能介绍、设计要点及选型指导 10)VHDL和Verilog HDL介绍 11)网络基础 12)国内大型通信设备公司硬件研究开发流程 最流行的EDA工具指导 熟练掌握并使用业界最新、最流行的专业设计工具 1)Innoveda公司的ViewDraw,Power PCB,Cam350 2)CADENCE公司的OrCad,Allegro,Spectra 3)Altera公司的MAX+PLUS II 4)学习熟练使用VIEWDRAW、ORCAD、POWERPCB、SPECCTRA、ALLEGRO、CAM350、MAX+PLUS II、ISE、FOUNDATION等工具 5)XILINX公司的FOUNDATION、ISE 一.硬件总体设计 掌握硬件总体设计所必须具备的硬件设计经验与设计思路 1)产品需求分析 2)开发可行性分析 3)系统方案调研 4)总体架构,CPU选型,总线类型 5)数据通信与电信领域主流CPU:M68k系列,PowerPC860,PowerPC8240,8260体系结构,性能及对比6)总体硬件结构设计及应注意的问题 7)通信接口类型选择 8)任务分解 9)最小系统设计 10)PCI总线知识与规范 11)如何在总体设计阶段避免出现致命性错误 12)如何合理地进行任务分解以达到事半功倍的效果 13)项目案例:中、低端路由器等 二.硬件原理图设计技术 目的:通过具体的项目案例,详细进行原理图设计全部经验,设计要点与精髓揭密。 1)电信与数据通信领域主流CPU(M68k,PowerPC860,8240,8260等)的原理设计经验与精华;

发动机冷却系统设计规范

编号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 厦门金龙联合汽车工业有限公司技术中心 年月曰

第2页 一、概述 要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严 重的影响。 发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增 特别是活塞 环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动 “拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现 油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。 同时会降低发动 机充气量,使发动机功率下降。 发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。 发动机过冷,气缸磨损加剧。同时,由于过冷,混合气形成的液体,容易进入曲轴箱使 润 滑油变稀,影响润滑作用。 由此可见,使发 动机工作温度保持在最适宜范围内的冷却系,是何其重要。一般地, 发动机最适宜的工作温度是其气缸盖处冷却水温度保持在 80C ~90C ,此时发动机的动力 性、经济性最好。 、冷却系统设计的总体要求 a )具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值( 般为55°); 冷却系统的设计应保证散热器上水室的温度不超过99 Co 采用105 kPa 压力盖,在不连续工况运行下,最高水温允许到 110 C,但一年中 水温达到和 超过99 C 的时间不应超 过50 ho 冷却液的膨胀容积应等于整个系统冷却液容量的 6 %o 冷却系统必须用 不低于19 L/min 的速度加注冷却液,直至达到应有的冷却液平面, 以保证 所有工作条件下气缸体水套内冷却液能保持正常的压力。 三、冷却系统的构成 液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、 水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管冷却不足, 加,磨损加剧, 机停转或者发生 象。也会使润滑 a) C ) d) e)

浅谈花境设计

浅谈花境设计 2008 年第22 卷/ 第5 期 作者:纪建奎李洪宇 机构:南京民用建筑设计研究院景观所,南京210002 摘要:随着我国“城市美化运动”的不断升级,作为西方园林特有的植物造景之一的“花境”正日益受到人们的青睐。花境在我国各地的城市园林绿化中逐渐兴起。花境拥有自然和谐、景观层次丰富、季相变化、养护管理便利等特点,同时花境艳丽的色彩和参差的群体形象给人留下深刻的印象。花境的应用不仅符合人们回归自然的理念,也符合生态城市建设对植物多样性的要求。 关键词:花境;花境施工;地被植物 1.1花境定义 花境是指将多年生宿根花卉、球根花卉及一二年生花卉、灌木等植物材料,根据自然界林缘地带多种野生花卉交错生长的规律,通过艺术加工,以带状形式为主,组合栽植在林缘、路缘、水旁及建筑物前等处,以营造一种自然、生态的园林花卉景观。 过去,人们多是把植物当作一种构图要素,硬性地使其渗入到城市景观中。追求秩序的美,纯粹植物品种的几何布置,使植物脱离了持续生长的生态环境。人类大规模从事绿化种植,其根本目的是要通过绿化来改善人类的生存环境。植物要成为生产者,它就必须是,能够自身持续发展的生态系统。而植物自身的持续发展,是离不开一定的生态群落间的相互作用的。真正的生态设计,是一定的群落营造。花境其实就是一个小的群落,一种人工仿自然的群落。 1.2花境的特点 1.2.1花境是根据自然界森林边缘处野生花卉自然散布生长景观加以艺术提炼而应用于园林中的造景艺术。 花境布置一般以树丛、绿篱、矮墙或建筑物等作为背景,根据组景的不同特点形成宽窄不一的曲线或直线花带。花境内的植物配置为自然式,主要欣赏其本身特有的自然美以及植物组合的群体美。 花境是花卉应用的一种重要的形式,虽然一定程度反映出植物群落关系,但营造的核心是出入“源于自然,而高于自然”的理念,是一种自然现象在人的作用下的集中体现。 1.2.2花境是一种过渡的半自然种植类型,体现植物的自然美与群体美。花境表现的主题,是表现观赏植物本身所特有的自然美,以及观赏植物自然组合的群体美,所以构图不是平面的几何图案,而是植物的群落的自然景观。利用不同高矮、花色、株型各异的香草布置花境,不仅能观其色,赏其姿,还能闻其香。 1.2.3花境是一个连续的、有变化的风景序列构图。花境是将植物有机自然地布置在沿着长轴方向演进的带状种植床上,以多年生花卉为主组成的带状地段。花卉布置采取以植物群丛为主的自然式块状混交,表现花卉群体的自然景观。平面轮廓多为不规则形状,内部可以兼有自然与规则特点的混合构图,从平面上看,是各种花卉块状混植。植床两边是平行的直线或有几何规则的曲线。 1.2.4丰富的植物材料是营造花境的前提条件,经典的花境可形成丰富的季相交替景观,可达到三季有花的景观效果。适宜布置花境的植物材料即花卉的种类较花坛广泛,几乎所有的露地花卉均可选用,其中尤以宿根花卉、球根花卉最为适宜。不同类型的花境可间有小灌木、球根花卉、一二年生草花、观赏草等,这些花卉种类繁多,多年生长,不需要经常更换,一次种植后可多年使用,如玉簪、石蒜、萱草、鸢尾、芍药、金光菊、大花金鸡菊等。球根花卉因其枝叶较少,园地易裸露,可在株间配植低矮的花卉种类。花境中各种花卉的配植必须从色彩、姿态、株形、数量,以及生长势、繁衍能力等多方面搭配得当,形成高低错落、疏密有致、前后穿插,花朵此开彼谢的景观,一年内富有季相变化,四季有花观赏。

基本农田建设设计规范

基本农田建设设计规范 1范围 本标准规定了基本农田建设的术语和定义、技术指标、耕作田块规划设计、田间排灌沟渠规划设计、机耕路规划设计、农田防护林设计和路、沟、林、渠、田综合规划设 计。 本标准适用于我省境内平原、低山丘陵地区的洋田、山垄田和梯田三种类型,且面积小于666.7公顷的基本农田建设规划设计。 SL252水利水电工程等级划分及灌水标准 SL265水闸设计规范 3术语和定义 下列术语和定义适用于本标准 3.1基本农田系指根据国民经济和社会发展对主要农产品的需求,以及对建设用地的预 测,长期不得占用或基本农田保护区规划期内不得占用的耕地。

3.2基本农田建设系指对基本农田的田块、土壤肥力、沟、渠、路、林等方面按照本规 范的标准进行改造与建设。 3.3洋田:系指分布平原地区各河流的入海口、内陆盆地和河流中、下游的一级阶地的 田块。包括滨海平原田和平洋田。 3.3.1滨海平原田:系指主要由冲、海积形成的洋田,分布于各河流的入海口。3.3.2平洋田:系指主要由冲、洪积形成的洋田,分布于内陆盆地和河流中、下游的 一级阶地。

向垂直线的交角小于30o方向布置。 5.2耕作田块长度 田块边长应根据作物类型、耕作机械工作效率、田块平整度、灌溉均匀程度以及排 水畅通度等因素确定。 5.3耕作田块宽度 耕作田块宽度应考虑田块面积、机械作业要求、灌溉和排水和防止风害等要求;同

时应考虑地形地貌的限制。 5.4田块的地下水位 耕作田块田面高程应满足农作物排渍的要求,即田面高程E≥E 0+d(E 为所在田块最高 地下水位的高程,d为设计排渍深度)。水田设计排渍深度可取d=0.6m,旱地设计排渍 深度可取d=0.8m。 5.5耕作田块形状 5.5.1要求外形规整,长边与短边交角以直角或接近直角为好,形状选择依次为长方形、 。 平原地区以种植水稻为主,水田宜采用格田形式。格田设计必须保证排灌畅通,调控方便,并满足水稻作物各生长发育阶段对水份的需求。格田田面高差应在3~5cm以内,长度保持在80~120m,宽度以30~40m为宜。格田之间以田埂为界,埂高以20~30cm, 埂顶宽以15~20cm为宜。 5.7.2低山丘陵地区(山垄田、梯田)设计 低山丘陵地区宜修筑梯田为主。根据地形、地面坡度、土层厚度的不同将其修筑成 梯田。

计算机硬件基础知识试题

计算机硬件基础知识试题 1、通常计算机的存储器是由一个Cache、主存和辅存构成的三级存储体系。辅助存储器一般可由磁盘、磁带和光盘等存储设备组成。Cache和主存一般是一种__A__存储器,磁带则是一种__B__存储设备。在各种辅存中,除去__C__外,大多是便于脱卸和携带的。Cache存储器一般采用__D__半导体芯片,主存现在主要由__E__半导体芯片组成。 A、B:①随机存取②相联存取③只读存取④顺序存取⑤先进先出存取⑥先进后出存取 C:①软盘②CD-ROM ③磁带④硬盘 D、E:①ROM②PROM③EPROM④DRAM⑤SRAM 2、计算机的主机包括__A__,指令由__B__解释,设某条指令中的操作数(地址)部分为X,地址X的主存单元内容为Y,地址为Y的主存单元内容为Z。如果用直接存储方式,参与操作的数据为__C__;如果用立即寻址方式,参与操作的数据是__D__;如果以间接寻址方式,参与操作的数据为__E__。 A:①运算器和控制器②CPU和磁盘存储器③硬件和软件④CPU和主存B:①编译程序②解释程序③控制器 ④运算器C~E:①X②X+Y③Y ④Y+Z ⑤Z⑥X+Z 3、5.25英寸软盘上的DS,DD标记的意义是____。 A、单面单密度 B、单面双密度 C、双面单密度 D、双面双密度 4、5.25英寸软盘片外框上的一个矩形缺口,其作用是____。 A、机械定位 B、"0"磁道定位 C、写保护作用 D、磁盘的起点定位 5、5.25英寸软盘片内圆边上的一个小圆孔,其作用是____。 A、机械定位 B、"0"磁道定位 C、写保护作用 D、磁盘的起点定位 6、软盘驱动器在寻找数据时,_____。 A、盘片不动,磁头动 B、盘片动,磁头不动 C、盘片和磁头都动 D、盘片和磁头都不动 7、计算机执行指令的过程:在控制器的指挥下,把__A__的内容经过地址总线送入__B__的地址寄存器,按该地址读出指令,再经过数据总线送入__C__,经过_ _D__进行分析产生相应的操作控制信号送各执行部件。 A~D:①存储器②运算器③程序计数器 ④指令译码器 ⑤指令寄存器⑥时序控制电路⑦通用寄存器⑧CPU 8、磁盘上的磁道是____。 A、记录密度不同的同心圆 B、记录密度相同的同心圆 C、一条阿基米德螺线 D、两条阿基米德螺线 9、在磁盘存储器中,无需移动存取机构即可读取的一组磁道称为____。 A、单元 B、扇区 C、柱面 D、文卷 10、设某条指令中的操作数(地址)部分为X,地址X的主存单元内容为Y,地址为Y

硬件电路设计基础知识

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)

二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏)

海水循环冷却系统设计规范第4部分

海水循环冷却系统设计规范第 4 部分:材料选用及防腐设计导则》 编制说明 海水循环冷却系统设计规范第 4 部分: 材料选用及防腐设计导则》 海洋行业标准起草组 二〇一七年三月

一、制定标准的背景、目的和意义 我国水资源总量不足,人均淡水资源量更少,仅为世界人均占有量的1/4,且地 区分布不平衡,经济发达、人口密集的沿海地区水资源短缺尤其突出,淡水资源短缺已成为制约我国特别是沿海地区经济社会可持续发展的瓶颈。《海水利用专项规划》提出2020年我国“海水直接利用能力达到1000亿立方米/年,大幅度扩大和提高海水化学资源的综合利用规模和水平”,要求“海水利用对解决沿海地区缺水问题的贡献率达到26~37%”。《国家中长期科学和技术发展规划纲要(2006—2020)》在海洋资源高效开发利用优先主题中也提出“发展海水直接利用技术和海水化学资源综合利用技术”。随着国家海洋环保政策的日益严格,海水循环冷却替代海水直流冷却和淡水冷却的趋势日益突显,其技术节水环保的特点已得到工业循环冷却行业的多次验证和广泛认可,工程应用前景也越来越好。但海水循环冷却技术同时对系统的防腐、防垢和防生提出了很高的要求。而合理解决系统设备材料的腐蚀问题是海水循环冷却技术推广应用的首要任务。海水循环冷却系统所涉及的设备和材料种类较多,而不同设备材料的服役环境差异也较大。因此,制定材料选用及防腐设计导则是十分必要的,是我国海水循环冷却技术的推广和工程设计提供坚实的技术依据。 通过本标准的编制,形成满足海水循环冷却系统要求的,科学可靠、实用性强的海水循环冷却材料选用及防腐设计导则,为海水循环冷却工程选材提供技术参考,提高海水循环冷却工程用材料的可靠性和经济性,并与其他相关标准共同形成海水循环冷却系统设计技术标准体系,为海水循环冷却技术在我国的大规模工程应用提供技术支撑。 二、工作简况 2.1 任务来源 根据国家海洋局《关于下达2007年度第三批海洋行业标准制订计划项目的通知》 (国海环字[2007]211 号)文件,国家海洋局天津海水淡化与综合利用研究所为《海水循环冷却系统设计规范第4部分:材料选用及防腐设计导则》的起草单

基本农田设计规范

基本农田设计规范 本文由belion1982贡献 pdf 文档可能在WAP 端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 基本农田建设设计规范 1 范围本标准规定了基本农田建设的术语和定义、技术指标、耕作田块规划设计、田间排灌沟渠规划设计、机耕路规划设计、农田防护林设计和路、沟、林、渠、田综合规划设计。本标准适用于我省境内平原、低山丘陵地区的洋田、山垄田和梯田三种类型,且面积小于666.7 公顷的基本农田建设规划设计。 2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准。今后这些标准如有修改、修订的,应按修改后的标准执行。GB 3838 GB 5084 GB 8978GB50288GB /T50265GB/T16453.1GB/T16453.3NY/T309TD/T 1012SL18 SL207 SL252SL265 3 术语和定义下列术语和定义适用于本标准 3.1 基本农田系指根据国民经济和社会发展对主要农产品的需求,以及对建设用地的预测,地面水环境质量标准农田灌溉水质标准污水综合排放标准灌溉与排水工程设计规范泵站设计规范水土保持综合治理水土保持综合治理技术规范技术规范坡耕地治理技术沟壑治理技术 全国耕地类型区、耕地地力等级划分土地开发整理项目规划设计规范渠道防渗工程技术规范节水灌溉技术规范水利水电工程等级划分及灌水标准水闸设计规范 长期不得占用或基本农田保护区规划期内不得占用的耕地。 3.2 基本农田建设系指对基本农田的田块、土壤肥力、沟、渠、路、林等方面按照本规范 的标准进行改造与建设。 3.3 洋田:系指分布平原地区各河流的入海口、内陆盆地和河流中、下游的一级阶地的田 块。包括滨海平原田和平洋田。 3.3.1 3.3.2 地。滨海平原田:系指主要由冲、海积形成的洋田,分布于各河流的入海口。平洋田:系指主要由冲、洪积形成的洋田,分布于内陆盆地和河流中、下游的一级阶 3.4 3.5 3.6 3.7 3.8 山垄田:系指分布在丘陵、山区的丘间和内陆山间谷地的田块。梯田:系指分布在丘

发动机冷却系统设计规范

编号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 厦门金龙联合汽车工业有限公司技术中心 年月日

一、概述 要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重的影响。 冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。也会使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。同时会降低发动机充气量,使发动机功率下降。 发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。发动机过冷,气缸磨损加剧。同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润滑油变稀,影响润滑作用。 由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。一般地,发动机最适宜的工作温度是其气缸盖处冷却水温度保持在80℃~90℃,此时发动机的动力性、经济性最好。 二、冷却系统设计的总体要求 a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一 般为55°); b) 冷却系统的设计应保证散热器上水室的温度不超过99 ℃。 c) 采用105 kPa压力盖,在不连续工况运行下,最高水温允许到110 ℃,但一年中 水温达到和超过99 ℃的时间不应超过50 h。 d) 冷却液的膨胀容积应等于整个系统冷却液容量的6 %。 e) 冷却系统必须用不低于19 L/min的速度加注冷却液,直至达到应有的冷却液平面, 以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。 三、冷却系统的构成 液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。

花境类型及其设计要点

花境,在我国的景观、园林应用中还不太普遍,随着人们生活水平的不断提高,审美视野的不断拓展,起源并广泛应用于国外园林造景中的花境这些年来开始为我国景观、园林师所青睐,并集中在北京及长三角地区尝试应用其“虽由人作,宛白天开”、讲究自然天成,野趣曼妙的造景效果深受大众的喜爱。 l 花境的概念 结合国内外的概念,花境的定义为:模拟自然风景中野生花卉自然生长的规律,运用艺术提炼的造景手法,选择多年生花卉(包括宿根、球根、常绿花卉)和灌木为主要材料,以自然式种植于林缘、草坪、路畔、水旁等场所,从而达到平面、立面、色彩、季相景观上均衡、自然、和谐符合美学和生态原理的一种植物造景手法。 从平面上看呈现各种花材的块状混植;从立面上看则是高低错落、如林缘野生花卉交错生长的自然景观。花境的应用不仅增加了自然景观,还有分隔空间和组织游览路线的作用,在花材的选择上,由主花材形成基调,次花材作为配调,有各种花材共同形成季相景观(每季一般以2~3种花材为主形成季相主题,其他花卉为辅,用来烘托主材)。 花境不仅讲究表现植物的个体美,还展示了植物的群落美,一次种植后可多年使用,一般四季有景,寒冷地区也可三季有景。 2 花境的分类 2.1 按观赏角度分类 2.1.1 单面花境这是传统的花境形式,多临道路设置花境常以建筑物,基墙、树丛、绿篱等为背景,整体上前低后高,供一面观赏。 2.1.2 双面观赏花境这种花境没有背景,多设置在草坪上或树丛间,植物配置是中间高,两侧低,供两面或多面观赏。 2.1.3 对应式花境在园路两侧、草坪中央或建筑物周围设置相对应的两个花境成一组景观,这两个花境采用拟对称的手法,以求有节奏和韵律的变化。 2.2 按应用场地分类 2.2.1 林缘花境主要在自然风景林的林缘配置,多以常绿或落叶乔灌木为背景,成带状分布,常与草坪衔接过渡,以丰富林缘色彩。

基本农田建设设计规范

基本农田建设设计规范 1 范围 本标准规定了基本农田建设的术语和定义、技术指标、耕作田块规划设计、田间排灌沟渠规划设计、机耕路规划设计、农田防护林设计和路、沟、林、渠、田综合规划设计。 本标准适用于我省境内平原、低山丘陵地区的洋田、山垄田和梯田三种类型,且面积小于666.7公顷的基本农田建设规划设计。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准。今后这些标准如有修改、修订的,应按修改后的标准执行。 GB 3838 地面水环境质量标准 GB 5084 农田灌溉水质标准 GB 8978 污水综合排放标准 GB50288 灌溉与排水工程设计规范 GB /T50265 泵站设计规范 GB/T16453.1 水土保持综合治理技术规范坡耕地治理技术 GB/T16453.3 水土保持综合治理技术规范沟壑治理技术 NY/T309 全国耕地类型区、耕地地力等级划分 TD/T 1012 土地开发整理项目规划设计规范 SL18 渠道防渗工程技术规范 SL207 节水灌溉技术规范 SL252 水利水电工程等级划分及灌水标准 SL265 水闸设计规范 3 术语和定义 下列术语和定义适用于本标准 3.1 基本农田系指根据国民经济和社会发展对主要农产品的需求,以及对建设用地的预测,长期不得占用或基本农田保护区规划期内不得占用的耕地。 3.2 基本农田建设系指对基本农田的田块、土壤肥力、沟、渠、路、林等方面按照本

规范的标准进行改造与建设。 3.3 洋田:系指分布平原地区各河流的入海口、内陆盆地和河流中、下游的一级阶地的田块。包括滨海平原田和平洋田。 3.3.1 滨海平原田:系指主要由冲、海积形成的洋田,分布于各河流的入海口。 3.3.2 平洋田:系指主要由冲、洪积形成的洋田,分布于内陆盆地和河流中、下游的一级阶地。 3.4 山垄田:系指分布在丘陵、山区的丘间和内陆山间谷地的田块。 3.5 梯田:系指分布在丘陵、山区坡地上沿等高线方向修筑的条状台阶形田块。 3.6 灌溉水利用系数:灌入田间的水量(或流量)与渠首引入总水量(或流量)的比值。 3.7 渠系水利用系数:末级固定渠道放出的总水量与渠首引进的总水量的比值。 3.8 田间水利用系数:净灌水定额与末级固定渠道放出的单位面积灌水量的比值。3.9 灌溉设计保证率:是以灌溉设施供给灌溉用水全部获得满足的年数占总年数的百分数,用符号“P”表示。如P=90%则表示灌溉设施在长期使用中平均每100年可保证90年正常供水,其余10年不能完全满足。 3.10 机耕路类型与路宽 3.10.1 干、支道:系指村与村、乡(镇)、县、国家公路连接的道路。 3.10.2 田间道:系指田块与村庄,乡村道路或其他公路连接的道路。 3.10.3 生产路:系指田块与田块连接的道路。 4 基本农田建设技术指标 基本农田建设技术指标见表1。 表1 不同地貌类型基本农田建设技术指标

硬件工程师必须掌握基础

第一部分.硬件工程师必须掌握基础知识与经验精华 目的:基于实际经验与实际项目详细理解并掌握成为合格的硬件工程师的最基本知识。成为合格的硬件工程师的必备知识,全部来源于工程实践的实际要求. 1) 基本设计规范 2) CPU基本知识、架构、性能及选型指导(MIPS,POWERPC,X86) 3) MOTOROLA公司的PowerPC系列基本知识、性能详解及选型指导 4) 网络处理器(INTEL、MOTOROLA、IBM)基本知识、架构、性能及选型 5) 多核CPU的基础知识及典型应用 6) 常用总线的基本知识、性能详解(总线带宽、效率等) 7) 各种存储器详细性能介绍,设计要点及选型指导(DDR I,DDR II,L2 CACHE) 8) DATACOM、TELECOM常用物理层接口芯片基本知识、性能、设计要点及选型指导 9) 常用器件选型指导 10)FPGA、CPLD、EPLD的详细性能、设计要点及选型指导 11)VHDL or Verilog HDL 12)网络基础:交换,路由 13)国内大型硬件设备公司的硬件研发规范和研发流程介绍: 第二部分.硬件开发工具 目的:“工欲善其事,必先利其器”,熟练使用业界最新、最流行的专业设计工具,才可完成复杂的硬件设计。为了让学员对自己的培训投资能够物超所值,我们不会象某些培训机构那样, 将大量时间浪费在工具的使用上面,课堂上我们将基本不讲授这些工具的使用方法,而是希望学员能够通过自己在课下学习,此部分我们只进行课堂上的关键部分的指导,本部分不是课程的重点内容,虽然工具的使用对于成为合格的硬件工程师是必须和必备的技能; 1) INNOVEDA公司的ViewDraw,PowerPCB,Cam350 2) CADENCE公司的OrCad,Allegro,Spectra 3) Altera公司的MAX+PLUS II 4) XILINX公司的FOUNDATION、ISE 第三部分.硬件总体设计及原理图设计的核心经验与知识精华 此部分,讲师将依据国内著名硬件设备公司的产品开发流程,以基于高速总线结构和高端CPU的几个硬件开发项目为主线,将详细、深入、专业地讲解、剖析硬件总体设计和原理设计的核心经验和知识精华,把业内一些“概不外传”的经验与精髓传授给学员。我们希望通过"真正的经验传授"使你迅速成长为优秀的硬件总体设计师; 核心要点: 1)原理图设计全部经验揭密2) 原理图检查checklist 3) 设计理念的根本改变:“纸上”作业4) 结合已经批量转产的高端产品的原理图(原件)进行讲解 1) 产品需求分析 2) 开发可行性分析 3) 系统方案调研,给出我们自己总结的、非常实用有效的、相关的检查项, 4) 硬件总体设计的检查: checklist 5) 总体架构,CPU选型,总线类型 6) 通信接口类型选择 7) 任务分解

(完整word版)冷却系统橡胶软管设计规范

冷却系统橡胶软管设计规范 编制: 校对: 审核: 批准:

目录 1. 范围 (4) 2. 引用标准 (4) 3. 胶管分类 (4) 4. 设计要求 (4) 4.1. 总体要求 (4) 4.2 尺寸及公差 (4) 4.3. 胶管与连接硬管的配合尺寸 (5) 4.4 .胶管的转弯半径R与胶管内径D1 及转弯角度θ的关系 (5) 4.5. 胶管的扩口尺寸: (6) 4.6 胶管脱模相关 (6) 5. 性能要求 (6) 6. 图纸描述....................................................................... 错误!未定义书签。

前言 为规范冷却系统橡胶软管设计,编制此设计规范。本设计规范主要根据橡胶软管的生产工艺、性能要求,结合设计经验编制。本规范为第一次编制,需根据实际不断进行改进、完善。

1. 范围 本设计规范介绍冷却系统橡胶软管的基本设计要求。 2. 引用标准 GB/T 18948-2003 内燃机冷却系统用橡胶软管和纯胶管规范 GB/T 18948-2009 内燃机冷却系统用橡胶软管和纯胶管规范 Q/SQR.04.175-2011内燃机冷却系统用橡胶软管技 术要求 3. 胶管分类 胶管分为橡胶软管及纯胶管;橡胶软管由橡胶层( EPDM 层)及加强层(聚酯网)组成,纯胶管由橡 胶层( EPDM 层)组成。根据橡胶管用途及使用环境可分为四种类型: 1 型:工作环境温度为: -40℃ -100℃; 2 型:工作环境温度为: -40℃ -125℃; 3 型:工作环境温度为: -40℃ -150℃; 4 型:工作环境温度为: -40℃ -175℃; 我司目前 采用的胶管为橡胶软管、 2 型。 4. 设计要求 4.1.总体要求 橡胶软管表面应光滑, 凸凹深度不超过 0.5mm,橡胶软管整体不允许有气泡、 裂痕、 夹杂以及其 他影响使用的损 伤,层与层之间结合良好,扩口处过渡均匀。 4.2 尺寸及公差 长度尺寸及公差见表 1。 表 1 尺寸公差 单位: mm 内径、壁厚及尺寸公差见表 。 表2 壁厚及尺寸公差 版本: 01 冷却系统橡胶软管设计规范 共 8页 第 4页 单位: mm

高标准基本农田建设项目规划设计方案

高标准基本农田建设项目规划设计 高标准基本农田建设,是指以建设高标准基本农田为目标,依据土地利用总体规划和土地整治规划,在农村土地整治重点区域及重大工程、基本农田保护区、基本农田整备区等开展的土地整治活动,并通过农村土地整治建设形成的集中连片、设施配套、高产稳产、生态良好、抗灾能力强,建设出与现代农业生产和经营方式相适应的基本农田。 一、建设目标 1、优化土地利用结构与布局,实现集中连片,发挥规模效 益。 2、增加有效耕地面积,提高高标准基本农田面积比重。 3、提高基本农田质量,完善田间基础设施,稳步提高粮食 综合生产能力。 4、加强生态环境建设,发挥生产、生态、景观的综合功能。 5、建立保护和补偿机制,促进高标准基本农田的持续利用 二、建设内容 主要由田间工程和田间定位检测点组成。 1、高标准农田田间工程主要包括土地平整、土壤培肥、灌溉水源、灌溉渠道、 排水沟、田间灌溉、渠系建筑物、泵站、农用输配电、田间道路及农田防护林网等内容,以便于农业机械作业和农业科技应用,全面提高农田综合生产水平,保持持续增产能力。 A土地平整土地平整包括田块调整与田面平整。田块调整是将大小或形状不符合标准要求的田块进行合并或调整,以满足标准化种植、规模化经营、机械化作业、节水节能等农业科技的应用。田面平整主要是控制田块内田面高差保持在一定范围内,尽可能满足精耕细作、灌溉与排水的技术要求 B 土壤培肥实施土壤有机质提升和科学施肥等技术措施,耕作层土壤养分常规指标应达到当地中等以上水平。 C灌溉水源应按不同作物及灌溉需求实现相应的水源保障。水源工程质量保证年限不少于20年。 D灌溉渠道渠灌区田间明渠输配水工程包括斗、农渠。工程质量保证年限不少于15年。 E排水沟排水沟要满足农田防洪、排涝、防渍和防治土壤盐渍化的要求。 F田间灌溉根据水源、作物、经济和生产管理水平,田间灌溉采用地面灌溉、喷灌和微灌等形式。

电路硬件设计基础

1.1电路硬件设计基础 1.1.1电路设计 硬件电路设计原理 嵌入式系统的硬件设计主要分3个步骤:设计电路原理图、生成网络表、设计印制电路板,如下图所示。 图1-1硬件设计的3个步骤 进行硬件设计开发,首先要进行原理图设计,需要将一个个元器件按一定的逻辑关系连接起来。设计一个原理图的元件来源是“原理图库”,除了元件库外还可以由用户自己增加建立新的元件,用户可以用这些元件来实现所要设计产品的逻辑功能。例如利用Protel 中的画线、总线等工具,将电路中具有电气意义的导线、符号和标识根据设计要求连接起来,构成一个完整的原理图。 原理图设计完成后要进行网络表输出。网络表是电路原理设计和印制电路板设计中的一个桥梁,它是设计工具软件自动布线的灵魂,可以从原理图中生成,也可以从印制电路板图中提取。常见的原理图输入工具都具有Verilog/VHDL网络表生成功能,这些网络表包含所有的元件及元件之间的网络连接关系。 原理图设计完成后就可进行印制电路板设计。进行印制电路板设计时,可以利用Protel 提供的包括自动布线、各种设计规则的确定、叠层的设计、布线方式的设计、信号完整性设计等强大的布线功能,完成复杂的印制电路板设计,达到系统的准确性、功能性、可靠性设计。 电路设计方法(有效步骤) 电路原理图设计不仅是整个电路设计的第一步,也是电路设计的基础。由于以后的设计工作都是以此为基础,因此电路原理图的好坏直接影响到以后的设计工作。电路原理图的具体设计步骤,如图所示。

图1-2原理图设计流程图 (1)建立元件库中没有的库元件 元件库中保存的元件只有常用元件。设计者在设计时首先碰到的问题往往就是库中没有原理图中的部分元件。这时设计者只有利用设计软件提供的元件编辑功能建立新的库元件,然后才能进行原理图设计。 当采用片上系统的设计方法时,系统电路是针对封装的引脚关系图,与传统的设计方法中采用逻辑关系的库元件不同。 (2)设置图纸属性 设计者根据实际电路的复杂程度设置图纸大小和类型。图纸属性的设置过程实际上是建立设计平台的过程。设计者只有设置好这个工作平台,才能够在上面设计符合要求的电路图。 (3)放置元件 在这个阶段,设计者根据原理图的需要,将元件从元件库中取出放置到图纸上,并根据原理图的需要进行调整,修改位置,对元件的编号、封装进行设置等,为下一步的工作打下基础。 (4)原理图布线 在这个阶段,设计者根据原理图的需要,利用设计软件提供的各种工具和指令进行布线,将工作平面上的元件用具有电气意义的导线、符号连接起来,构成一个完整的原理图。 (5)检查与校对 在该阶段,设计者利用设计软件提供的各种检测功能对所绘制的原理图进行检查与校对,以保证原理图符合电气规则,同时还应力求做到布局美观。这个过程包括校对元件、导线位置调整以及更改元件的属性等。 (6)电路分析与仿真 这一步,设计者利用原理图仿真软件或设计软件提供的强大的电路仿真功能,对原理图的性能指标进行仿真,使设计者在原理图中就能对自己设计的电路性能指标进行观察、测试,从而避免前期问题后移,造成不必要的返工。

冷却系统基本设计规范

冷却系统基本设计规范 简式国际汽车设计(北京)有限公司 2008.5

目录 1.冷却系统的构成和设计要求 (1) 1.1 冷却系统的构成 (1) 1.2 冷却系统的设计要求 (1) 2 冷却系统设计 (2) 2.1 散热器 (2) 2.2 冷却风扇 (6) 2.3 风扇护风罩 (7) 2.4 压力盖 (8) 2.5 膨胀水箱 (10) 2.6 取暖器 (13) 2.7 水泵 (13) 2.8 散热器管路 (13) 2.9 冷却液 (14)

1.冷却系统的构成和设计要求 1.1 冷却系统的构成 冷却系统由散热器、风扇、膨胀箱等部件组成。其功能是对发动机进行强制冷却,保证发动机能始终处于最适宜的温度状态下工作,以获得较高的动力性、经济性及可靠性。汽车冷却系统的结构简图见图1-1所示: 图1-1 冷却系统的构成 1.2 冷却系统的设计要求 1) 冷却系统的设计应保证:使用冷却水作冷却液和 0.5bar 以下的压力盖时,发动机出水口的温度允许到 100 ℃;使用冷却水作冷却液和 0.7-0.9bar 压力盖,在不连续工况运行下,最高水温允许到 110 ℃。 2)如果使用长效防冻防锈液作冷却液和 0.5bar 以下的压力盖时,发动机出水口的温度允许到105℃;使用长效防冻防锈液作冷却液和 0.7-0.9bar 压力盖,在不连续工况运行下,最高水温允许到 115 ℃。 3) 冷却液的膨胀容积应大于等于整个系统冷却液容量的 6 %。 4) 冷却系统必须用不低于 19 L/min 的速度加注冷却液,直至达到应有的冷却液平面,以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。

浅析花境的设计原则及其布置手法

浅析花境的设计原则及其布置手法 杭州园林文化传播有限公司马航 花境是花卉应用的一种重要的形式,它追求“虽由人作,宛自天开”的艺术手法。花境是人们参照自然风景中野生花卉在林缘地带的自然生长状态,经过艺术提炼而设计的自然式花带,其艳丽的色彩和丰满的群体形象给人留下深刻的印象。根据不同的效果要求,花境的设计手法也是多样的。如对季相景色变化要求不同的季节花境设计、冷暖色调变化花境以及单色、双色花境设计等。花境设计并没有一定之规,只要遵循生态学和生态经济学原理,在植物配臵上还要兼顾观赏、生产、环保等功能。 一、花境设计布臵形式 花境设计首先是确定平面,要讲究构图完整,但也不能单纯从图案构图角度出发,要以植物个体的生物学特性以及植物个体之间、群体之间相互作用的生物规律为基础,沿着长轴方向组合成连续的综合景观序列,不要花期一致,而要求从春季到秋陆续有花可供观赏,且同一季节中开花植株的分布、色彩、形态、高度、数量都能协调均称,相邻花卉的生长强弱、繁衍速度也应大体相近,植株之间能共生而不能互相排斥,要使整个花境雅典丰盈,品种高矮要有变化,但要注意开花时不互相遮挡,高低错落,一年四季季相变化丰富又看不到明显的空秃。花境中的各种花卉呈斑状混的面积可大可小,但不宜过于零碎和杂乱。几乎所有的露地花卉都能作为花境的材料,但以多年生的宿根、球根花卉为宜。因为这些花卉能多年生长,不需要经常更换,养护起来比较省工,还能使花卉的特色发挥得更充分。 设计者要了解花卉的不 同生长习性,选择不同种类 合理搭配,使花境具有持久 和良好的观赏效果。单面观 赏花境(通常2至4米宽) 植物配臵由低到高,形成一 个面向道路的斜面。双面观 赏花境(通常4至6米宽), 中间植物最高,两边逐渐降 单面观赏花境一角(吴山广场)

高标准基本农田建设土地整治项目地形图测绘要求20140221

高标准基本农田建设土地整治项目测绘要求 1 测绘内容及范围 1.1 测绘内容为项目区内及周边的各种地形、地物及现状地类要素。 1.2 测绘范围测至项目区界址线外50—200米,并标示出与项目区有关的河流、 湖泊、水库、水工建筑物、道路、村庄及建(构)筑物等的相对位置。 2 地形测绘 2.1 基本比例尺:平原地区1:5000,丘陵山区1:2000。 2.2 基本等高距:平原地区和丘陵山区统一为2m。 2.3 高程注记点密度:每个10cm×10cm的方格网内,平原地区不少于6个高程 注记点,丘陵山区不少于12个高程注记点,并标注地形变换点的高程。2.4 输出的图纸应以项目区为单位整体输出,当整体输出图纸大于1.5m?2.0m 时,适当缩小比例尺输出,缩小比例尺应不小于测图比例尺的2倍。 2.5 项目区范围的界址点需标注坐标,并列出界址点坐标表。 3 地物测绘 3.1 村庄只施测村庄的外围线,内部标注村庄名称。村庄内与项目区有关的沟、 渠、路、桥、水系等应完整绘出。 3.2 坑塘、河道应测注塘底、河道底的高程;河道每隔30米测注一个高程点。 3.3 水闸应测注闸顶高程,并注明水闸的孔数及水闸的宽和高,用孔数?宽?高 表示,单位为米,保留两位小数。

3.4涵洞应测注涵洞底高程,并标示涵洞的规格。其中,圆涵标注内、外孔径; 方涵标注宽和高,用宽 高表示。单位为米,保留两位小数。 3.5 项目区内的沟渠、坑塘、墓葬地、其他草地、盐碱地、沼泽地、裸地、双线 田坎、双线道路等要素应根据实际情况依比例测绘,不得取舍。 3.6 项目区内各类道路的位置、长度、宽度、路面高程、类型等属性应根据现状 标示。 3.7 现状渠(或水沟)的位置、长度、宽度、深度、类型要明确标示。 3.7.1 宽度:在图上标示为单线时,要在沟渠旁注明其实际宽度。 3.7.2 深度:每隔30米应测注一个沟渠底的高程,沟渠的转弯处必须测注一个高 程点。 3.7.3 类型:当沟渠的材料不是土质时,要加注沟渠的材料和尺寸。 3.8 电线杆的位置要准确,输电线路走向应按照规定标示。 4 断面测绘 4.1 河道断面测绘 4.1.1 河道要求每隔250米布设一个横断面。当相邻两横断面的河底高差大于2.5 米时,加测一个高程变化点的横断面。在河道突然扩大或缩小的变化处、有水工建筑物处,也应加测横断面。 4.1.2 河道两岸有防洪堤的,要在堤外20米范围内加测地形高程点。 4.1.3 纵断面测绘:沿河道中心线每隔50米测一个高程点,同时施测水面高程。 水面高程要加注测绘日期。 4.2 拦河坝、水闸断面测绘。 4.2.1 拦河坝、水闸要施测坝(闸)顶中心线的高程及坝(闸)体的横断面。

硬件基础知识

第三章硬件基础知识学习 通过上一课的学习,我们貌似成功的点亮了一个LED小灯,但是还有一些知识大家还没有 彻底明白。单片机是根据硬件电路图的设计来写代码的,所以我们不仅仅要学习编程知识,还有硬件知识,也要进一步的学习,这节课我们就要来穿插介绍电路硬件知识。 3.1 电磁干扰EMI 第一个知识点,去耦电容的应用,那首先要介绍一下去耦电容的应用背景,这个背景就是电磁干扰,也就是传说中的EMI。 1、冬天的时候,尤其是空气比较干燥的内陆城市,很多朋友都有这样的经历,手触碰到电脑外壳、铁柜子等物品的时候会被电击,实际上这就是“静电放电”现象,也称之为ESD。 2、不知道有没有同学有这样的经历,早期我们使用电钻这种电机设备,并且同时在听收音机或者看电视的时候,收音机或者电视会出现杂音,这就是“快速瞬间群脉冲”的效果,也称之为EFT。 3、以前的老电脑,有的性能不是很好,带电热插拔优盘、移动硬盘等外围设备的时候,内部会产生一个百万分之一秒的电源切换,直接导致电脑出现蓝屏或者重启现象,就是热插拔的“浪涌”效果,称之为Surge... ... 电磁干扰的内容有很多,我们这里不能一一列举,但是有些内容非常重要,后边我们要一点点的了解。这些问题大家不要认为是小问题,比如一个简单的静电放电,我们用手能感觉到的静电,可能已经达到3KV以上,如果用眼睛能看得到的,至少是5KV了,只是因为 这个电压虽然很高,电量却很小,因此不会对人体造成伤害。但是我们应用的这些半导体元器件就不一样了,一旦瞬间电压过高,就有可能造成器件的损坏。而且,即使不损坏,在2、3里边介绍的两种现象,也严重干扰到我们正常使用电子设备了。 基于以上的这些问题,就诞生了电磁兼容(EMC)这个名词。这节课我们仅仅讲一下去耦

相关主题
文本预览
相关文档 最新文档