当前位置:文档之家› 基于MATLAB的语音信号设计

基于MATLAB的语音信号设计

基于MATLAB的语音信号设计
基于MATLAB的语音信号设计

指导教师:

日期:

《数字信号处理》课程设计

姓名:

院系:电子信息工程系

专业:通信工程

班级: 092

学号: 910705241

指导教师:留黎钦

2012年 6 月

基于MATLAB的语音信号设计

(电子信息工程学系指导教师:留黎钦)

1.课程设计目的

1.了解语音信号的产生、采集,能绘制语音信号的频率响应曲线及频谱图;

2.学会用MA TLAB对语音信号进行分析和处理;

3.掌握用滤波器去除语音信号噪声的方法,观察去噪前后的语音信号。

2. 课程设计基本要求

1. 学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。

2. 掌握在 Windows 环境下语音信号采集的方法。

3. 掌握数字信号处理的基本概念、基本理论和基本方法。

4. 掌握 MATLAB 设计 FIR 和IIR数字滤波器的方法。

5. 学会用 MATLAB 对信号进行分析和处理。

3. 课程设计原理

数字滤波器根据其冲激响应函数的时域特性,可分为2种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。FIR和IIR的滤波原理都是进行卷积,就是对数入信号进行某种计算。

a.利用模拟滤波器设计IIR数字滤波器方法

(1)根据所给出的数字滤波器性能指标计算出相应的模拟滤波器的设计指标。

(2)根据得出的滤波器性能指标设计出相应的模拟滤波器的系统函数H(S)。

(3)根据得出的模拟滤波器的系统函数H(S),经某种变换得到对该模拟滤波器相应的。

b.FIR滤波器的窗函数设计法

FIR滤波器的设计方法有许多种,如窗函数设计法、频率采样设计法和最优化设计法等。窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为:(1)通过傅里叶逆变换获得理想滤波器的单位脉冲响应h

(n)。

d

(2)由性能指标确定窗函数W(n)和窗口长度N。

(3)求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。

c.在matlab中本次设计涉及到的几个重要函数

(1)采样:[y,fs,nbit]=wavread,返回采样值放在向量y中,fs为采样频率(Hz),nbit为采样位数。

(2)快速傅里叶变换:[Y]=fft(y,N),其中x为有限长序列,N为序列y的长度,Y为序列y的DFT。

(3)数字滤波器的频率响应:[h,w]=freqz(b,a,n),返回数字滤波器的n点复频率响应,b和a是滤波器系数的分子和分母向量;h是复频率响应,w是频率点,n默认为512。(模拟滤波器的频率响应用函数freqs)。

4.课程设计内容

基本要求:(1)录制一段自己的语音信号,并对录制的信号进行采样;(2)画出采样后语音信号的时域波形和频谱图;(3)给定滤波器的性能指标,采用窗函数法或双线性变换设计FIR 滤波器或设计IIR 滤波器,并画出滤波器的频率响应;(4)然后用自己设计的滤波器对采集的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;(5)回放语音信号。

扩展部分:(1)设计GUI 界面进行对该语音处理系统的界面化管理。(2)实现matlab 界面中的直接录音功能

5.详细设计过程与调试分析

5.1 语音信号的采集

录制原始语音:我们利用Windows 的录音机,录制了一段自己的声音(“同志们,我们一起吃饭吧”,单声道),时间在3s 左右。接着保存为WAV 格式(存在matlab 软件的work 文件夹下,命名为“chifan ”)。

5.2 原始语音信号的分析

利用函数wavread 对语音信号进行采样,并读取语音的相关信息,并通过函数sound 听到采样后自己所录的一段声音,并画出它的时域和频域的图形。 程序如下:

fileName='chifan.wav';

[y1, Fs, nbits]=wavread(fileName);

fprintf('语音 "%s" 的信息:\n', fileName); fprintf('语言长度 = %g 秒\n', length(y1)/Fs); fprintf('取样频率 = %g 取样点/秒\n', Fs); fprintf('解析度 = %g 位元/取样点\n', nbits); sound(y1,Fs);

M=length(y1);

time=0:1/Fs:(M-1)/Fs; % 时间轴的向量 yf1=fft(y1); figure; subplot(2,2,1);

plot(time,y1);axis([0,4,-1.5,1.5]); title('原信号的时域图'); xlabel('时间'); ylabel('幅度'); subplot(2,2,2);

plot(0:Fs/(M):Fs*(M-1)/M,abs(yf1)); axis([0,25000,0,1200]); title('原始语音信号频谱'); xlabel('频率'); ylabel('幅度')

运行结果:

图1 原始信号分析

5.3 对语音信号进行加噪处理

利用函数awgn 给语音信号加上高斯白噪声,调用sin 函数来单音正弦信号。通过函数sound 来听到加完

噪声后的声音,并画出它的时域和频域的图形。

程序如下:

fileName='chifan.wav';

[y1, Fs, nbits]=wavread(fileName);

fprintf('语音"%s" 的信息:\n', fileName);

fprintf('语言长度= %g 秒\n', length(y1)/Fs); fprintf('取样频率= %g 取样点/秒\n', Fs);

fprintf('解析度= %g 位元/取样点\n', nbits);

M=length(y1);

time=0:1/Fs:(M-1)/Fs; % 时间轴的向量

g=awgn(y1,20); %给语音信号加上高斯白噪声sound(g,Fs); %回放加噪信号

G=fft(g); %对加噪后的语音信号进行DFT变换N=[0.5*sin(2*pi*7000*time)]';

%噪声为7kHz的正弦信号

y2=y1+N;

wavplay(y2,Fs,'async');%播放加噪声后的语音信号yf2=fft(y2);

figure;

subplot(2,2,1);

plot(time,g);axis([0,4,-1.5,1.5]); title('加高斯噪声后语音信号时域图'); xlabel('时间');

ylabel('幅度');

subplot(2,2,2);

plot(0:Fs/(M):Fs*(M-1)/M,abs(G)); axis([0,25000,0,1200]);

title('加高斯噪声后语音信号频谱图'); xlabel('频率');

ylabel('幅度');

subplot(2,2,3);

plot(time,y2);axis([0,4,-1.5,1.5]);

title('加正弦信号的时域图');

xlabel('时间');

ylabel('幅度');

subplot(2,2,4);

plot(0:Fs/(M):Fs*(M-1)/M,abs(yf2)); axis([0,25000,0,1200]);

title('加正弦信号的频谱图');

xlabel('频率');

ylabel('幅度')

运行结果:

图2 原始信号加噪信号的时域和频谱图5.4 设计数字滤波器和画出其频谱响应

5.4.1设计个巴特沃斯低通滤波器

设定通带截止频率(fp=1000)、阻带截止频率(fs=3000)、通带波纹系数(rp=0.5)、阻带波纹系数

(rs=40)、抽样频率(fc=22050)。

程序如下:

%巴特沃斯低通滤波器

fp=1000;fs=3000;rp=0.5;rs=40;fc=22050;

wp=2*fp/fc;ws=2*fs/fc; %将模拟域转化成数字域。

[N,Wc]=buttord(wp,ws,rp,rs); %估算巴特沃思滤波器的阶数N和3dB截止频率Wc。

[B,A]=butter(N,Wc); %求传输函数的分子和分母多项式的系数。

figure;

freqz(B,A,256,fc); %求滤波器的频率响应。

title('巴特沃斯低通滤波器的幅频和相频特性图');

运行结果:

图3 巴特沃斯滤波器的性能

5.4.2用kaiser窗设计个FIR低通滤波器

通带截止频率(fp=1000)、阻带截止频率(fs=2000)、通带波纹系数(Ap=1)、阻带波纹系数(As=100)、抽样频率(fc=22050)。

程序如下:

%用kaiser窗设计的低通滤波器

fp=1000;fc=1200;As=100;Ap=1;fs=22050;

wc=2*fc/fs;wp=2*fp/fs; %wc为通带截止频率

N=ceil((As-7.95)/(14.36*(wc-wp)/2))+1;%计算kaiser窗所需阶数N

alph=0.1102*(As-8.7); %计算kaiser窗的控制参数alph

Win=Kaiser(N+1,alph);

hn=fir1(N,wc,Win); %调用kaiser计算低通滤波器的系数向量hn

figure;

freqz(hn,1,512,fs); %计算数字滤波器的频率响应

title('低通滤波器的幅频和相频特性图');

运行结果:

图3 FIR低通滤波器性能

5.5用滤波器对信号进行滤波滤波处理

5.5.1用巴特沃斯滤波器对加噪语音进行滤波处理

对语音信号进行滤波处理,测试设计好的滤波器是否对我们的语音信号进行了处理。这里用的是IIR 滤波器,所以利用函数filter对信号进行滤波。,即x= filter(b,a,y),x即是滤波后的语音信号,我们将滤波前后的时域波形进行对比,看是否有处理好,并且我们对其进行快速傅里叶变换,即X=fft(signal),目的是对比滤波前后的频域频谱,进一步具体分析我们设计的滤波器是否达到我们的设计要求。

程序如下:

%用巴特沃斯低通滤波器进行滤波

fileName='chifan.wav';

[y1, Fs, nbits]=wavread(fileName);

fprintf('语音 "%s" 的信息:\n',fileName); fprintf('语言长度= %g 秒\n', length(y1)/Fs); fprintf('取样频率 = %g 取样点/秒\n', Fs); fprintf('解析度 = %g 位元/取样点\n', nbits); M=length(y1);

time=0:1/Fs:(M-1)/Fs; % 时间轴的向量

N=[0.5*sin(2*pi*8000*time)]';

%噪声为8kHz的正弦信号

y2=y1+N;

yf1=fft(y1);

yf2=fft(y2);

figure;

fp=1000;fs=3000;rp=0.5;rs=40;fc=22050;

wp=2*fp/fc;ws=2*fs/fc; %将模拟域转化成数字域。

[N,Wc]=buttord(wp,ws,rp,rs);

%估算巴特沃思滤波器的阶数N和3dB截止频率Wc。[B,A]=butter(N,Wc); %求传输函数的分子和分母多项式的系数。

[h,w]=freqz(B,A,256,fc) %求滤波器的频率响应。x=filter(B,A,y2);

%由传输函数的分子和分母多项式的系数得到模拟滤波器

X=fft(x);

%将x信号进行快速傅里叶变换。

sound(x,fc,nbits);

%将滤波后的信号x进行回放。

subplot(3,2,1);

plot(time,y1);axis([0,4,-1.5,1.5]);

title('原信号的时域图');

xlabel('时间');

ylabel('幅度');

subplot(3,2,2);

plot(0:Fs/(M):Fs*(M-1)/M,abs(yf1)); axis([0,25000,0,1200]);

title('原始语音信号频谱');

xlabel('频率');

ylabel('幅度');

subplot(3,2,3);

plot(time,y2);axis([0,4,-1.5,1.5]); title('加正弦噪声信号的时域图'); xlabel('时间');

ylabel('幅度');

subplot(3,2,4);

plot(0:Fs/(M):Fs*(M-1)/M,abs(yf2)); axis([0,25000,0,1200]);

title('加正弦噪声信号的频谱图'); xlabel('频率');

ylabel('幅度');

subplot(3,2,5);

plot(time,x);axis([0,4,-1.5,1.5]); title('滤波后信号的时域图');

xlabel('时间');

ylabel('幅度');

subplot(3,2,6);

plot(0:Fs/(M):Fs*(M-1)/M,abs(X)); axis([0,25000,0,1200]);

title('滤波后信号的频谱图');

xlabel('频率');

ylabel('幅度');

运行结果:

图4 巴特沃斯低通滤波器对加正弦噪声语音进行处理

图5 巴特沃斯低通滤波器对加白噪声信号进行处理5.5.2用kaiser窗设计的FIR低通滤波器对语音进行滤波处理

程序如下:(只需把5.4.1中的滤波器对应的程序段改成如下)

fp=2000;fc=3000;As=100;Ap=1;fs=22050; %kaiser窗设计的低通滤波器

wc=2*fc/fs;wp=2*fp/fs;

N=ceil((As-7.95)/(14.36*(wc-wp)/2))+1;

beta=0.1102*(As-8.7);

Win=Kaiser(N+1,beta);

b=fir1(N,wc,Win);

x=fftfilt(b,y2);

X=fft(x);

运行结果:

图6 FIR低通滤波器对加正弦噪声信号进行滤波处理

图7 FIR低通滤波器对加正弦噪声信号进行滤波处理

5.6实现matlab录音

可以实现在matlab界面中进行录音,并能保存该录音文件并调用播放器对其进行播放。程序如下:

%用matlab实现录音

fs=22050;

% 取样频率

duration=5;

% 录音时间

waveFile='test.wav';

% 存储的文件名

fprintf('按任意键开始%g 秒录音:', duration); pause

fprintf('录音中...');

y=wavrecord(duration*fs, fs); fprintf('录音结束\n');

fprintf('按任意存储录音至%s 档案...', waveFile); pause

nbits=8;

% 每点的解析度为8-bit

wavwrite(y, fs, nbits, waveFile);

fprintf('存档结束\n');

fprintf('按任意键开始播放%s...\n', waveFile); dos(['start ', waveFile]);

% 开启wav对应的播放器播放所录得语音

运行结果:

按任意键开始 5 秒录音:录音中...录音结束;按任意存储录音至test.wav 档案...存档结束;按任意键开始播放 test.wav...的语音。

5.7.GUI界面设计并导入程序

设计GUI界面如下,并将上面对应的程序写到界面中各个按钮对应的回调函数中。

图8 GUI界面设计

6.结果分析与体会

6.1运行结果分析

1.滤波器的作用就是滤除掉阻带内有频率分量,保留通带内的频率分量。通过观察滤波前后语音信号波形的变化,即观察图4和图5,可以知道,时域中我们观察到滤波后的语音信号发生了衰减,同时去除了噪音分量,说明滤波器起到了滤波作用,但语音信号发生了衰减;从频域波形中我们可以明显看到我们设计的滤波器对我们的语音信号进行了滤波处理,可以看出滤波器滤掉了一部分频率范围内的信号,同时将噪声进行了滤除;分别听原始语音和滤波后的语音信号,发现滤波后的语音信号噪声几乎没了,同时滤波后的语音信号强度稍有减弱,音色有一点低沉,不过基本达到了滤波的效果。所以本次设计的两个滤波器达到了设计要求。

2. 滤波器指标的设定是很关键的一步,ws,和wp要设置合适,ws设置太大噪音太多。wp设置太小会导致声音的丢失。我们应该认真查看频谱,再确定ws,和wp。由频谱图可以看出:我的语音信号大多集中在0~3000Hz,所以我取了fp=1000Hz,fs=3000Hz。

6.2出现的问题及解决方法

(1)画图时刚开始直接用plot(y),而没有加入取样个数及取样间隔导致话出来的图和理论推导的坐标点的值不一致,通过加入取样个数及取样间隔如plot(0:Fs/(M):Fs*(M-1)/M,abs(yf1));解决了这问题。(2)由于我的电脑是Win7的系统,我使用录音把我的原始声音给录下来时,发现格式不是wav格式,后来我用格式工厂软件把它给转换成wav,但MATLAB还是不能读取信号,后来我又改变了路径,但还是不行,最后没办法,只能去同学那里录一段声音文件。

6.3设计心得体会

在之前数字信号与处理的学习以及实验课的过程中,已经使用过MATLAB,对其有了一些基础的了解和认识。通过本次实验使我进一步了解了信号的产生、采样及频谱分析的方法。以及其中产生信号和绘制信号的基本命令和一些基础编程语言。让我感受到只有在了解课本知识的前提下,才能更好的应用这个工具;并且熟练的应用MATLAB也可以很好的加深我对课程的理解,方便我的思维。这次设计使我了解了MATLAB

的使用方法,学会分析滤波器的优劣和性能,提高了分析和动手实践能力。同时我相信,进一步加强对MATLAB的学习与研究对我今后的学习将会起到很大的帮助。

结束语:

总的来说,这次课程设计还是比较成功的,在设计中遇到了很多问题,不过通过上网查询及同学的帮助,问题基本都解决了。觉得平时所学的知识有了实用的价值,达到了理论与实际相结合的目的,不仅学到了不少知识,而且锻炼了自己的能力,使自己对以后的路有了更加清楚的认识,

参考文献:

[1]高西全丁玉美.数字信号处理(第三版).西安:西安电子科技大学出版社,2008

[2]张磊.MATLAB实用教程.北京:人民邮电出版社,2008

[3]程佩青.数字信号处理教程(第三版).清华大学出版社,2007.2

[4]薛年喜.MATLAB 在数字信号处理中的应用.北京:清华大学出版社

[5]候朝焕.实用FFT信号处理技术(第一版).海洋出版社,1990.10

[6]付丽琴桂志国王黎明. 数字信号处理原理及实现.国防工业出版社,2004.4

[7]余成波.杨青.数字信号处理及MATLAB实现.清华大学出版社,2005.

作者姓名论文(设计)题目(宋体五号字,居中)

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

语音信号处理与及其MATLAB实现分析

目录 摘要 (2) 第一章绪论 (3) 1.1 语音课设的意义 (3) 1.2 语音课设的目的与要求 (3) 1.3 语音课设的基本步骤 (3) 第二章设计方案论证 (5) 2.1 设计理论依据 (5) 2.1.1 采样定理 (5) 2.1.2 采样频率 (5) 2.1.3 采样位数与采样频率 (5) 2.2 语音信号的分析及处理方法 (6) 2.2.1 语音的录入与打开 (6) 2.2.2 时域信号的FFT分析 (6) 2.2.3 数字滤波器设计原理 (7) 2.2.4 数字滤波器的设计步骤 (7) 2.2.5 IIR滤波器与FIR滤波器的性能比较 (7) 第三章图形用户界面设计 (8) 3.1 图形用户界面概念 (8) 3.2 图形用户界面设计 (8) 3.3 图形用户界面模块调试 (9) 3.3.1 语音信号的读入与打开 (9) 3.3.2 语音信号的定点分析 (9) 3.3.3 N阶高通滤波器 (11) 3.3.4 N阶低通滤波器 (12) 3.3.5 2N阶带通滤波器 (13) 3.3.6 2N阶带阻滤波器 (14) 3.4 图形用户界面制作 (15) 第四章总结 (18) 附录 (19) 参考文献 (24)

摘要 数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。 数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

matlab语音信号采集与初步处理要点

《matlab与信号系统》实验报告 学院: 学号: 姓名: 考核实验——语音信号采集与处理初步 一、课题要求 1.语音信号的采集 2.语音信号的频谱分析 3.设计数字滤波器和画出频率响应 4.用滤波器对信号进行滤波 5.比较滤波前后语音信号的波形及频谱 6.回放和存储语音信号 (第5、第6步我放到一起做了) 二、语音信号的采集 本段音频文件为胡夏演唱的“那些年”的前奏(采用Audition音频软件进行剪切,时长17秒)。运行matlab软件,在当前目录中打开原音频文件所在的位置,采用wavread函数对其进行采样,并用sound函数可进行试听,程序运行之后记下采样频率和采样点。 利用函数wavread对语音信号的采集的程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 程序运行之后,在工作区间中可以看到采样频率fs=44100Hz,采样点bits=16

三、语音信号的频谱分析 先画出语音信号的时域波形,然后对语音号进行快速傅里叶变换,得到信号的频谱特性。语音信号的FFT频谱分析的完整程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 n = length (y) ; %求出语音信号的长度 Y=fft(y,n); %傅里叶变换 subplot(2,1,1); plot(y); title('原始信号波形'); subplot(2,1,2); plot(abs(Y)); title('原始信号频谱'); 程序结果如下图: 四、设计数字滤波器和画出频率响应 根据语音信号的特点给出有关滤波器的性能指标: 1)低通滤波器性能指标,fp=1000Hz,fc=1200 Hz,As=100dB,Ap=1dB; 2)高通滤波器性能指标,fc=4800 Hz,fp=5000 Hz As=100dB,Ap=1dB。

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

基于matlab的语音信号的采集与处理

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 目录 第1章前言 ................................................................................................... 错误!未定义书签。第2章语音信号分析处理的目的和要求 ................................................... 错误!未定义书签。 2.1MATLAB软件功能简介................................................................. 错误!未定义书签。 2.2课程设计意义 .................................................................................. 错误!未定义书签。第3章语音信号的仿真原理..................................................................... 错误!未定义书签。第4章语音信号的具体实现..................................................................... 错误!未定义书签。 4.1语音信号的采集................................................................................ 错误!未定义书签。 4.2语音信号加噪与频谱分析................................................................ 错误!未定义书签。 4.3设计巴特沃斯低通滤波器................................................................ 错误!未定义书签。 4.4用滤波器对加噪语音滤波................................................................ 错误!未定义书签。 4.5比较滤波前后语音信号波形及频谱................................................ 错误!未定义书签。第5章总结................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录................................................................................................................. 错误!未定义书签。

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名: 实验一基于MATLAB的语音信号时域特征分析(2学时)

1)短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2) ,legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128'); elseif(i==5) ,legend('N=256'); elseif(i==6) ,legend('N=512'); end end

00.51 1.52 2.5 3 x 10 4 -1 1 x 10 4 024 x 10 4 05 x 10 4 0510 x 10 4 01020 x 10 4 02040 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2), legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128');

基于MATLAB的语音信号滤波处理

基于MATLAB的语音信号滤波处理 题目:基于MATLAB的语音信号滤波处理 课程:数字信号处理 学院:电气工程学院 班级: 学生: 指导教师: 二O一三年十二月

目录CONTENTS 摘要 一、引言 二、正文 1.设计要求 2.设计步骤 3.设计内容 4.简易GUI设计 三、结论 四、收获与心得 五、附录

一、引言 随着Matlab仿真技术的推广,我们可以在计算机上对声音信号进行处理,甚至是模拟。通过计算机作图,采样,我们可以更加直观的了解语音信号的性质,通过matlab编程,调用相关的函数,我们可以非常方便的对信号进行运算和处理。 二、正文 2.1 设计要求 在有噪音的环境中录制语音,并设计滤波器去除噪声。 2.2 设计步骤 1.分析原始信号,画出原始信号频谱图及时频图,确定滤波器类型及相关指标; 2.按照类型及指标要求设计出滤波器,画出滤波器幅度和相位响应,分析该滤波器是否符合要求; 3.用所设计的滤波器对原始信号进行滤波处理,画出滤波后信号的频谱图及时频图; 4.对滤波前的信号进行分析比对,评估所设计滤波器性能。 2.3 设计内容 1.原始信号分析

分析信号的谱图可知,噪音在1650HZ和3300HZ附近的能量较高,而人声的能量基本位于1000HZ以下。因此,可以设计低通滤波器对信号进行去噪处理。 2.IIR滤波器设计 用双线性变换法分别设计了巴特沃斯低通滤波器和椭圆低通滤波器和带阻滤波器: ①巴特沃斯滤波器 fp=800;fs=1300;rs=35;rp=0.5; 程序代码如下: fp=800;fs=1300;rs=35;rp=0.5;Fs=44100; wp=2*Fs*tan(2*pi*fp/(2*Fs));ws=2*Fs*tan(2*pi*fs/(2*Fs)); [n,wn]=buttord(wp,ws,rp,rs,'s'); [b,a]=butter(n,wn,'s'); [num,den]=bilinear(b,a,Fs); [h,w]=freqz(num,den,512,Fs);

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

基于matlab的语音信号滤波处理——数字信号处理课程设计

数字信号处理课程设计 题目:基于matlab的语音信号滤波处理学院:物理与电子信息工程 专业:电子信息工程 班级: B07073041 学号: 200932000066 姓名:高珊 指导教师:任先平

摘要: 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息手段,所以对其的研究更显得尤为重要。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换成离散的数据文件,然后用起强大的矩阵运算能力处理数据。这为我们的本次设计提供了强大并良好的环境! 本设计要求自己录制一段自己的语音后,在MATLAB软件中采集语音信号、回放语音信号并画出语音信号的时域波形和频谱图。再在Matlab中分别设计不同形式的FIR数字滤波器。之后对采集的语音信号经过不同的滤波器(低通、高通、带通)后,观察不同的波形,并进行时域和频谱的分析。对比处理前后的时域图和频谱图,分析各种滤波器对于语音信号的影响。最后分别收听进行滤波后的语音信号效果,做到了解在怎么样的情况下该用怎么样的滤波器。

目录 1.设计内容 (4) 2.设计原理 (4) 2.1语音信号的时域分析 (4) 2.2语音信号的频域分析 (5) 3.设计过程 (5) 3.1实验程序源代码 (6) 3.1.1原语音信号时域、频域图 (6) 3.1.2低通滤波器的设计 (6) 3.1.3高通滤波器的设计 (7) 3.1.4带通滤波器的设计 (8) 3.1.5语音信号的回放 (9) 3.2调试结果描述 (10) 3.3所遇问题及结果分析 (15) 3.3.1所遇主要问题 (16) 3.3.2结果分析 (16) 4.体会与收获 (17) 5.参考文献 (17)

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

语音信号处理matlab实现

短时能量分析matlab源程序: x=wavread('4.wav'); %计算N=50,帧移=50时的语音能量 s=fra(50,50,x);%对输入的语音信号进行分帧,其中帧长50,帧移50 s2=s.^2;%一帧内各种点的能量 energy=sum(s2,2);%求一帧能量 subplot(2,2,1); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=50'); axis([0,500,0,30]) %计算N=100,帧移=100时的语音能量 s=fra(100,100,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,2); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=100'); axis([0,300,0,30]) %计算N=400,帧移=400时的语音能量 s=fra(400,400,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,3); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=400'); axis([0,60,0,100]) %计算N=800,帧移=800时的语音能量 s=fra(800,800,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,4); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=800'); axis([0,30,0,200]) 分帧子函数: function f=fra(len,inc,x) %对读入语音分帧,len为帧长,inc为帧重叠样点数,x为输入语音数据 fh=fix(((size(x,1)-len)/inc)+1);%计算帧数 f=zeros(fh,len);%设一个零矩阵,行为帧数,列为帧长 i=1;n=1; while i<=fh %帧间循环 j=1; while j<=len %帧内循环 f(i,j)=x(n); j=j+1;n=n+1; end n=n-len+inc;%下一帧开始位置 i=i+1; end

大学本科语音信号处理实验讲义8学时

语音信号处理实验讲义 时间:2011-12

目录 实验一语音信号生成模型分析 (3) 实验二语音信号时域特征分析 (7) 实验三语音信号频域特征分析 (12) 实验四语音信号的同态处理和倒谱分析 (16)

实验一 语音信号生成模型分析 一、实验目的 1、了解语音信号的生成机理,了解由声门产生的激励函数、由声道产生的调制函数和由嘴唇产生的辐射函数。 2、编程实现声门激励波函数波形及频谱,与理论值进行比较。 3、编程实现已知语音信号的语谱图,区分浊音信号和清音信号在语谱图上的差别。 二、实验原理 语音生成系统包含三部分:由声门产生的激励函数()G z 、由声道产生的调制函数()V z 和由嘴唇产生的辐射函数()R z 。语音生成系统的传递函数由这三个函数级联而成,即 ()()()()H z G z V z R z = 1、激励模型 发浊音时,由于声门不断开启和关闭,产生间隙的脉冲。经仪器测试它类似于斜三角波的脉冲。也就是说,这时的激励波是一个以基音周期为周期的斜三角脉冲串。单个斜三角波的频谱表现出一个低通滤波器的特性。可以把它表示成z 变换的全极点形式 12 1()(1) cT G z e z --= -? 这里c 是一个常数,T 是脉冲持续时间。周期的三角波脉冲还得跟单位脉冲串的z 变换相乘: 112 1 ()()()1(1)v cT A U z E z G z z e z ---=?= ?--? 这就是整个激励模型,v A 是一个幅值因子。 2、声道模型 当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。反映在信号频谱图上,在谐振频率处其谱线包络产生峰值,把它称为共振峰。 一个二阶谐振器的传输函数可以写成 12 ()1i i i i A V z B z C z --= -- 实践表明,用前3个共振峰代表一个元音足够了。对于较复杂的辅音或鼻音共振峰要到5个以上。多个()i V z 叠加可以得到声道的共振峰模型 12 1 11 ()()11R r r M M i r i N k i i i i k k b z A V z V z B z C z a z -=---======---∑∑∑ ∑ 3、辐射模型 从声道模型输出的是速度波,而语音信号是声压波。二者倒比称为辐射阻抗,它表征了

基于MATLAB的有噪声语音信号处理毕设

大学本科毕业设计论文 基于MATLAB的有噪声语音信号处理

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB 有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词?数字滤波器;MATLAB;窗函数法;巴特沃斯; 切比雪夫; 双线性变换

Abstract ?Filterdesignin digital signal processingplaysan extre melyimportant role, FIR digital filters and IIR filter is an importan tpart of filter design.Matlab is powerful,easy to learn,programming efficiency,which was welcomed bythemajority ofsc ientists. Matlab alsohas a particular signalanalysis toolbox,it need nothave strongprogrammingskills can be easily signal analysis, processing and design. Using MATLAB Signal Processing Toolbox can quickly andefficiently design avarietyof digitalfilters. MATLAB basedon the noise issuespeech signal processing design and implementation of digital signalprocessing integrated use of the theoretical knowledge ofthe speechsignal plus noise, time domain, frequencydomainanalysis andfiltering. Thecorrespondingresults obtainedthroughtheoreticalderivation, and then use MATLAB as a programming toolfor computer implementation.Implemented inthe design process,usingthewindow function methodtodesign FIR digital filters with Butterworth, Chebyshev andbilinear Reform IIR digital filter design and use ofMATLAB as asupplementary tool to complete thecalculation and graphic design Drawing. Throughthesimulation of thedesigned filter and the frequency analysis shows thatusingMatlabSignal Processing Toolbox can quickly and easily design digital filters FIR andIIR,the processis simple and convenient, the results of the performance indicators to meetthe specifiedrequirements. ? Keywords: digital filter; MATLAB;Chebyshev;Butterworth;

基于某MATLAB地语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号:

指导老师: 一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,

语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

相关主题
文本预览
相关文档 最新文档