当前位置:文档之家› SDI接口信号特点及传输转换技术

SDI接口信号特点及传输转换技术

SDI接口信号特点及传输转换技术
SDI接口信号特点及传输转换技术

SDI接口信号特点及传输转换技术

(北京科思图科技有限公司技术支持部)

图1 演播室中的SDI接口

具有3G-SDI接口的高清电影摄像机具有HD-SDI接口的高清液晶监视屏

图2 典型的带有SDI接口的产品

图3 SDI电缆及接头外观

1.SDI接口简介

串行数字接口(SDI)是由SMPTE组织制定的一种数字视频接口标准。例如,ITU-R、BT.656、SMPTE 259M定义了用于广播级的数字视频接口;在SMPTE 292M中定义了一个著名的高清串行数字接口标准(HD-SDI),该接口正常时能够提供1.485Gbit/s的数据速率。在SMPTE 372M中定义了一个双链路HD-SDI标准,该接口由一对SMPTE 292M链路组成,能够提供2.970 Gbit/s数据传输速率。该接口广泛应用于数字影院或高清电视HDTV 1080P,能够比常规HDTV具有更好的保真度和分辨率。近年来,SMPTE 424M中又定义了由一个单2.970 Gbit/s串行链路组成的接口3G-SDI,该接口将取代双链

路HD-SDI。

这些标准用于在广播电视设备中传输未压缩、未加密的数字视频信号,信号中也可根据需要加入嵌入式音频和时间码。采用同轴电缆传输,距离一般小于300m。SMPTE 297M定义的光纤规范可以进行远距离传输,传输距离仅受限于最大光纤长度或中继器。通常,SDI和HD-SDI仅应用于专业视频设备中,各种各样的许可协议限制了未加密的数字接口,禁止其在消费类设备例如Blu-Ray和个人视频录像机中使用。一些专业的视频和高清视频可能用到的DSLR摄像机和所有未压缩视频可能用到的消费类摄像机均采用HDMI接口,通常称为纯净HDMI。对于存在的DVD播放器和其它设备来说,还有许多多媒体随选装备,允许用户为设备增加一个串行接口。

表1 SDI标准一览表

标准名称比特率视频格式例子SMPTE 259M SD-SDI 270 Mbit/s, 360 Mbit/s, 143 Mbit/s, and 177 Mbit/s 480i, 576i SMPTE 344M ED-SDI 540 Mbit/s 480p, 576p SMPTE 292M HD-SDI 1.485 Gbit/s, and 1.485/1.001 Gbit/s 720p, 1080i SMPTE 372M Dual Link HD-SDI 2.970 Gbit/s, and 2.970/1.001 Gbit/s 1080p

SMPTE 424M 3G-SDI 2.970 Gbit/s, and 2.970/1.001 Gbit/s 1080p

TBA 6G UHD-SDI 6 Gbit/s 4K

TBA 12G UHD-SDI 12 Gbit/s 4K

2.SDI信号特点

各种SDI标准均使用75欧姆阻抗同轴电缆和BNC连接器进行传输,这和模拟视频场合中使用的传输媒介一致。源端信号峰峰值幅度为800mV±10%。由于信号衰减,接收端收到的信号幅度小于该峰峰值,因此传输距离受限,一般来说,SD-SDI传输距离小于300m,HD-SDI传输距离小于100m,3G-SDI传输距离则更短。

信号的上升/下降时间非常严格:

SD-SDI:400ps~1.5ns

HD-SDI:100ps~270ps

3G-SDI:<135ps

图4 SDI信号物理特性

以HD-SDI为例,部分信号指标要求如下:

发送器(TX)——

幅度(Amplitude):800mV

过冲(Overshoot):<振幅的10%

上升时间(Risetime):<270ps

时钟抖动:1UI @10 Hz HPF

调整抖动:0.2UI @100 Hz HPF

接收器(RX)——

输入抖动容限:1UI: 抖动频率>10 Hz;0.2UI: 抖动频率>100 KHz

输入及输出回送损耗:-15 dB: 5 MHz 至1.485 GHz

SDI信号为未压缩的数字复合信号。数据编码成NRZI格式,并采用线性反馈移位寄存器对数据进行扰码处理,以减少较长的’0’或’1’ 字符情况的发生。

图5 SDI串行编码和扰码

SDI信号采用自同步和自时钟机制,通过检测特定的同步字来处理帧数据。

以HD-SDI数据格式为例进行说明,线格式组成如下。

图6 HD-SDI数据线格式

SAV为有效视频起始序列,EAV为有效视频结束序列,SAV和EAV内包含了同步信息。LN为线计数字,CRC为校验字,这两组字为在高清串行传输中增强数据可靠传输的检查字。视频数据按照4:2:2 YCbCr格式进行编码,最终的有效视频(Active Video)为按照亮度Y和色差C的两路10位数据流进行组合的数据流,具有20位数据宽度。

3.SDI信号传输技术

一个典型的SDI信号传输线模型如下图所示,源端(驱动端)包括信息源、编码器、驱动器;中间传输线包括连接器和电缆;末端接收端包括线接收器、译码器、信息容器。

图7 SDI信号传输线模型

前面讲到,SDI信号具有高速特点,对质量要求非常高,其损耗将导致传输距离缩短以及质量下降。因此,对SDI信号的可靠传输必须从源端到接收端各个组成环节采取相应的措施。任何一个环节出现问题,都会导致信号传输出现错误。下图所示为劣质信号传输导致的接收端数据错误的情形。

图8 劣质信号传输导致接收端数据错误(上升沿/下降沿偏移)

下面分别介绍SDI信号传输技术中对各环节采取的具体措施。

(1)源端(驱动端):减小输出抖动

对于源端即驱动端的输出信号,其理想的最佳抖动性能曲线如下图所示。

图9 信号最佳抖动性能曲线

在源端内部采用创新结构的串行编码器代替传统的串行编码器,可以减低物料成本、电磁干扰及抖动,主要优势如下:

1)器件间高速信号采用LVDS 接口,可以减少电磁干扰;

2)无需加设外置本地时钟及抖动消除电路,并且内置电缆驱动器,大大简化了电路设计和走线,减少抖动因素;

3)器件全部采用模拟工艺,可以有效减少抖动。

(2)中间传输线:最佳阻抗匹配

传送SDI信号时,若导线阻抗出现不连贯的现象,信号便会被反射回去。回送损耗(IRL)是用以衡量两个受控阻抗值是否匹配的标准。下图所示为SMPTE规定的SDI回送损耗(IRL)限制曲线。

图10 SMPTE规定的SDI回送损耗(IRL)限制曲线

根据SDI信号传输线模型理论,广义的中间传输线阻抗包括源端电缆驱动器输出阻抗、BNC 连接器阻抗、电路板走线阻抗、末端接收器均衡器(EQ) 输入阻抗等。对所有的这些传输线阻抗要尽量做到最佳匹配,才能使回送损耗(IRL)最小,传输距离最长。在实际应用中可以采取如下措施:1)选用优质材料的高品质75欧姆同轴电缆;

电缆的材料不仅包括信号芯材料,还包括绝缘介质材料。

电缆信号芯材料对传输距离有很大的影响,如下图所示。

图11 电缆信号芯材料对传输距离的影响

50%的同轴电缆绝缘介质材料为发泡聚乙烯,其衰减在75欧姆特性阻抗时达到最小,如图所示。

图12 各种绝缘介质特征阻抗与衰减的关系

2)选用高品质并与同轴电缆严格阻抗匹配的BNC接头;

当BNC接头选择不合理时,即时使用了昂贵的同轴电缆,其信号传输结果也会受到很大的影响,下图所示为使用50欧姆BNC接头与75欧姆同轴电缆进行匹配时的回送损耗差别。

图13 BNC接头与电缆阻抗不匹配时的回送损耗差别

3)在源端和末端分别采用先进的驱动和接收器件;

4)对源端和末端进行合理的匹配电路设计和布线。

(3)末端接收端:进行信号调理

对末端接收器来说,在对SDI信号进行解码之前,需要进行一系列信号调理,以补偿传输过程中对信号造成的损失,接收端信号经过优质的信号调理后的效果示意如图所示。

接收端的数据经均衡后的数据时钟已恢复的数据

图14 接收端信号调理效果示意图

各类接口和端子

视频输出端口介绍(HDMI、DVI、VGA、RGB、分量、S端子、USB接口) 作者:佚名来源:本站整理发布时间:2009-5-3 23:07:10 [收藏] [评论] 视频输出端口介绍(HDMI、DVI、VGA、RGB、分量、S端子、USB接口) 1.S端子 标准S端子

标准S端子连接线 音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。

显卡上配置的9针增强S端子,可转接色差 S端子转接线

欧洲插转色差、S端子和AV 与电脑S端子连接需使用专用线,如VIVO线 2.VGA接口

DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA端子也叫D-S ub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。 VGA转DVI线,可用在没有VGA接口的设备上 目前VGA接口不仅被广泛应用在了电脑上,投影机、影碟机、TV等视频设备也有很多都标配此接口。很多投影机上还有B GA输出接口,用于视频的转接输出。 3.分量视频接口 3RCA连接线

电子产品一般常用接口详解

我们经常在家里的电视机、各种播放器上,视频会议产品和监控产品的编解码器的视频输入输出接口上看到很多视频接口,这些视频接口哪些是模拟接口、哪些是数字接口,哪些接口可以传输高清图像等,下面就做一个详细的介绍。目前最基本的视频接口是复合视频接口、S-vidio接口;另外常见的还有色差接口、VGA接口、接口、HDMI接口、SDI接口。 1、复合视频接口 接口图: 说明:复合视频接口也叫A V接口或者Video接口,是目前最普遍的一种视频接口,几乎所有的电视机、影碟机类产品都有这个接口。 它是音频、视频分离的视频接口,一般由三个独立的RCA插头(又叫梅花接口、RCA 接口)组成的,其中的V接口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R接口连接右声道声音信号,为红色插口。 评价: 它是一种混合视频信号,没有经过RF射频信号调制、放大、检波、解调等过程,信号保真度相对较好。图像品质影响受使用的线材影响大,分辨率一般可达350-450线,不过由于它是模拟接口,用于数字显示设备时,需要一个模拟信号转数字信号的过程,会损失不少信噪比,所以一般数字显示设备不建议使用。 2、S-Video接口 接口图: 说明:S接口也是非常常见的

接口,其全称是Separate Video,也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S接口实际上是一种五芯接口,由两路视亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。 评价: 同AV接口相比,由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度。但S-Video仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb和Cr进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现)。而且由于Cr Cb的混合导致色度信号的带宽也有一定的限制,所以S-Video虽然已经比较优秀,但离完美还相去甚远。S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。 3、YPbPr/YCbCr色差接口 接口图: 说明: 色差接口是在S接口的基础上,把色度(C)信号里的蓝色差(b)、红色差(r)分开发送,其分辨率可达到600线以上。它通常采用YPbPr和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。现在很多电视类产品都是靠色差输入来提高输入讯号品质,而且透过色差接口,可以输入多种等级讯号,从最基本的480i到倍频扫描的480p,甚至720p、1080i等等,都是要通过色差输入才有办法将信号传送到电视当中。 评价: 由电视信号关系可知,我们只需知道Y、Cr、Cb的值就能够得到G(绿色)的值,所以在视频输出和颜色处理过程中就统一忽略绿色差Cg而只保留Y Cr Cb,这便是色差输出的基本定义。作为S-Video的进阶产品,色差输出将S-Video传输的色度信号C分解为色差Cr和Cb,这样就避免了两路色差混合译码并再次分离的过程,也保持了色度信道的最大带宽,只需要经过反矩阵译码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号信道,避免了因繁琐的传输过程所带来的影像失真,所以色差输出的接口方式是目前最好模拟视频输出接口之一。 4、VGA接口

电流信号转电压信号方法大全

电流信号转换为电压信号的方法 由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。 下面介绍几种I/V变换的实现方法。 分压器方法 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 霍尔传感器方法 使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即会输出电压。由下面的公式获得线性关系。

其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。 这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。 积分电路方法 电压可以看作是电流的积分,利用如图电路有: 为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。 运放直接搭接的方法(跨阻放大器) 充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路

电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为 这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。 三极管方法 三极管同样具有放大能力,但应用上多采用运放。电路如图 下面以实际的例子叙述整个实现过程。 尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生 的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

(完整版)各种接口连线图解

玩转投影机接口连线图解 很多初级用户在看投影机文章或将投影机与其它设备进行连接时,面对众多的接口总是感到茫然。其实只要弄明白它们的用途和连/转接方法,在使用时您会觉得其也并非有登天之难。 投影机接口虽没有高档功放上那么多 但也不少 家用投影机上的常用接口 拉近点就看清楚了 一、常规视频输入端子 做为视频播放设备,投影机上输入端子(端子=接口)的数量远多于输出端子,视频端子的数量也远多于音频端子。 ●标准视频输入(RCA)

RCA是莲花插座的英文简称,RCA输入输出是最常见的音视频输入和输出接口,也被称AV接口(复合视频接口),通常都是成对的,把视频和音频信号“分开发送”,避免了因为音/视频混合干扰而导致的图像质量下降。但由于AV接口传输的仍是一种亮度/色度(Y/C)混合的视频信号,仍需显示设备对其进行亮/色分离和色度解码才能成像,这种先混合再分离的过程必然会造成色彩信号的损失,所以其目前主要被用在入门级音视频设备和应用上。 音频转RCA线 RCA转接延长头

插入示意图 白色的是音频接口和黄色的视频接口,使用时只需要将带莲花头的标准AV线缆与其它输出设备(如放像机、影碟机)上的相应接口连接起来即可。 不要小瞧了RCA,其也有做工不错的高档货 ●S端子

标准S端子 标准S端子连接线

音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

9种常用接口介绍

9种常用接口介绍 关键字:常用接口 1、射频 天线和模拟闭路连接电视机就是采用射频(RF)接口。作为最常见的视频连接方式,它可同时传输模拟视频以及音频信号。RF接口传输的是视频和音频混合编码后的信号,显示设备的电路将混合编码信号进行一系列分离、解码在输出成像。由于需要进行视频、音频混合编码,信号会互相干扰,所以它的画质输出质量是所有接口中最差的。有线电视和卫星电视接收设备也常用RF连接,但这种情况下,它们传输的是数字信号。 2、复合视频 不像射频接口那样包含了音频信号,复合视频(Composite)通常采用黄色的RCA(莲花插座)接头。“复合”含义是同一信道中传输亮度和色度信号的模拟信号,但电视机如果不能很好的分离这两种信号,就会出现虚影。 3、S端子 S端子(S-Video)连接采用Y/C(亮度/色度)分离式输出,使用四芯线传送信号,接口为四针接口。接口中,两针接地,另外两针分别传输亮度和色度信号。因为分别传送亮度和色度信号,S端子效果要好于复合视频。不过S端子的抗干扰能力较弱,所以S端子线的长度最好不要超过7米。 4、色差 色差(Component)通常标记为Y/Pb/Pr,用红、绿、蓝三种颜色来标注每条线缆和接口。绿色线缆(Y),传输亮度信号。蓝色和红色线缆(Pb和Pr)传输的是颜色差别信号。色差的效果要好于S端子,因此不少DVD以及高清播放设备上都采用该接口。如果使用优质的线材和接口,即使采用10米长的线缆,色差线也能传输优秀的画面。5、VGA VGA(VideoGraphicsArray)还有一个名称叫D-Sub。VGA接口共有15针,分成3排,每排5个孔,是显卡上应用最为广泛的接口类型,绝大多数显卡都带有此种接口。它传输红、绿、蓝模拟信号以及同步信号(水平和垂直信号)。使用VGA连接设备,线缆长度最好不要超过10米,而且要注意接头是否安装牢固,否则可能引起图像中出现虚影。 6、DVI DVI(DigitalVisualInterface)接口与VGA都是电脑中最常用的接口,与VGA不同的是,DVI可以传输数字信号,不用再进过数模转换,所以画面质量非常高。目前,很多高清电视上也提供了DVI接口。需要注意的是,DVI接口有多种规范,常见的是DVI-D(Digital)和DVI-I(Intergrated)。DVI-D只能传输数字信号,大家可以用它来连接显卡和平板电视。DVI-I则在DVI-D可以和VGA相互转换。 关于DVI接口更详细信息请参考DVI接口详解 7、HDMI HDMI(HighDefinitionMultimediaInterface)接口是最近才出现的接口,它同DVI一样是传输全数字信号的。不同的是HDMI接口不仅能传输高清数字视频信号,还可以同时传输高质量的音频信号。同时功能跟射频接口相同,不过由于采用了全数字化的信号传输,不会像射频接口那样出现画质不佳的情况。对于没有HDMI接口的用户,可以用适配器将HDMI接口转换位DVI接口,但是这样就失去了音频信号。高质量的HDMI线材,即使长达20米,也能保证优质的画质。

SDI接口信号特点及传输转换技术

SDI接口信号特点及传输转换技术 (北京科思图科技有限公司技术支持部) 图1 演播室中的SDI接口 具有3G-SDI接口的高清电影摄像机具有HD-SDI接口的高清液晶监视屏 图2 典型的带有SDI接口的产品 图3 SDI电缆及接头外观 1.SDI接口简介 串行数字接口(SDI)是由SMPTE组织制定的一种数字视频接口标准。例如,ITU-R、BT.656、SMPTE 259M定义了用于广播级的数字视频接口;在SMPTE 292M中定义了一个著名的高清串行数字接口标准(HD-SDI),该接口正常时能够提供1.485Gbit/s的数据速率。在SMPTE 372M中定义了一个双链路HD-SDI标准,该接口由一对SMPTE 292M链路组成,能够提供2.970 Gbit/s数据传输速率。该接口广泛应用于数字影院或高清电视HDTV 1080P,能够比常规HDTV具有更好的保真度和分辨率。近年来,SMPTE 424M中又定义了由一个单2.970 Gbit/s串行链路组成的接口3G-SDI,该接口将取代双链

路HD-SDI。 这些标准用于在广播电视设备中传输未压缩、未加密的数字视频信号,信号中也可根据需要加入嵌入式音频和时间码。采用同轴电缆传输,距离一般小于300m。SMPTE 297M定义的光纤规范可以进行远距离传输,传输距离仅受限于最大光纤长度或中继器。通常,SDI和HD-SDI仅应用于专业视频设备中,各种各样的许可协议限制了未加密的数字接口,禁止其在消费类设备例如Blu-Ray和个人视频录像机中使用。一些专业的视频和高清视频可能用到的DSLR摄像机和所有未压缩视频可能用到的消费类摄像机均采用HDMI接口,通常称为纯净HDMI。对于存在的DVD播放器和其它设备来说,还有许多多媒体随选装备,允许用户为设备增加一个串行接口。 表1 SDI标准一览表 标准名称比特率视频格式例子SMPTE 259M SD-SDI 270 Mbit/s, 360 Mbit/s, 143 Mbit/s, and 177 Mbit/s 480i, 576i SMPTE 344M ED-SDI 540 Mbit/s 480p, 576p SMPTE 292M HD-SDI 1.485 Gbit/s, and 1.485/1.001 Gbit/s 720p, 1080i SMPTE 372M Dual Link HD-SDI 2.970 Gbit/s, and 2.970/1.001 Gbit/s 1080p SMPTE 424M 3G-SDI 2.970 Gbit/s, and 2.970/1.001 Gbit/s 1080p TBA 6G UHD-SDI 6 Gbit/s 4K TBA 12G UHD-SDI 12 Gbit/s 4K 2.SDI信号特点 各种SDI标准均使用75欧姆阻抗同轴电缆和BNC连接器进行传输,这和模拟视频场合中使用的传输媒介一致。源端信号峰峰值幅度为800mV±10%。由于信号衰减,接收端收到的信号幅度小于该峰峰值,因此传输距离受限,一般来说,SD-SDI传输距离小于300m,HD-SDI传输距离小于100m,3G-SDI传输距离则更短。 信号的上升/下降时间非常严格: SD-SDI:400ps~1.5ns HD-SDI:100ps~270ps 3G-SDI:<135ps 图4 SDI信号物理特性 以HD-SDI为例,部分信号指标要求如下: 发送器(TX)—— 幅度(Amplitude):800mV 过冲(Overshoot):<振幅的10%

各种视频信号接口及定义

各种视频信号接口及定义 1.复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在一个传输信号中包含了亮度、色度和同步信号。 由于彩色编码的不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz(NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成亮度和色度的相互干扰,使得复合视频成为最差的视频信号。 复合视频信号一般用RCA插头连接,就是通常说的莲花插头,见图1。欧洲也用SCART接口,老式的视频设备也有用BNC插头连接。 2.S视频信号(S-Video) S视频信号俗称S端子信号,它同时传送两路信号:亮度信号Y和色度信号C。由于将亮度和色度分离,所以图象质量优于复合视频信号,色度对亮度的串扰现象也消失。由于S 视频信号亮度带宽没有改变,色度信号仍须解调,所以其图象质量的提高是有限的,但肯定解决了亮色串扰,消除图象的爬行现象。S端子用四芯插头,见图2。欧洲也用SCART插头,老式的视频设备也有用两个BNC插头连接,计算机显卡也有用七芯插头,其外形与S端子一样,只是又包含了复合视频信号。 3.隔行色差信号(Y、Cr、Cb) 隔行色差信号含义与逐行色差信号相同,只是对应的是逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。逐行色差所用端子与隔行色差相同,只是C换成P。 4.RGB信号 我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。所以RGB信号又优于色差信号,是最好最直接的显示信号。RGB信号同样也分为逐行和隔行,逐行信号要优于隔行信号。RGB信号所用端子为RCA插头,欧洲用SCART插头,老式设备用BNC插头。5.RGB+S信号 此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。复合同步信号中包含了水平同步和垂直同步信号。此信号在老式设备中用的较多,一般用BNC插头。 6.RGB+Hs、Vs信号 这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。现在17寸以上的高端显示器也此输入端子。电脑显示用的15针D型VGA插座,就是这5根线起作用。老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

各种接口信号定义

RJ45接口信号定义,以及网线连接头信号安排 以太网10/100Base-T 接口: Pin Name Description 1 TX+ Tranceive Data+ (发信号+) 2 TX- Tranceive Data- (发信号-) 3 RX+ Receive Data+ (收信号+) 4 n/c Not connected (空脚) 5 n/c Not connected (空脚) 6 RX- Receive Data- (收信号-) 7 n/c Not connected (空脚) 8 n/c Not connected (空脚) 以太网100Base-T4 接口: Pin Name Description 1 TX_D1+ Tranceive Data+ 2 TX_D1- Tranceive Data- 3 RX_D2+ Receive Data+ 4 BI_D3+ Bi-directional Data+ 5 BI_D3- Bi-directional Data- 6 RX_D2- Receive Data- 7 BI_D4+ Bi-directional Data+ 8 BI_D4- Bi-directional Data- 1 white/orange 2 orange/white 3 white/green 4 blue/white 5 white/blue 6 green/white 7 white/brown 8 brown/white 注:RJ45接口采用差分传输方式,tx+、tx-是一对双绞线,拧在一起可以减少干扰。RJ48接口信号定义 RJ48是用于T1/E1等串行线路的接口。和以太网的RJ45是一样的。 对于接不同的传输,信号定义不一样。 RJ48口呈“凸” 这个形状,线序从左往右为87654321. 例如CT1/PRI-CSU (RJ-48C)信号定义如下 RJ-48C Pin Description 1 Receive Ring 2 Receive Tip 4 Ring 5 Tip 对于T1/E1 Trunk and Digital Voice Port (RJ-4 Pin1 Signal 1 RX + (input) 2 RX - (input) 3 — 4 TX + (output) 5 TX - (output) 6 — 7 — 8 —

各种接口转换接线方法(图)

一.ps/2鼠标转USB: 不是所有PS/2鼠标都可以改为USB鼠标的,可以改的PS/2鼠标的特征: A.电路板一般带有两块集成电路,(一块光电感应,一块按键或USB协议转换,和一只24M的晶体振荡器--早期PS/2鼠标.) B.后期的PS/2鼠标只有一块光电感应芯片,但也有一只24M晶体振荡器. 可以改的PS/2鼠标一般都带有晶体振荡器,如果按图改了,但电脑检测出为未知USB设备,而非鼠标设备,说明该PS/2鼠标不能改为USB鼠标了.

二.ps/2键盘转USB: 到目前为止我所知的ps/2键盘,这是不可能的,只能买个USB T0 PS2 带芯片的转换线吧. 三.ps/2鼠标转串口(RS232): PS/2鼠标口公插头图,RS-232串口公插头图 接线 PS/2公插头串口公插头

+5V 4 4+7+9 DTR+RTS+TR Data 1 1 CD Gnd 3 3+5 TXD+GND Clock 5 6 DSR 绝大部分鼠标改接后可直接使用. 四.ps/2键盘转串口(RS232): 如上图及接法, 但需要对串口编程,设计一个RS232串口信号转标准PS/2键盘信号的程序,实现模拟键盘输入数字或字符。 借口的上端有两孔记上 由右向左依次编号 1 2 3 4 接的是鼠标内的 1-V 2-D 3-C 4-G 这样就可以自己接线实现PS2转USB了 鼠标内部接线问题

我的这个鼠标线断了,在中间截断了,想换另一个鼠标的线接上,可是另一个鼠标线的四根线的颜色和这个鼠标线的颜色不一样,这个鼠标的四根线分别是红、绿、白、黑,另一根线分别是橙、绿、白、蓝,不知道他们的对应关系是怎样的,我把相近颜色的线接上,接线顺序是红-橙,绿-绿,白-白,黑-蓝,但没有反应不好使,请高手帮忙! ---------回复-------------- 切你刚刚好把顺序接反了红对蓝黑对橙其他不变就OK了 ---------回复-------------- 我的也一样。用以上方法都不行 后来我仔细看了两个鼠标的电路板。得出了一下接法: 黑-白红-蓝绿-绿白-橙 前两个是电源,后两个是数据。 不知道你的一不一样 串口鼠标接线图.jpg

AD转换电路

A/D 转换电路 导读: A/D 转换器(ADC )是将模拟信号转换成数字信号的电路。本章将介绍A/D 转换的基本概念和原理电路,重点介绍集成芯片中的常用转换方法:逐次逼近型和V —T 双积分型转换电路,常用集成ADC 芯片,并给出典型应用实例。 0.1 A/D 转换的基本概念 A/D 转换过程包括取样、保持、量化和编码4个步骤,一般,前2个步骤在取样-保持电路中1次性完成,后2个步骤在A/D 转换电路中1次性完成。 1.取样和取样定理 我们知道,要确定(表示)1条曲线,理论上应当用无穷多个点,但有时却并非如此。比如1条直线,取2个点即可。对于曲线,只是多取几个点而已。将连续变化的模拟信号用多个时间点上的信号值来表示称为取样,取样点上的信号值称为样点值,样点值的全体称为原信号的取样信号。1个取样信号示例如图1.1.1-1(b)所示。 取样时间可以是等间隔的,也可以自适应非等时间间隔取样。问题是:对于频率为f 的信号,应当取多少个点,或者更准确地说应当用多高的频率进行取样?取样定理将回答这个问题: 只要取样频率f S 大于等于模拟信号中的最高频率f max 的2倍,利用理想滤波器即可无失真地将取样信号恢复为原来的模拟信号。这就是说,对于1个正弦信号,每个周期只要取2个样点值即可,条件是必须用理想滤波器复原信号。这就是著名的山农(Shannon )取样定理,用公式表示即为 max S 2f f ≥ (12.1-1) 在工程上,一般取max S )5~4(f f ≥。 2.取样-保持 取样后的样点值必须保存下来,并在取样脉冲结束之后到下1个取样脉冲到来之前保

串行通信技术-模拟信号转换接口

微机原理与应用实验报告6 实验9 串行通信技术 实验10A 模拟信号转换接口 实验报告

实验九串行通信技术 一、实验目的 1. 了解异步串行通信原理; 2. 掌握MSP430异步串行通信模块及其编程方法; 二、实验任务 1. 了解MSP430G2553实验板USB转串口的通信功能,掌握串口助手的使用 (1)利用PC机的串口助手程序控制串口,实现串口的自发自收功能 为实现PC串口的自发自收功能,须现将实验板上的扩展板去下,并将单片机板上的BRXD和BTXD用杜邦线进行短接,连接图如下所示: 由此可以实现PC串口的自收自发功能。 (2)思考题:异步串行通信接口的收/发双方是怎么建立起通信的 首先在异步通信中,要求接收方和发送方具有相同的通信参数,即起始位、停止位、波特率等等。在满足上面条件的情况下,发送方对于每一帧数据按照起始位数据位停止位的顺序进行发送,而接收方则一直处于接受状态,当检测到起始位低电平时,看是采集接下来发送方发送过来的数据,这样一帧数据(即一个字符)传送完毕,然后进行下一帧数据的接受。这样两者之间就建立起了通信。 2. 查询方式控制单片机通过板载USB转串口与PC机实现串行通信 (1)硬件连接图

(2)C语言程序 采用SMCLK=1.0MHz时,程序如下:

其中SMCLK=1MHz,波特率采用的是9600,采用低频波特方式,则N=1000000/9600=104.1666…,故UCA0BR1=0,UCA0BR0=104,UCBRS=1; 当采用外部晶振时,时钟采用默认设置即可,程序如下:

也是采用了低频波特率方式,所以关于波特率设置的相关计算和上面是一样的。 (3)思考:如果在两个单片机之间进行串行通信,应该如何设计连线和编程? 由于在上面的连线中将单片机上的P1.2和BRXD相连,P1.1和BTXD相连,所以若要在两个单片机之间进行通信,首先应该将两个单片机的P1.2和P1.1交叉相连,并根据上面的程序进行相同的关于端口和波特率相关的设置即可实现两个单片机之间的通信。 3. (提高)利用PC机RS232通信接口与单片机之间完成串行通信 (1)硬件连接图 在实验时,采用了将PC机的串口com1直接连接至MSP430F149的孔型D9连接器上,G2553单片机的输出引脚P1.1和P1.2分别与F149单片机上的URXD1和UTXD1相连接,连接图如下所示:

通信各类常用接头介绍

各类常用接头介绍 --广移分公司技术部 (射频篇) 一、馈线接头(连接器) 馈线与设备以及不同类型线缆之间一般采用可拆卸的射频连接器进行连接。连接器俗称接头。 常见的射频连接器有以下几种: 1、DIN型连接器 适用的频率范围为0~11GHz,一般用于宏基站射频输出口。 2、N型连接器 适用的频率范围为0~11GHz,用于中小功率的具有螺纹连接机构的同轴电缆连接器。 这是室内分布中应用最为广泛的一种连接器,具备良好的力学性能,可以配合大部分的馈线使用。

3、BNC/TNC连接器 BNC连接器 适用的频率范围为0~4GHz,是用于低功率的具有卡口连接机构的同轴电缆连接器。这种连接器可以快速连接和分离,具有连接可靠、抗振性好、连接和分离方便等特点,适合频繁连接和分离的场合,广泛 应用于无线电设备和测试仪表中连接同轴射频电缆。 TNC连接器 TNC连接器是BNC连接器的变形,采用螺纹连接机构,用于无线电设备和测试仪表中连接同轴电缆。 其适用的频率范围为0~11GHz。

4、SMA连接器 适用的频率范围为0~18GHz,是超小型的、适合半硬或者柔软射频同轴电缆的连接,具有尺寸小、性能优越、可靠性高、使用寿命长等特点。较长应用于AP、设备modem中的小天线中以及主机内部连线。 但是超小型的接头在工程中容易被损坏,适合要求高性能的微波应用场合,如微波设备的内部连接。 5、反型连接器 通常是一对连接器:阳连接器采用内螺纹联接,阴连接器采用外螺纹联接,但有些连接器与之相反,即阳连接器采用外螺纹联接,阴连接器采用内螺纹联接,这些都统称为反型连接器。 例如某些WLAN的AP设备的外接天线接口就采用了反型SMA连接器。 二、转接头(转接器) 用于连接不同类型接头,常用的有双阴头(用于两根馈线的对接等)、直角转接头(用于施工中避免转弯造成馈线损坏)、7/16转接头(用于基放等设备中DIN接头和N型头的对接)。部分图解如下:

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。

电路图如下所示: 输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入

音视频输入输出信号格式与接口

第五讲音视频输入\输出信号格式与接口 一、视频信号类型及接口 我们在《音视频系统工程基础》课程中已经对音视频系统中各类常见信号接口的知识进行了学习,接下来,我们对各类信号,尤其是视频信号进行比较分析。在实际的工程技术中,随着视频清晰度的不断提高,从早期的RF信号开始,经历了AV、S-video、YCbCr\YPbPr、VGA、DVI、HDMI等各种信号类型。 1. RF:电视机上的TV接口又称RF射频输入接口,这是最早在电视机上出现的接口,用于接收从天线接收到的电视信号,目前在有线电视领域也是一个常用的接口。RF信号是视频信号(CVBS)和音频信号(Audio)混合编码生成的一种高频调制信号(RF),采用同轴电缆传输,由于音视频信号之间相互干扰较大,它的视频清晰度是视频信号中最低的,但采用75Ω阻抗的线材减少了阻抗不匹配和信号反射对于图像的影响,适合于长距离传输。 2. Video:这类接口通常与音频接口(Audio)一起称为AV接口,又称RCA接口(俗称莲花头),AV信号是对RF信号的改进,也是最常见的音视频连接方式。一般来说,传输AV信号用三根信号线,传输Video信号的线头接口用黄色表示,音频信号分为左右声道分别用红色和白色表示。AV信号的改进之处在于将视频信号和音频信号分离传输,在成像方面很大程度避免了视频与音频相互干扰对画质的影响,但由于Video信号依旧是将亮度信号和色度信号进行混合传输,因此,也称Composite复合视频端口,需要在终端显示设备上需要进行对亮度和色度的分离,色度、亮度的相互干扰以及分离过程造成的信号损失使得画面并不是特别出色,水平清晰度在300电视线左右。目前,AV接口广泛用于电视与DVD连接,也是每台电视必备的接口之一。 3. S-video:称为S端子,是Super-Video(超级视频信号)或Separate-Video(分离视频信号)的简称。S-video接口分别用两条75欧的同轴电缆传输模拟视频信号,一条电缆传送亮度信号,另一条电缆传送色度信号。S-video与Video不同的是将亮度和色度信号分开传输,减少了影像在“分离”、“合成”转换过程中的信号损失,降低了设备内信号干扰而产生的图像失真,能够有效的提高画质的清晰程度。S端子支持设备最大显示分辨率为1024*768,常见的S-video接口有三种:4针、7针和9针。目前,电视机、影碟机、投影机等设备配接的都是4针插头,而实际上是一种五芯接口,由两路亮度信号(亮度信号和亮度信号接地)、两路色度信号(色度信号和色度信号接地)和一路公共屏蔽地线共五条芯线组成,使用时要注意插入的方向和位置,以免弄弯针头。 4. YCbCr\YPbPr:YCbCr\YPbPr指分量信号(Component)也称色差信号,实质上是将S-video的色度信号再分解为色差Cr、Cb,这样就避免了两路色差混合编码和分离的过程。一般利用三根信号线将视频信号分离成亮度(Y)信号和两路色差信号(去掉亮度信号后的色彩差异信号Cb、Cr)进行传输,在三条线的接头处分别用绿、蓝、红色进行区别,这三条线如果相互之间插错了,可能会显示不出画面或是显示出奇怪的色彩,其所还原的信号质量比Video和S-video好。色差分为逐行和隔行显示, YCbCr表示的是隔行,YPbPr表示则是逐行,如果电视只有YCbCr分量端子的话,则说明电视不能支持逐行分量,用YPbPr分量端子的话则支持逐行和隔行两种分量。目前档次较高的电视一般拥有2组或3组分量接口,而稍差一些的电视可能只有一组隔行,色差分量信号在DVD、PS2、XBOX、NGC等视频设备上都可以使用。 5. RGBHV信号:将视频信号分解为“R、G、B、H、V”五种信号,利用三基色原理对图像进行编码,即红、绿、蓝三种视频信号外加行(黑色)、场(黄色)同步信号,分别使用五根BNC线进行传输。除此之外,RGsB、RsGsBs、RGBs均是常见传输模式。 RGsB:同步信号附加在绿色通道,使用三根同轴电缆进行传输;

几个常用的电压电流转换电路

几个常用的电压电流转换电路 I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+

Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为:可以调节输出电压范围))(Rw+=Ii?(R1Rw

Vo使得输入电流与输出电压之输出电压随负载的变化而变化,缺点是:间没有固定的比例关系。优点是:电路简单,适用于负载变化不大的场合, I/V转换电路2、由运算放大器组成的原理:使其产生热稳定性好)先将输入电流经过一个电阻(高精度、 ,将输入、输一个电压,在将电压经过一个电压跟随器(或放大器)然后经一使其负载不能影响电流在电阻上产生的电压。出隔离开来,级电容。pf应为滤除高频干扰,C1输出。(或放大器)个电压跟随器. 电路图如下所示:

输出电压为:)(RwR3+)R4?(1+=VoIiR1可以调节放大倍数。注释:通过调节Rw但输入电压受提供芯片电压的影响即有负载不影响转换关系,优点:输出电压上限值。因是从运算放大器A1的同相输入端输入的,要求:电流输入信号IiOP-27OP-07、此要求选用具有较高共模抑制比的运算放大器,例如,为高精度、热稳定性较好的电阻。R4等。转换电路设计V/I 原理:、V I 变换电路的基本原理:1Ui,如果保Io最简单的VI变换电路就是一只电阻,根据欧姆定律:=R我们很快发现这样但是,证电阻不变,输出电流与输入电压成正比。由于不可避免负载电阻的存在,一方面接入负载后,的电路无法实用,发生了变化,输出电流也发生了变化;另一方面,需要输

串行通信技术-模拟信号转换接口

微机原理与应用实验报告6 实验9串行通信技术 实验10A模拟信号转换接口 实验报告

实验九串行通信技术 一、实验目的 1. 了解异步串行通信原理; 2. 掌握MSP430异步串行通信模块及其编程方法; 二、实验任务 1. 了解MSP430G2553实验板USB转串口的通信功能,掌握串口助手的使用 (1)利用PC机的串口助手程序控制串口,实现串口的自发自收功能 为实现PC串口的自发自收功能,须现将实验板上的扩展板去下,并将单片机板上的BRXD和BTXD用杜邦线进行短接,连接图如下所示: 由此可以实现PC串口的自收自发功能。 (2)思考题:异步串行通信接口的收/发双方是怎么建立起通信的 首先在异步通信中,要求接收方和发送方具有相同的通信参数,即起始位、停止位、波特率等等。在满足上面条件的情况下,发送方对于每一帧数据按照起始位数据位停止位的顺序进行发送,而接收方则一直处于接受状态,当检测到起始位低电平时,看是采集接下来发送方发送过来的数据,这样一帧数据(即一个字符)传送完毕,然后进行下一帧数据的接受。这样两者之间就建立起了通信。 2. 查询方式控制单片机通过板载USB转串口与PC机实现串行通信 (1)硬件连接图

(2)C语言程序 采用SMCLK=1.0MHz时,程序如下:

其中SMCLK=1MHz,波特率采用的是9600,采用低频波特方式,则N=1000000/9600=104.1666…,故UCA0BR1=0,UCA0BR0=104,UCBRS=1; 当采用外部晶振时,时钟采用默认设置即可,程序如下:

也是采用了低频波特率方式,所以关于波特率设置的相关计算和上面是一样的。 (3)思考:如果在两个单片机之间进行串行通信,应该如何设计连线和编程? 由于在上面的连线中将单片机上的P1.2和BRXD相连,P1.1和BTXD相连,所以若要在两个单片机之间进行通信,首先应该将两个单片机的P1.2和P1.1交叉相连,并根据上面的程序进行相同的关于端口和波特率相关的设置即可实现两个单片机之间的通信。 3. (提高)利用PC机RS232通信接口与单片机之间完成串行通信 (1)硬件连接图 在实验时,采用了将PC机的串口com1直接连接至MSP430F149的孔型D9连接器上,G2553单片机的输出引脚P1.1和P1.2分别与F149单片机上的URXD1和UTXD1相连接,连接图如下所示:

相关主题
文本预览
相关文档 最新文档