当前位置:文档之家› 第一组报告三(斜拉桥)

第一组报告三(斜拉桥)

第一组报告三(斜拉桥)
第一组报告三(斜拉桥)

斜拉桥

斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了料。

一:斜拉桥的结构特点

斜拉桥的主要特点是利用桥塔引出的斜缆索作为梁垮的弹性中间支撑,借以降低梁垮的截面弯矩,减轻梁重,提高梁的跨越能力。当然,斜缆索对梁的这种弹性支撑作用,只有在斜缆索始终处于拉紧状态才能得到充分的发挥。因此必须在承受荷载前对斜拉索进行预拉。这样的预拉还可以减小斜缆索的应力变化幅度,提高拉索刚度,从而改善结构的受力状况,此外,斜缆索的水平分力对主梁的轴向预施压力可以增强主梁的抗裂性能,节约高强度钢材的用量。

斜拉桥是一个由索、塔、梁三种基本结构组成的组合结构。在斜拉桥中,梁和塔是主要承重构件,借缆索组合成整体结构。根据梁的支撑方式,其中包括梁与塔或墩的联结方式,组成不同形式的母体结构,但都是借斜缆索将梁以弹性支撑的形式吊挂在塔上,这种中间弹性支撑(斜缆索)增

强了梁的刚度,形成了多点弹性支撑的变截面连续梁、单悬臂梁、T型刚架及连续刚架。

斜拉桥是一种多次超静定结构,从索塔上用若干根拉索将梁吊起,使梁跨内增加了一系列弹性支点,从而减小了梁内弯矩,达到增加跨径的目的。现代斜拉桥仅发展了50年,其跨径已超过800米,这是梁桥和拱桥难以企及的。斜拉桥的整体刚度好于悬索桥,具有更好的抗风稳定性,是风暴活动频繁地区大跨径桥梁的优选对象。

二:斜拉桥的机构概述

1.斜拉索

一)、拉索构造

斜拉索在构造上可分为刚性索和柔性索两大类,在现代斜拉桥发展中,密索薄梁是发展方向,从而使柔性索得以大量采用。

二)、拉索的纵向布置

拉索纵向布置形式多种多样,但常用的是辐射形、竖琴形、扇形、和星形四种。

三)、斜拉索的横桥布置

1.桥塔

斜拉桥主塔不仅承受自身重力,还要考虑通过拉索传递给塔身的主梁桥面系的重量,以及主梁桥面系所承受的竖向和水平荷载,因此主塔不仅要承受巨大轴力还要承受巨大的弯矩。桥塔一般为空心断面,用钢结构或钢筋混凝土制作,根据需要也可采用预应力混凝土结构。桥塔的结构形式应根据斜拉索的布置,桥面宽度以及主梁跨度等因素决定。

2.主梁

1).主梁按材料不同分为钢梁、混凝土梁及钢梁上加设混凝土桥面板的

结合梁三类。其中钢梁有按其结构形式分为钢桁架和实腹梁两类。

2). 主梁结构体系

主梁结构体系按梁塔索三者结合方式,可分成四种不同体系:

漂浮体系:塔墩固结,塔梁分离,主梁除两端有支撑外,其余全部由拉索悬吊,这种体系不能对梁提供有效的横向支撑,给结构体系的温度收缩和徐变内力小,各截面变形和内力变化平缓、受力均匀,但在悬臂施工时须在塔柱处加临时固结。

支撑体系:塔墩固结,塔梁分离,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁或悬臂梁,后者即在跨中设铰或挂孔,挂孔需要有一定长度,以免在一侧受到荷载时,导致挂孔发生过大倾斜。

塔梁固结体系:塔梁固结并支承在墩上,斜拉索为弹性支承,它可以用于连续梁或悬臂梁,梁的内力和扰度直接同主梁与塔的弯曲刚度比值有关。

三:施工工艺概述

梁式桥施工中可采用的任一方法,如支架法、悬臂拼装或浇筑、顶推法和平转法等,都有可能在斜拉桥施工中加以采用。由于斜拉桥梁段尺寸较小,各节段间有斜索,索塔还可以用来架设辅助钢索,因此对各种无支架施工法更为有利。

①在支架或临时墩上修建:该方法最为简便,若采用节段预制拼装可用临时支墩,而现浇时则要搭设支架。但这类方法只有当桥面不高、桥下容许搭设支架或支墩时才有可能。

②平转法与拱桥中所采用的转体法相似,将上部结构分为两半,分别沿两岸顺河流方向的矮支架上制作,然后以索塔为圆心旋转到桥位合龙。采用此法修建的斜拉桥不多,跨径也不大,如我国四川金川曾达桥(转

体前顺河搭低支架现浇,索塔卧地预制,经安装索塔和拉索后,平衡转体施工就位)和法国Meylan桥,均为平转施工。

③顶推法施工:只适用于塔梁固结、梁墩分离的斜拉桥体系。因为能使交通中断时间减少,这种方法最适用于替换旧桥。

④悬臂施工法:是斜拉桥普遍采用的方法。它可以是在支架(或支墩)上建造边跨,然后中跨采用悬臂施工的单悬臂法,也可以是对称平衡施工的双悬臂法。其工序大致可以分为:修建索塔——吊装主梁节段(悬臂拼装法)或现浇混凝土主梁节段(悬臂浇筑法)——安装并张拉斜索——两者交替进行直至合龙。

四:斜拉桥的分类

根据塔的数量可分成单塔、双塔和三塔等,根据塔的形状可分为单柱式、双柱式、门式、H形,A形、倒Y形和钻石形等,根据拉索布置可分为辐射式、平行式、扇式和星式,根据索面分类可分成双垂直平面、双斜面和单平面等,根据主梁的材料可分为混凝土梁、钢桁架梁、钢箱梁、钢管混凝土桁架梁和结合梁等。我国斜拉桥的主梁形式:混凝土以箱式、板式、边箱中板式;钢梁以正交异性极钢箱为主,也有边箱中板式。

悬索桥

悬索桥,又名吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。其缆索几何形状由力的平衡条件决定,一般接近抛物线。从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形

一、悬索桥的受力分析

1、受力原理

自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。

二、施工工艺

1、主塔施工

悬索桥一般主塔较高,塔身大多采用翻模法分段浇筑,在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑,以方便索鞍及缆索的施工。

鞍部施工,检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车或卷扬设备分块吊运组装。

主梁浇筑,主梁混凝土的浇筑同普通桥一样,首先梁体标高的控制必须准确,要通过精确的计算预留支架的沉降变形;其次,梁体预埋件的预

埋要求有较高的精度,特别是拉杆的预留孔道要有准确的位置及良好的垂直度,以保证在正常的张拉过程中拉杆始终位于孔道的正中心。主梁浇筑顺序应从两端对称向中间施工,防止偏载产生的支架偏移,施工时以水准仪观测支架沉降值,并详细记录。待成型后立即复测梁体线型,将实际线型与设计线型进行比较,及时反馈信息,以调整下一步施工。

2、索部施工

(1)主缆架设

根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。

缆索的牵引:牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。

缆索的起吊:在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升吊机、主索塔顶就位吊机和提升倒链。

(2)主缆调整

在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值,经设计单位同意后进行调整,按照调整后的控制值进行安装,调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度,然后计算出各控制点标高。

主缆的调整采用75t千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高,完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后,边跨根据设计提供的索力将主缆张拉到位。

(3)索夹安装

为避免索夹的扭转,索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置,确认后将该处的PE护套剥除。索夹安装采用工作篮作为工作平台,将工作篮安装在主缆上,承载安装人员在其上进行操作。索夹起吊采用汽吊,索夹安装的关键是螺栓的坚固,要分二次进行)索夹安装就位时用扳手预紧,然后用扭力扳手第一次坚固,吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行,边跨从锚固点附近向塔顶进行。

(4)吊杆安装及加载

由于自锚式悬索桥在荷载的作用下呈现出明显的几何非线性,因此吊杆的加载是一个复杂的过程。主缆相对于主梁而言刚度很小。如果吊杆一次直接锚固到位,无论是张拉设备的行程或者张拉力都很难控制而全桥吊杆同时张拉调整在经济上是不可行的。为了解决这个问题,就必须根据主梁和主缆的刚度、自重采用计算机模拟的办法,得出最佳加载程序。并在施工过程中,通过观测,对张拉力加以修正。

桥梁设计(研究)现状和发展趋势

设计(研究)现状和发展趋势(文献综述) 2.1桥梁设计的现状 2.1.1 梁式桥 1. 简支体系梁桥 实心板桥,空心板桥,T 梁桥,工字型梁桥, 箱型梁桥等 特点:受力简单;标准设计;预制吊装;20~50m;中小桥;引桥 组合式梁桥有两种型式: Ι形组合梁桥____适用于钢筋混凝土简支梁桥 箱形组合梁桥____适用于预应力混凝土梁桥。 优点:显著减轻预制构件的重量,便于集中制造和运输吊装。 2. 简支变连续体系梁桥 T 梁桥,工字型梁桥, 箱型梁桥等 特点:先简支(预制吊装),后连续;连续体系受力;预应力20~50m;中小桥;引桥3. 连续梁桥 箱型截面,连续体系受力,支座 20~30m:普通钢筋混凝土,中小桥;引桥;高架桥; 立交桥;支架现浇较多 40~60m:预应力混凝土,大中桥;次主桥; 等截面,顶推施工 >60m: 大桥,特大桥;变截面, 悬臂施工(现浇或拼装) 4. 刚构桥 门式刚架桥 T 型刚构桥(带挂孔的或不带挂孔的) 连续刚构桥 刚构-连续组合体系桥 斜腿刚构桥 刚构桥特点: 箱型截面,连续体系受力, 墩梁刚接(不需支座) >60m,大桥,特大桥;变截面, 悬臂施工(现浇或拼装)-不需体系转换 2.1.2 拱桥 简单体系拱桥(上承式拱) 组合体系拱桥(中承式拱、下承式拱、系杆拱等) 1. 石拱桥 我国现存的石拱桥最早已有1500多年历史, 常用跨度:8~60m;

1991年,120m,湖南凤凰县乌巢河桥 2001年,146m, 山西晋城丹河大桥, 世界最大跨度。 2. 混凝土拱桥 分箱形拱、肋拱、桁架拱 常用跨度:30~200m 世界已建成跨径超过240M拱桥共15座,中国4座 跨径大于300m的拱桥共5座,中国占3座 1997年,重庆万县长江大桥(主跨420m),为世界最大跨度。 钢管混凝土劲性骨架混凝土箱形拱:以钢管混凝土作为劲性骨架,再外包混凝土形成箱形拱,是修建大跨径拱桥十分好的构思,除了方便施工外,还避免了钢管防护问题。 3. 钢管混凝土拱桥 钢管混凝土是一种钢-混凝土复合材料具有支架、模板二大作用,自架设能力强极限状态下发挥套箍作用,极限承载能力高常用跨度:100~300m。 4. 钢拱桥 ?适用于大跨径 ?我国钢拱桥修建正在较快增加 2.1.3 斜拉桥 特点:组合体系,比梁式桥有更大的跨越能力 200~800m的跨径范围内占据着优势 由于拉索的自锚特性而不需要悬索桥那样巨大锚碇 在800~1100m的跨径范围内,斜拉桥也扮演重要角色 1600m跨径都是可行的 斜拉桥主要由主梁、索塔和斜拉索三大部分成: 主梁一般采用混凝土结构、钢-混凝土组合结构、钢结构或钢和混凝土混合结构; 索塔-采用混凝土、钢-混凝土组合或钢结构;大部分采用混凝土结构; 斜拉索-则采用高强材料(高强钢丝或钢绞线)制成。 2.1.4 悬索桥 世界已建成跨径大于1000米的悬索桥17座;日本于1998年建成了世界最大跨径的明石海峡大桥,是世界建桥史上的一座丰碑。 特点:悬索桥是特大跨径桥梁的主要形式之一 受力明确,造型优美,规模宏伟,“桥梁皇后” 跨径大于800m的桥梁,悬索桥具有很大的竞争力 400~800m也有可比性 抗风稳定性问题突出 2.2桥梁设计的发展趋势 随着我国经济发展,材料、机械、设备工业相应发展,这为我国修建大跨径斜拉桥和悬索桥提供了有力保障。再加上广大桥梁建设者的精心设计和施工,使我国建桥水平已跃身于世界先进行列。以下是桥梁发展得趋势:

斜拉桥发展历史及未来方向

斜拉桥的发展历程及未来发展趋势 通过本学期的学习,我们学习了梁桥、拱桥、斜拉桥、悬索桥的计算方法。通过老师的讲解使我们了解到了不同桥梁的受力特点的不同以及不同桥梁计算时使用的不同的理论。梁桥以受弯为主的主梁作为承重构件的桥梁。主梁可以是实腹梁或桁架梁。实腹梁构造简单,制造、架设和维修均较方便,广泛用于中、小跨度桥梁,但在材料利用上不够经济。桁架梁的杆件承受轴向力,材料能充分利用,自重较轻,跨越能力大,多用于建造大跨度桥梁。拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。悬索桥既吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。其缆索几何形状由力的平衡条件决定,一般接近抛物线。从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。下面我们重点来说说斜拉桥,斜拉桥是由主梁、索塔和斜拉索三大部分组成,主梁一般采用混凝土结构、钢和混凝土结构、组合结构或钢结构,索塔主要采用混凝土结构,斜拉索采用高强材料的钢丝或钢绞线制成。它的主要优点有在各个支点支承的作用下跨中弯矩大大减小,而且由于结构自重较轻,既节省了结构材料,又能大幅地增大桥梁的跨越能力。此外,斜拉索轴力产生的水平分力对主梁施加了预应力,从而可以增强主梁的抗裂能力,节约主梁中预应力钢材的用钢量。斜拉桥和梁桥和拱桥相比有着跨越能力大的优

势。而与悬索桥相比在300-1000米跨度又有经济性的优势。同时外形对称美观更兼线条纤秀,构造简洁,造型优美。符合桥梁美学的要求。适合在跨度为300-1000米的桥梁使用。 斜拉桥的发展其实进行了一个漫长的历史,在国外1784年德国人勒舍尔建造了一座跨径为32米的木桥,这是世界上第一座斜拉桥。1821年法国建筑师叶帕特在世界上第一次系统地提出了斜拉桥的结构体系。在这个体系里,他构想用锻铁拉杆将梁吊到相当高的桥塔上,拉索扇形布置,所有拉索都锚固于桥塔顶部。1855年美国工程师罗伯林在尼亚加拉河上,建成了跨径达250米的公铁两用桥。这是世界上首次将悬索体系和拉索体系的成功组合。1949年,德国著名的桥梁工程师迪辛格尔发表了他对斜拉桥的结构体系的研究成果,为现代斜拉桥的诞生和发展奠定了理论基础。1952年德国莱昂哈特教授在世界上第一个设计出现代化斜拉桥――德国杜塞尔多夫跨越莱茵河的大桥。1953年迪辛格尔与德国承包商德玛格公司,承建了瑞典的斯特罗姆松德桥,这是世界上第一座现代斜拉桥。从此斜拉桥经历了三个发展阶段:自20世纪50年代中至60年代中,其特征是拉索为稀索体系,钢或混凝土梁体,以受弯为主;第二阶段,自20世纪60年代后期开始,其特征是拉索逐步采用密索体系,并可以换索,钢和混凝土梁以受压为主,截面减小;第三阶段,从20世纪80年代中期至今,拉索普遍采用密索体系,可以换索,梁体结构出现组合式、混合式、钢管混凝土等新的形式。相应地梁向轻型化发展,梁高减小,梁面也出现了肋板式、板式等形式。

桥梁检测说明及细节

桥检 参考《公路桥涵养护规范》jtg h11-2004进行。 检查依据 1、《公路桥涵养护规范》(jtg h11-2004); 2、《公路桥梁技术状况评定标准》(jtg/t h21-2011) 3、《公路桥梁承载能力检测评定规程》(jtg/t j21-2011); 4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(jtg d62-2004) 5、《公路桥涵设计通用规范》(jtg d60-2004); 6、《工程测量规范》(gb50026-2007); 7、《建设工程安全生产管理条例》中华人民共和国国务院令(第393号)。 检查内容 1、检查方法和手段 定期检查以目测观察结合仪器观测进行,必须接近各部件仔细检查其缺损情况。定期检查的主要工作有: 1) 现场校核桥梁基本数据(桥梁基本状况卡片)。 2) 当场填写“桥梁定期检查记录表”,记录各部件缺损状况并作出技术状况评分。 3) 实地判断缺损原因,确定维修范围及方式。 4) 对难以判断损坏原因和程度的部件,提出特殊检查(专门检查)的要求。 5) 对损坏严重、危及安全运行的危桥,提出限制交通或改建的建议。 6) 根据桥梁的技术状况,确定下次检查时间。 2、特大型、大型桥梁的控制检测 按国家行业标准《公路桥涵养护规范》jtg h11-2004,对本区内拟检桥梁的特大桥、大桥设立永久性观测点,定期进行控制检测。控制检测的项目及永久性观测点见表1。 表1 桥梁永久性观测点和检测项目 检测项目 观测点 1 墩、台身、索塔的高程 墩、台身底部(距地面或常水位0.5~2m)、桥台侧墙尾部顶面的上、下游各1~2点 2 墩、台身、索塔倾斜度 墩、台身底部(距地面或常水位0.5~2m内)的上、下游两侧各1~2点

斜拉桥与悬索桥计算理论简析

斜拉桥与悬索桥计算理论简析 以前忘记在哪里看到这篇文章了,感觉就像是研究生交的作业一样,呵呵,不过深入浅出,讲的挺明白,把斜拉桥和悬索桥基本的东西都写出来了。我把它修改了一下贴出来,大家可以当科普性的东西看看。 正文:斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。 一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。 (一)、斜拉桥的静力设计过程 1、方案设计阶段此阶段也称为概念设计。本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。根据此设计文件,设计者或甲方(有些地方领导说了算)进行

方案比选。 2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。 3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。 (二)、斜拉桥的计算模式 1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。还可用于技术设计阶段,仅仅计算恒载作用下的内力。 2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。 3、空间板壳、块体和梁单元计算模式此模式用在计算全桥构件的应力分布特性,这类模式要特别注意不同单元结合部的节点位移协调性。 4、从整体结构中取出的特殊构件此模式主要是为了研究斜拉索锚固区等的应力集中现象。根据圣维南原理,对结构进行二次分析。 (三)、斜拉桥的计算理论根据线性与非线性将其分为三类。 1、微小变形理论,即弹性理论这种计算方法将拉索简化为桁单元,其余部分用梁单元进行模拟,不考虑非线性影响。此计算方法适用于中小跨径的斜拉桥,或用于方案设计阶段。 2、准非线性计算理论包

斜拉桥的分类

斜拉桥的总体布置与结构体系 总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。 一、跨径布置主要有下面三种类型 (1)双塔三跨式。为目前应用最广泛的跨径布置方式。下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。 (2)独塔双跨式。这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。

独塔双跨式斜拉桥立面图 (3)多塔多跨式。多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位,使结构柔性及变形增大,整体刚度差。 多塔多跨式斜拉桥示意图 二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。 (1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索面。

单索面斜拉桥(临海大桥) 竖直双索面斜拉桥

倾斜双索面斜拉桥 (2)拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形。 辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。由于在拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。 竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索与主梁的连接构造简单,易于处理。竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。

桥梁检测内容

桥梁分类 桥梁按其结构形式和受力情况可分为梁桥、拱桥、悬索桥、刚架桥、斜拉桥、组合体系桥等形式; 几种典型的桥梁:梁式桥、拱式桥、斜拉桥、悬索桥。 桥梁检测内容 ①常规定期检测:包括桥面系检测、上部结构检测、下部结构检测。 ②结构定期检测:包括混凝土强度检测、混凝土碳化深度检测、钢筋位置及混凝土保护层厚度检测。 ③水下构件检测:对水下桩基混凝土脱落、裂纹、露筋、空洞、机械损伤等病害进行探查,并录像。 ④承载能力鉴定:通过承载能力鉴定判定现阶段桥梁的承载能力能否满足设计要求。 ⑤长期监控点布设及首次观测:为了长期观测桥梁墩台、主梁在车辆作用下的变位情况,从而对桥梁的安全性进行分析,在桥梁关键位置布置监测点,并对监测点进行首次观测。 ⑥提交各桥的最终桥梁检测报告,内容符合中华人民共和国行业标准《城市桥梁养护技术规范》CJJ99-2003要求,除上述内容外,报告还应包含各桥桥梁限载、限高等标志设置意见。 中承式钢管混凝土系杆拱桥金马湖大桥检测项目

主桥拱肋、吊杆、系杆、锚具及防护板等进行检测(内容?),对系杆吊杆进行索力测定,对桥梁结构进行永久性控制检测,观测桥墩的沉降、倾斜、桥面线形、位移等,对全桥进行技术状况评定并形成书面报告等。 桥梁检测项目 1.桥面铺装 是否有坑槽、开裂、车辙、松散、不平、桥头跳车现象等。 2.人行道、护栏 人行道有无开裂、断裂、缺损;护栏是否松动、撞坏、锈蚀和变形等。 3.伸缩缝 是否破损、结构脱落、淤塞、填料凹凸、跳车、漏水等。 4.排水设施 桥面横坡、纵坡是否顺适,有无积水;泄水管有无损坏、脱落;防水层是否工作正常,有无渗水现象等。 5.梁式桥上部结构 主梁支点、跨中、变截面处有无开裂,最大裂缝值;梁体表面有无空洞、蜂窝、麻面、剥落、露筋;有无局部渗水现象;隔板是否开裂、焊缝是否断裂;钢筋结构的锈蚀、变形等。 6.圬工桥上部结构 主拱圈是否开裂、渗水、砂浆松动、脱落变形;拱脚是否开裂;拱腹是否变形、错位;立墙、立柱有无开裂、脱落等。 7.双曲拱桥上部结构 拱脚有无压裂;拱肋1/4处、3/4处、顶部是否脱落、松散;拱脚与拱波结合处是否开裂;波间砂浆是否脱落、松散;横隔是否开裂、破损等。 8.支座 位移是否正常;橡胶支座是否老化、变形;钢板滑动支座是否锈蚀、干涩;各种支座固定端是否松动、剪断、开裂等。 9.桥台 是否开裂、破损,台背填土是否开裂、挤压、受冲刷等情况。 10.桥墩 墩身是否开裂,局部外鼓,表面风化、剥落、空洞、露筋;是否

桥梁检测报告

课程《桥梁检测与养护》桥梁检测部分报告 姓名: 学号:

前言 感谢老师本学期给我们讲授《桥梁检测与养护》课程的桥梁检测部分,听完老师给我们讲的桥梁检测课程,不仅让我学到了桥梁检测的理论知识以及从老师那里学到了一些实际经验,而且让我意识到目前桥梁检测和养护在我国甚至世界范围内的重要性和迫切性,同时也意识到作为未来的桥梁工作者,在我们修改新桥梁的同时也应该做好旧桥的检测和养护工作。 随着近几十年我国经济的发展和综合国力的提高,我国公路桥梁已建成规模,已成为世界上的桥梁大国。在桥梁建设放缓的过程中,然而近些年来却出现了很多桥梁坍塌事故。桥梁建成通车以后,随着时间的推移,桥梁在自然环境以及人为环境的作用下,桥梁的耐久性下降,造成安全度降低,然而人们常常忽视了桥梁的定期和不定期的检测,以致很多桥梁结构出现缺陷问题时没有得到及时的维护和加固,以至于最后出现桥梁坍塌,给人们的生命和财产造成的重大的损失。基于中国当前现状,有大量的已建设桥梁处于不安全或是有缺陷的服役状态,因此有必要而且迫切的需要建立起从桥梁管理、桥梁检测系统、检测技术和养护措施等的一整套方案,只有这样才能及时发现和解决桥梁的缺陷,从而延长桥梁的耐久性,确保桥梁结构的安全,避免不必要的损失和事故。 在课程的学习中,我了解和掌握了我国桥梁建设与养护的现状,桥梁常见的一些结构性缺陷、桥梁管理系统、桥梁检测的方法和手段以及桥梁荷载试验和评定等内容,并且老师给我们展示了很多实际桥梁的缺陷图片以及结合实际的工程

实例给我们详细了讲解了桥梁检测在桥梁结构中的应用。本报告将从桥梁检测的目的与分类、桥梁结构性缺陷、桥梁检测技术及其适用性、基于新建桥梁混凝土斜拉桥检测和试验、已建公路预应力混凝土连续梁桥和钢箱梁斜拉桥的检测与评定和桥梁检测现状与未来发展六个方面进行展开。

斜拉桥的发展

中国斜拉桥的发展状态和关键技术 摘要:斜拉桥的发展引用着多种现代的高新技术,得以桥梁在大跨度的桥梁施工中,得以精确度的保证以及在规范要求的范围内,并且施工中必须考虑到外部环境的影响,所以接下来对以上的问题作以叙述。 关键词:斜拉桥全球卫新定位系统防护措施施工重点 斜拉桥又称斜张桥,上部结构由索、梁、塔三个主要组成部分构成,从其力学特点看,属于组合体系桥。斜拉桥依靠斜拉索支撑梁跨,类似于多跨弹性支承梁,梁内弯矩与桥梁的跨度基本无关,而与拉索间距有关。斜拉桥开始于17世纪,现在斜拉桥正处于发展的高峰期间,长度、跨度和持久性也在不断增加。 斜拉桥采用斜拉索来支撑主梁,使主梁变成多跨支撑连续梁,从而降低主梁高度、增大跨度。斜拉桥属于自锚结构体系,斜拉索对桥跨结构的主梁产生有利的压力,改善了主梁的受力状态。主要构造有基础、墩塔、主梁和拉索。其上的主梁是受弯构件,为多点弹性支撑,弯矩和挠度显著减小,斜拉索水平分力,提供对称的预应力,减缓主梁的压力。斜索是受拉构件,为主梁提供弹性支持,调整其索力、间距和数量,可调整桥梁内力分布及刚度,对斜拉索进行预张拉。 斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。 1、双塔三跨式 目前双塔三跨式最常用,形式有对称式和非对称式,适用在跨越较大的河流、海口及海面比较近的工程中。以下为双塔三跨式的例子,如图一所示。杭州湾跨海大桥建于2003年11月14日开工,2007年6月26日贯通,2008年5月1日启用。杭州湾跨海大桥是一座横跨中国杭州湾海域的跨海大桥,北起浙江嘉兴海盐郑家埭,南至宁波慈溪水路湾,全长36公里,比连接巴林与沙特的法赫德国王大桥还长11公里,已经成为中国世界纪录协会世界最长的跨海大桥候选世界纪录,成为继美国的庞恰特雷恩湖桥和青岛胶州湾大桥是世界上最长的跨海大桥后世界第三长的桥梁。此桥的特点为两侧都建有辅助墩,目的是为了缓和端锚索应力集中或减少边跨主梁弯矩,增大桥梁总体刚度。杭州湾大桥的钢管桩制作过程中,每个工序都进行严格质量检查,对焊缝百分之百进行超声波检查,还有部分的需要进行射线照相。其中T形和十字形的焊缝及近桩顶焊缝作为重点检查。焊缝不允许有咬边、焊缝未融合、未焊透的情况表面气孔、弧坑、夹渣等外观缺陷,这些都是对桩的焊接要求,而且在做这桥的设计时,还得考虑到一些外在因素,因为作为海上建筑,必须考虑到海上的海风很大,桥墩放下的时候会因为海风的吹动而摇晃,可能导致放置的位置不精确,所以得用到精密仪器测量和GPS 定位导航系统,这个是近几年才开始开发使用在桥梁建筑上的科技技术使用。在建成的时候还得预防以后海上出现台风现象,因为美国就有桥在设计时未能够充分考虑到风力和风速的影响,导致桥在风的作用下,产生摇晃,导致桥的倒塌。钢管桩的制作已经需要考虑到防腐的问题,而且也要考虑到在运输的时候,防止桩与周围的摩擦。而且全球卫星定位系统在这里利用的地方也比较多。像这里外海沉桩施工过程中,因为在海上的施工,所以在岸上看上去距离远,常规的经纬仪和全站仪测量定位很难达到设计的要求,所以只有使用全球卫星定位系统在施

公路桥梁定期检查和特殊检查报告范本1(1)

浙江省公路桥梁定期检查 和特殊检查报告编制范本(试行) 浙江省公路管理局 二○一○年十一月 前言 桥梁是公路的重要组成部分,直接影响行车的安全和畅通。随着公路交通量的不断增加,桥梁营运时间的不断延长,我省公路桥梁将逐步进入老化期,尤其近年来桥梁垮塌事件时有发生,桥梁安全问题已经成为社会关注的焦点。随着我国公路交通事业的迅速发展,公路交通量的快速增加以及车辆载重的不断增大,如何准确地检测评定公路桥梁承载能力,对其实际技术状况做出评估,以确保桥梁结构安全,是公路桥梁养护工作的关键。 为进一步提高我省公路桥梁检查与评定工作的技术水平,使桥梁定期检查和特殊检查工作规范化、标准化,浙江省公路管理局组织浙江公路技师学院试验检测中心和杭州市公路管理局等单位专业技术人员,进行了大量的调查和研究工作,编写了《浙江省公路桥梁定期检查和特殊检查报告范本》。 《范本》由桥梁桥梁定期检查总报告范本、桥梁定期检查报告范本、桥梁特殊检查报告范本和附录等四部分组成,包括检查报告的格式、检查内容、表格范例和报告的编制提交等内容。 请各有关单位在使用中注意积累资料,总结经验,及时将发现的问题和意见函告浙江省公路管理局养护处,以便修订时参考。 主编单位:浙江公路技师学院试验检测中心

参编单位:杭州市公路管理局 主要编写人:侯英、胡安宇、崔军、戴利平、黄官平、陈武、刘有根、吴敏慧、周建中 审查单位:浙江省公路管理局 主要审查人: 目录 1 桥梁定期检查总报告 4 2 桥梁定期检查报告范本 15 3 桥梁特殊检查报告范本 38 4 桥梁定期检查和特殊检查报告编制格式要求 64 ××市(县)××××年 公路桥梁定期检查总报告 (报告编号:××××××) 检查单位名称(盖章)

斜拉桥发展史及现状综述

从斜拉桥看桥梁技术的发展 姓名:马哲昊 班级:1403 专业:建筑与土木工程 学号:143085213086

摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。 关键词: 斜拉桥;发展史;现状;展望 Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward. Key words: Cable-stayed bridge; Review; Looking forward to

1.斜拉桥的发展 1.1 斜拉桥的历史 斜拉桥是一种古老而年轻的桥型结构。早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。1818 年,英国一座跨越特威德河的人行桥也毁于风振。现在看来,这些桥梁的垮塌主要是由于当时工业水平的限制、对斜拉桥这样高次超静定结构体系缺乏理论分析方法和技术手段以及桥梁结构构造存在缺陷。世界上第一座现代化的大跨径斜拉桥诞生于 1955 年,在第二次世界大战结束后,Dischinger 在瑞典设计建成了 Stromsund 桥。该桥主跨 182.6m,全桥采用斜拉式结构,主梁为钢板梁,中间用横梁连接,双塔式,每塔只用了两对高强钢丝拉索,梁上索距 35m 左右,梁高 3.25m 为跨径的 1/56,塔高 28m 为跨径的 1/6.5。这座桥在现代的观点来看虽然在细节上存在着一些不足,如桥面采用的分离的混凝土梁,索塔的造型缺乏美感等,但在桥梁结构上却开创了一个新的纪元,创造出了一种新的桥梁体系,且这种桥梁结构拥有着诸多优点: ①用少量拉索取代了深水桥墩,不但节省了费用、降低了施工难度,而且有效的提高了桥梁的跨越能力,利于通航和排洪。 ②拉索作为主梁的中间弹性支承,使得在桥梁跨径增大的同时,主梁的梁高却可以减小,从而使主梁本身以梁以及段引桥的造价得以降低。 ③拉索自锚固于主梁上,梁身能够得到免费的预压应力,在很多情况下,尤其对于中等跨径桥梁是有利的,和悬索桥相比还可以节省庞大而昂贵的地锚。 ④拉索和索塔、主梁组成了多个三角形结构,稳定性高,刚度大。静、动力性能都良好。 ⑤整体结构新颖,造型美观。 斜拉桥这种新桥型的的出现,以其先进的技术,经济的造价、美观的外形,很快的得到了社会的认同,并在许多国家得到了推广,从Stromsund 桥建成后的第二年起,诸多有名的斜拉桥相继诞生,且发展的速度很快,平均每年就能完一座斜拉桥的修建。早期的斜拉桥结构大多采用当时盛行的轻型钢结构正交异性桥面板,各桥不仅在形式上不尽相同,

桥梁工程质量检验单(C-2).

桥梁工程质量检验单 (编号C—2) 103

桥梁工程现场质量检验单目录 1、桥梁工程现场质量检验单使用说明 2、桥梁总体现场质量检验报告单……………………………………C—2-1 3、钻(挖)孔桩桩孔现场质量检验报告单…………………………C—2-2 4、挖孔桩现场检验报告单…………………………………………C—2-3 5、钻(挖)孔桩钢筋现场质量检验报告单……………………………C—2-4 6、钻孔桩现场质量检验报告单………………………………………C—2-5 7、预制桩钢筋安装现场质量检验报告单……………………………C—2-6 8、预制桩现场质量检验报告单……………………………………C—2-7 9、沉桩现场质量检验报告单………………………………………C—2-8 10、混凝土浇筑申请报告单………………………………………C—2-9 11、桥涵基坑现场质量检验报告单………………………………C—2-10 12、浆砌片石基础现场质量检验报告单…………………………C—2-11 13、现浇混凝土结构模板现场质量检验单………………………C—2-12 14、混凝土基础现场质量检验报告单……………………………C—2-13 15、承台(系梁)现场质量检验报告单…………………………C—2-14 16、墩、台身现场质量检验报告单………………………………C—2-15 17、大体积混凝土结构现场质量检验报告单……………………C—2-16 18、侧墙砌体现场质量检验报告单………………………………C—2-17 19、柱式墩或双壁墩现场质量检验报告单………………………C—2-18 20、墩、台帽或盖梁现场质量检验报告单………………………C—2-19 21、预制梁(板)现场质量检验报告单……………………………C—2-20 22、梁(板)安装现场质量检验报告单…………………………C—2-21 23、就地浇筑梁(板)现场质量检验报告单………………………C—2-22 24、拱桥组合桥台现场质量检验报告单…………………………C—2-23 25、台背填土现场质量检验报告单………………………………C—2-24 26、双壁钢围堰的制作拼装现场质量检验报告单………………C—2-25 104

斜拉桥的发展现状及常见问题浅析

斜拉桥的发展现状及常见问题浅析徐灯飞夏德俊(西南交通大学土木工程学院四川成都611756) 庄晴(内江师范学院四川内江641112) 摘要:本文主要论述了斜拉桥在近些年发展建设中取得的成就,分析了斜拉桥在结构、布置、选材和审美方面,以及简单介绍了斜拉桥在结构设计和施工建设方面遇到的难题及采取的必要措施。斜拉桥因为结构和审美上优势,以及大量的建设尝试和研究,斜拉桥以后势必还会有更大的发展。 关键词:斜拉桥;布置形式;桥梁结构体系;斜拉桥审美 一.我国斜拉桥建设取得的成就 自1979年建成的第一座斜拉桥——主跨只有76米云阳桥以来,经过30多年的飞速发展,现今我国斜拉桥无论是在规模和跨度方面,还是在结构设计和施工技术都取得了巨大的成就。目前我国已经是世界上斜拉桥数量最多、跨度最大的国家。2008年建成的苏通大桥全长1088米,成为世界上最长的斜拉桥,这也是我国历史上工程规模最大、建设条件极为复杂的特大型桥梁工程。目前我国已经建成的世界级的大跨度斜拉桥还有:2005年建成的南京长江三桥,是国内第一座钢塔斜拉桥,也是世界上第一座弧线形钢塔斜拉桥;2009年香港建成的双塔斜拉桥昂船洲大桥,主跨长1018米,为世界第二长;2010年建成的鄂东长江大桥,主桥主跨为926米,位居混合梁斜拉桥世界第二位等等...... 我国斜拉桥的设计与施工技术也已经跨入世界的先进行列,并取得了显著的成绩:(1)斜拉索制造工艺实现了专业化和工厂化及防护技术不断完善;(2)斜拉桥的施工技术逐步完善;(3)用计算机进行结构计算和施工过程控制等。目前我国的斜拉桥正在向新型结构、大跨度、轻质和美观等方向发展,以更好的适应交通、经济、环境和安全的要求。 二.斜拉桥整体结构特点 斜拉桥又称为斜张桥,是用许多拉索将主梁直接拉在桥塔上的一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。在斜拉桥结构体系中,索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势。三.斜拉桥的布置: 1.斜拉桥整体布置: 常见的布置形式有:独塔双跨式、双塔三跨式和多塔多跨式。(1)相对于双塔三跨式,独塔双跨式斜拉桥主跨径较小,而且常采用双跨不等的非对称形式,使结构整体受轴向力为主,以充分发挥材料的优势,这种布置形式在跨越中小河流和城市通道中较常用;(2)斜拉桥布置成双塔三跨式时,具有较大的主跨径,并便于通航、简化计算、方便施工,因此在大跨度桥中最为常见,适用于跨越海峡和宽度较大的河流、峡谷等。双塔三跨桥一般布置成对称结构,而且要调整好边跨和主跨的比例,这对于审美和控制整体刚度及拉索应力有很大非常有利;(3)多塔多跨式斜拉桥现在已经很少采用,因为这种形式的桥中间塔顶处没有端锚索来有效的限制其变位,采用多塔多跨式会使结构的柔性增大,对抗风不利。 2.索塔

斜拉桥计算

摘要 本设计根据设计任务要求,依据现行公路桥梁设计规范,兼顾技术先进,安全可靠,适用耐久,经济合理的原则,提出了预应力混凝土双索面双塔斜拉桥、预应力混凝土连续刚构、变截面连续梁桥三个比选桥型。综合各个方案的优缺点并考虑与环境协调,把预应力混凝土双索面双塔斜拉桥作为推荐设计方案。进行结构细部尺寸拟定,并利用Midas6.7.1建模,进行静活载内力计算、配筋设计及控制截面应力验算、变形验算等。经验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。 独塔斜拉桥方案 斜拉桥方案造型美观,气势宏伟,跨越能力强,55米的主塔充分显示其高扬特性,拉索的作用相当于在主梁跨内增加了若干弹性支撑,从而减小了梁内弯矩、梁体自重,从而减小梁体尺寸。施工技术较成熟。 斜拉桥设计与计算 第1部分总体设计 第 1节斜拉桥概述 斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。 上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段:第一阶段:稀索,主梁基本上为弹性支承连续梁;

第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力; 第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。 近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。 (一)技术指标 1,路线等级:公路一级,双向四车道: 2,设计车速:100km/h; 3,桥面宽: 1.5m(拉索区)+0.5m(防撞护栏)+0.5m(过渡带)+7.5m(行车道)+ 0.5m(过渡带)+0.5m(防撞护栏)+1m(隔离带) +0.5m(防撞护栏) +0.5m(过渡带)+7.5m(行车道)+0.5m(过渡带)+0.5m(防撞护栏)+1.5m(拉索区)。 4,设计作用: 汽车作用:公路1级荷载, 温度作用:体系温差±20度,主梁的温度梯度为±5 度,梁与拉索的温差±10度; 5,地震烈度:地震基本烈度为7.6度;

交竣工验收检测报告(格式)20120228(精)

目录 (黑体,小二号字,居中 (空一行 1. 概况 ................................................................................................. 1 1.1 工程简介 ....................................................................................... 1 1.2 工程特 点 ....................................................................................... 1 1.3 施工工 期 ....................................................................................... 1 1.4 合同段划分及参建单 位 ............................................................... 1 1.5 检查目 的 (2) 1.6 检查依据 (2) 2. 竣工质量鉴定检测组织情况 . (3) 3. 检测内容 ......................................................................................... 3 3.1 工程实体检测 ............................................................................... 3 3.2 外观质量检 查 ............................................................................... 3 3.3 内业资料审 查 (3) 3.4 交工遗留问题处理情况复核检查 (4) 4 工程实体检测结果 ........................................................................ 4 4.1 伸缩缝与桥面高差 ....................................................................... 4 4.2 北引桥箱梁外涂层厚 度 (4) 4.5 北航道桥桥面线型 (4) 5 外观质量检查结果 ........................................................................ 5 5.1 XX 桥 . ............................................................................................. 5 5.2 XX 桥 . ............................................................................................. 5 5.3 XX 桥 . (6) 6 交工验收遗留问题处理情况 . (6)

斜拉桥计算书2

计算书 工程名称:郑东新区龙子湖中路跨龙子湖东(B8)桥工程编号: 05-Q-18 设计阶段:施工图设计构件名称:主桥总体计算 第 1 册共 1 册本册16页 计算年月日 校对年月日

同济大学建筑设计研桥梁工程设计分院 1 郑东新区龙子湖中路跨龙子湖东(B8)桥施工图设计 主桥总体计算 一.工程概况 本桥采用96m+72m=168m的双索面弯塔斜拉桥,塔梁固结。在桥塔处横断面布置为6.25m人行、非机动车道+2.75m索塔分隔带+12.0m机动车道+8.0m中央分隔带+12.0m机动车道+2.75m桥塔分隔带+6.25m人行、非机动车道,总宽度50m,在索塔区以外,主跨人行、非机动车道宽6.75m,边跨人行、非机动车道宽6.25m。 主梁横截面采用两个分离的箱形截面,中间用横梁连接,每个分离箱梁都是双室截面,因此主梁横截面也可以称为双箱双室截面。两个分离的箱形截面中心间距35m,与双索面斜拉索及桥塔两个塔柱的中心间距一致,每个箱形截面的底宽9m,两个分离箱梁间净距26m,箱梁外侧悬臂3m;箱梁高度从桥面中线向两侧1.5%横坡降低,在塔柱中线处箱梁高2.5m,在桥面中线处梁高2.763m。箱梁内顶板厚25cm,悬臂板端部厚18cm,根部厚50cm;底板厚30cm;边腹板宽50cm,梁端处加宽到80cm;主跨和边跨中间腹板宽分别为100cm和200cm,索塔处21m长度范围内的箱梁中腹板宽度350cm,二者之间设渐变段。 连接主梁的横梁间距3m。横梁分为中横梁、端支点处的端横梁及索塔处的塔间横梁三种,桥面中线处横梁高276.3cm。中横梁肋宽30cm,在主梁

悬索桥基本理论知识

悬索桥基本理论知识: 1)众所周知,悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件组成 的柔性悬吊组合体系。主缆是结构体系中的主要承重构件,是几何可变体系,主 要靠恒载产生的初始拉力以及几何形状的改变来获得结构刚度,以抵抗荷载产生 的变形’因而使得大跨度悬索桥在施工阶段具有强烈的几何非线性。 2)在以往的地震反应分析中,惯用的方法是对几 何非线性进行近似考虑,即只考虑缆索的弹性模量的修正和恒载静力平衡时的重 力刚度 Fleming和Eqesli 15】早在1982年就采用线性分析方法和考虑结构几何非线性 的分析方法对跨度200m左右的斜拉桥进行了地震反应分析。Fleming研究的几 何非线性分析计算理论对斜拉桥、悬索桥的非线性研究工作是一个巨大的贡献, 其分析方法至今被人借鉴。他们研究的结论是:线性分析方法和非线性分析方法 所得到的斜拉桥地震反应结果非常相近。 结构几何非线性的影响对地震反应并不显著,但随着跨度增大, 非线性影响将会增大,其趋势是减小结构的反 1LJ.Tuladhar和W.H.Dilg盯18J分别采用等效弹性模量、几何刚度矩阵、u.L.列式考虑结构的几何非线性建立了动力增量方程,分析了跨度从300m到450m 的四座斜拉桥的几何非线性对其静力和地震反应的影响。他们指出对于大跨度斜 拉桥考虑几何非线性后,结构的静力和地震反应都有比较明显的增加。 朱稀和王克海H采用有限位移理论,考虑斜拉索的垂度、结构的梁柱效应和 结构的大位移引起的结构几何非线性,研究大跨度斜拉桥在自重和拉索的初张力 作用下的平面和空间静力、动力分析方法。分析了主跨分别为335m和671m 的三跨斜拉桥,认为斜拉桥结构考虑几何非线性后结构的整体刚度有所提高。 邓育林【”J利用ANSYS软件对主跨460m的重庆市奉节长江公路大桥(斜拉 桥)进行了线性和几何非线性地震时程分析,认为非线性对大跨度斜拉桥动力反 应影响很大,考虑几何非线性后地震反应结果增大。 文献11lI报道林同炎国际咨询公司考虑应力和位移对刚度的影响,利用牛顿 一拉夫森切线刚度迭代法求解结构变形后的平衡方程组,对金门大桥(悬索桥) 的非线性研究结论是:非线性分析计算预计的位移大约比传统的线性结果小18 倍。这样一个结论,几乎可否定传统的线性分析。没有任何文献报道斜拉桥地震 反应的线性分析结果和非线性分析结果具有如此大的差异。

斜拉桥有限元分析方法

斜拉桥有限元分析方法 1 平面杆系有限元的计算理论 利用平面杆系进行有限元计算分析时,一般都是把结构简化成按一定方式连接的若干杆件放在一个平面内,其所承受的荷载形式也一起放在这个平面[29-32]。 在平面杆系有限元系统中,分别定义单元两端结点为i 和j (图2-1)。i N 、 i Q i M 和j N 、j Q 、j M 分别为i 、j 结点索承受的轴力、剪力和弯矩;i u 、i v 、i θ以及j u 、j v 、j θ分别为i 、j 结点在结点力作用下的结点位移。其中:与整体坐标系方向一致的结点力和结点位移为正,反之为负;以逆时针转动的结点弯矩和结点转角为正,反之为负。 图2-1 平面梁单元图示 1、利用虚位移原理求解单元的刚度矩阵 假设{}* f 为单元内各结点虚位移,{}e *δ为各结点的虚位移列阵,{}* ε为虚应 变,其矩阵表达式为: {}[]{}e N f ** δ= (2-1) 式中:[]N ——位移中的形函数矩阵。 则,虚应变{}*ε表达式为: {}[]{}e B ** δε= (2-2) 式中:[]B ——应变矩阵。 由弹性力学知识可得知,单元内由虚应变{}*ε做的虚功表达式为: {}[][]{}e T T e T e dV B B E dV U δδσεδ?? ??== ) }({} {** (2-3) 在局部坐标系内,单元结点力应记作为:

T j j j i i i e M Q N M Q N F ][}{0= (2-4) }{p 为单元沿轴线作用的分布荷载,则虚位移{}* f 所作的虚功为: ) }{}{][()}({}{)}({}{}{0* 0** e T T e e T e T e F dx p N F dx p f W +=+= ??δδδ 按照虚位移原理e e W U δδ=,可以得出: e T e T dV B B E F dx p N } {][][}{}{] [0δ????=+ 设: {}e e p e T e F F F dx p N F } {}{}{][}{00+=+= ? (2-5) dV B B E k T ][][][???= (2-6) 所以,式2-5可以改写为: e e k F } ]{[}{δ= (2-7) 式2-5中dx p N F T e p }{][}{?=是分布荷载作用产生的等效结点力;式2-6中][k 为梁单元刚度矩阵在局部坐标系中的表现形式;式2-7即考虑了分布荷载的结点力和位移之间的关系表达式。 对表达式2-7进行积分,就能得出局部坐标系中的单元刚度矩阵表达式: ?? ???????????? ???????? ??????? ?- --- =l EI l EI l EI l EI l EI l EI l EI l EA l EA l E l EI l EI l EA k 460 260120612000460120][223 2 3 23 称 对 (2-8) 式中:dA y I ?? =2 ——单元截面对主轴惯性矩; A ——单元截面面积。 2、等效节点力的计算 等效节点力[26],即遵循虚功相等的原理,把原分布荷载等效移植到单元两端节点上的力,其计算表达式为: dx p N F T e p }{][}{?= (2-9)

相关主题
相关文档 最新文档