当前位置:文档之家› 滑动轴承的润滑

滑动轴承的润滑

滑动轴承的润滑
滑动轴承的润滑

滑动轴承的润滑

润滑剂的作用是减小摩擦阻力、降低磨损、冷却和吸振等,润滑剂有液态的、固态的和气体及半固态的,液体的润滑剂称为润滑油,半固体的、在常温下呈油膏状为润滑脂。

一、润滑油

润滑油是主要的润滑剂,润滑油的主要物理性能指标是粘度,粘度表征液体流动的内摩擦性能,粘度越大,其流动性愈差。润滑油另一物理性能是油性,表征润滑油在金属表面上的吸附能力。油性愈大,对金属的吸附能力愈强,油膜愈容易形成。润滑油的选择应综合考虑轴承的承载量、轴颈转速、润滑方式、滑动轴承的表面粗糙度等因素。

一般原则如下:

1.在高速轻载的工作条件下,为了减小摩擦功耗可选择粘度小的

润滑油;

2.在重载或冲击载荷工作条件下,应采用油性大、粘度大的润滑

油,以形成稳定的润滑膜;

3.静压或动静压滑动轴承可选用粘度小的润滑油;

4.表面粗糙或未经跑合的表面应选择粘度高的润滑油。

二、润滑脂

轴颈速度小于1m/s~2m/s的滑动轴承可以采用润滑脂,润滑脂是用矿物油、各种稠化剂(如钙、钠、锂、铝等金属皂)和水调和而成,润滑脂的稠度(针入度)大,承载能力大,但物理和化

学性质不稳定,不宜在温度变化大的条件下使用,多用于低速重载或摆动的轴承中。

三、固体润滑剂和气体润滑剂

固体润滑剂有石墨、二硫化钼(MoS2)和聚四氟乙烯(PTFE)等多种品种。一般在重载条件下,或在高温工作条件下使用。气体润滑剂常用空气,多用于高速及不能用润滑油或润滑脂处。四、润滑方法

向轴承提供润滑剂是形成润滑膜的必要条件,静压轴承和动静压轴承是通过油泵、节流器和油沟向滑动轴承的轴瓦连续供油,形成油膜使得轴瓦与轴颈表面分开。动压滑动轴承的油膜是靠轴颈的转动将润滑油带进轴承间隙,其供油方式有间歇供油和连续供油。

1、间歇供油:可采用油壶注油和提起针阀通过油杯注油,脂润滑只能采用间歇供应。

它的结构特点是有一针阀,如图所示,油经过针阀流到摩擦表面上,靠手柄的卧倒或竖立以控制针阀的启闭,从而调节供油量或停止供油。它使用可靠,可以观察油的供给情况,但要保持均匀供油,必须经常加以观察和调节。

2、连续供油:

芯捻火线纱油杯,装在轴承的润滑孔上的油杯,其中有一管子内装有毛线或棉线做成的芯捻,芯捻的一端装在油杯内,另一端在管子内和轴颈不接触。这样,利用毛细管作用,把油吸到摩擦面

上。这种装置能使润滑油连续而均匀供应,但是不易调节供油量,在机器停车时仍供应润滑油,不适用于高速轴承。

在轴颈上自由悬挂的油环,它的下部分浸在油槽内。当轴旋转时,油环也随着旋转,因而能将油带到轴颈上去。

3、飞溅润滑:

利用密封壳体中转速较快的零件浸入到油池适当的深度,使油飞溅,直接落到摩擦表面上,或在轴承座上制有油槽,以便聚集飞溅的油流入摩擦面,这种润滑适用于中等的机器中。

用出油量小的油泵将润滑油通过油管在压力下输入摩擦表面,也可以利用特殊喷嘴将油喷射成油流、或利用喷雾器将油流喷成油雾以润滑摩擦表面。它能保证连续充分的供油。

滑动轴承习题与参考答案

习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 A 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B 、E 。 3 巴氏合金是用来制造 B 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 B 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 A 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动

滑动轴承的润滑

滑动轴承的润滑 润滑剂的作用是减小摩擦阻力、降低磨损、冷却和吸振等,润滑剂有液态的、固态的和气体及半固态的,液体的润滑剂称为润滑油,半固体的、在常温下呈油膏状为润滑脂。 一、润滑油 润滑油是主要的润滑剂,润滑油的主要物理性能指标是粘度,粘度表征液体流动的内摩擦性能,粘度越大,其流动性愈差。润滑油另一物理性能是油性,表征润滑油在金属表面上的吸附能力。油性愈大,对金属的吸附能力愈强,油膜愈容易形成。润滑油的选择应综合考虑轴承的承载量、轴颈转速、润滑方式、滑动轴承的表面粗糙度等因素。 一般原则如下: 1.在高速轻载的工作条件下,为了减小摩擦功耗可选择粘度小的 润滑油; 2.在重载或冲击载荷工作条件下,应采用油性大、粘度大的润滑 油,以形成稳定的润滑膜; 3.静压或动静压滑动轴承可选用粘度小的润滑油; 4.表面粗糙或未经跑合的表面应选择粘度高的润滑油。 二、润滑脂 轴颈速度小于1m/s~2m/s的滑动轴承可以采用润滑脂,润滑脂是用矿物油、各种稠化剂(如钙、钠、锂、铝等金属皂)和水调和而成,润滑脂的稠度(针入度)大,承载能力大,但物理和化

学性质不稳定,不宜在温度变化大的条件下使用,多用于低速重载或摆动的轴承中。 三、固体润滑剂和气体润滑剂 固体润滑剂有石墨、二硫化钼(MoS2)和聚四氟乙烯(PTFE)等多种品种。一般在重载条件下,或在高温工作条件下使用。气体润滑剂常用空气,多用于高速及不能用润滑油或润滑脂处。四、润滑方法 向轴承提供润滑剂是形成润滑膜的必要条件,静压轴承和动静压轴承是通过油泵、节流器和油沟向滑动轴承的轴瓦连续供油,形成油膜使得轴瓦与轴颈表面分开。动压滑动轴承的油膜是靠轴颈的转动将润滑油带进轴承间隙,其供油方式有间歇供油和连续供油。 1、间歇供油:可采用油壶注油和提起针阀通过油杯注油,脂润滑只能采用间歇供应。 它的结构特点是有一针阀,如图所示,油经过针阀流到摩擦表面上,靠手柄的卧倒或竖立以控制针阀的启闭,从而调节供油量或停止供油。它使用可靠,可以观察油的供给情况,但要保持均匀供油,必须经常加以观察和调节。 2、连续供油: 芯捻火线纱油杯,装在轴承的润滑孔上的油杯,其中有一管子内装有毛线或棉线做成的芯捻,芯捻的一端装在油杯内,另一端在管子内和轴颈不接触。这样,利用毛细管作用,把油吸到摩擦面

油润滑滑动轴承常用润滑方法

油润滑滑动轴承常用润滑方法 (1)手动润滑 在发现轴承的润滑油不足时,适时用加油器供油,这是最原始的方法。这种方法难以保持油量一定,因疏忽而忘记加油的危险较大,通常只用于轻载、低速或间歇运动的场合。最好在加油孔上设置防尘盖或球阀,并用毛毡、棉、毛等作过滤装置。 (2)滴油润滑 从容器经孔、针、阀等供给大致为定量的润滑油,最经典的是滴油油杯。滴油量随润滑油粘度、轴承间隙和供油孔位置不同有显著变化。用于圆周速度小于4~5 m/s的轻载和中载轴承。 (3)油环润滑 仅能用于卧轴的润滑方法。靠挂在轴上并能旋转的环将油池的润滑油带到轴承中。适用于轴径大于50mm的中速和高速轴承。油环最好是无缝的,轴承宽径比小于2时,可只用一个油环,否则需用两个油环。 (4)油绳润滑 靠油绳的毛细管作用和虹吸作用将油杯中的润滑油引到轴承中,用于圆周速度小于4~5m/s的轻载和中载轴承。油绳还有过滤作用。 (5)油垫润滑 利用油垫的毛细管作用,将油池中的润滑油涂到轴径表面。此方法能使摩擦表面经常保持清洁,但尘埃也会堵塞毛细孔造成供油不足。油垫润滑的供油量通常只有油润滑的1/20。 (6)油浴润滑 将轴承的一部分浸入润滑油中的润滑方法。这种方法常用于竖轴的推力轴承,而不宜用于卧轴的径向轴承。

(7)飞溅轴承 靠油箱中旋转件的拍击而飞溅起来的润滑油供给轴承,适用于较高速度的轴承。(8)喷雾润滑 将润滑油雾化喷在摩擦表面的润滑方法,适用于高速轴承。 (9)压力供油润滑 靠润滑泵的压力向轴承供油,将从轴承流出的润滑油回收到油池以便循环使用,是供油量最多,且最稳定的润滑方法,适用于高速、重载、重要的滑动轴承。

滚动轴承的润滑方式

滚动轴承的润滑方式 摘要在工程机械中,轴承是一种必备品,我们几乎可以在所有的机械设备中看到它,其在机械产品中的地位不言而喻。因此作为一种耗损件,如何提高轴承的使用寿命一直是学者研究的重点,本文对轴承的润滑方式做了详细的分类,系统的阐释了在不同的工作条件下润滑方式的选择原则。最终使读者对轴承润滑的方式会进行针对性地选择、使用。 关键词滚动轴承;脂润滑;油润滑;润滑方式 滚动轴承是现代机器中广泛应用的部件之一,常用的滚动轴承大多已经标准化,并由专门工厂大量制造。 滚动轴承一般由内圈、外圈、滚动体和保持架四部分组成。为保证轴承安全可靠运转,在轴承工作时为尽量减少摩擦和磨损,避免轴承表面形成点蚀而造成失效,就要求对轴承进行润滑。滚动轴承润滑剂的选择主要取决于载荷、速度和温度等工作条件。滚动轴承常用的润滑方式可以分为油润滑和脂润滑两种,对于不同的工作条件,只有选择适宜的润滑方式,才能起到良好的润滑效果。 1 脂润滑 与润滑油相比,润滑脂具有粘附性好、不流失、不滴落、抗压性好、密封防尘好、抗腐蚀性好等特点。由于润滑脂不易泄露,所以脂润滑几乎是一种永久性润滑,尤其对于竖直或倾斜放置的机器,采用脂润滑能达到持续润滑的效果。但其主要缺点是相较油润滑的润滑阻力要大,功率损失大。并且不能对摩擦副起到很好的冷却作用。影响脂润滑选择的主要因素包括以下三个。 1.1 工作速度 工作速度是选择润滑脂的一个重要因素,该因素可用公式dn来衡量,式中d(mm)代表轴承内圈的直径,n(r/min)代表转速。对滚动轴承来说,润滑脂使用的dn值在0.3×106左右。 1.2 工作负荷 当轴承承受较大的负荷时,应该选择粘度高的润滑脂,即选用针入度小的润滑脂类型,这样润滑脂可以在接触面间形成良好的润滑油膜。随着轴承负荷的减少,润滑脂的黏度也应随之降低。 1.3 工作温度 脂润滑的选择同时受到工作温度的影响,温度的变化会引起轴承粘度的变化,进而影响其润滑性能。滚动轴承润滑脂的黏度一般不应低于20 mm2/s。在

轴承润滑脂的添加方法

电机的常见故障及处理 由于电机的种类繁多,结构和用途各异,因而电机出现的故障也是多种多样的。一般来讲,电机的故障与电机设计和制造的质量有关,与电机的使用条件,工作方式及使用维护因素等都有关。在正常情况下,电机的使用寿命可达15年以上;但若由于装配不良,使用不当或缺乏必要的日常维护,就容易发生故障而造成损坏,从而缩短电机的使用寿命。 轴承过热和产生异响的原因及处理 轴承是电机中较容易磨损的零件,也是负载较重的部分,因而轴承的故障也较多。随着轴承种类的不同,故障现象也有所不同,现分别加以叙述。 一.滚动轴承过热的原因及处理 1.滚动轴承安装不正确,配合公差太紧或太松滚动轴承的工作性能不仅取决于轴承本身的制造精度,还和与他配合的轴和孔的尺寸精度、形位公差和表面粗糙度、选用的配合以及安装正确与否有关。一般卧式电机中,装配良好的滚动轴承只承受径向应力,但如果轴承内圈与轴的配合过紧,或轴承外圈与端盖的配合过紧,即过盈大时,则装配后会使轴承间隙变得过小,有时甚至接近于零,这样,转动就不灵,运行中就会发热。如果轴承内圈与轴的配合过松,或轴承外圈与端盖配合过松,则轴承内圈与轴,或轴承外圈与端盖,就会发生相对转动,产生摩擦发热,造成轴承的过热。通常,标准中将作为基准零件的轴承内圈内径公差带移至零线以下,这对同一个轴的公差带与轴承内圈形成的配合,要比它与一般基准孔形成的配合要紧的多。 轴承外径的公差带与一般基准轴公差带的位置相同,也在零线下方,但轴承外圈平均外径的公差值也是特殊规定的。所以同一个孔的公差带与轴承外圈形成的配合,与一般圆柱体的基轴制配合也不完全相同。滚动轴承外圈与端盖的配合一般采用过渡配合。因为作用于滚动轴承外圈上的负荷是局部负荷,这种负荷仅被外圈滚道的下部区域所承受,故选用滚动轴承的配合时,应使配合面间存在不大的过盈或不大的间隙。这样,在电机运行时,受到冲击或振动的情况下,滚动轴承外圈可以产生间歇性的转动,从而避免轴承外圈的局部磨损,提高轴承寿命。同时,还可以保证电机转子温度升高时,轴伸长有可能。正确的配合公差见下表。 当滚动轴承的内圈与轴配合过紧,或滚动轴承的外圈与端盖配合过紧时,可采用新加工的方法使配合合适。当滚动轴承的内圈与轴配合过松,或滚动轴承的外圈与端盖配合过松时,可采用喷涂金属或镶套的方法来弥补。 2.润滑脂不合适、质量差、加得太多或太少润滑脂选得合适与否将影响到轴承能否正常工作。选用时,主要掌握电机轴承温度以及是否亲水两个条件。可根据电机安装地点是潮湿还是干燥,是清洁还是多尘,以及运行中轴承的最高工作温度等情况选用。必要时,夏、冬季使用的润滑脂也应有所区别,因为有的地方夏冬季的温度相差很大,必须使用不同的润滑脂。当使用钙基或钠基润滑脂时,每运行1000-1500小时要添加一次润滑脂,运行累计2500-3000小时后应更换。当使用二硫化钼时,添加和换油的时间可以延长。锂基润滑脂是一种具有耐高温(150℃)和低温(-60℃)、耐高速、耐负荷、耐水性能的润滑脂,当在冬季时,可选用1号锂基润滑脂,在夏季时可用2、3号锂基润滑脂。 如果润滑脂选得不合适或使用维护不当,润滑脂质量不好或已经变质,或混入了灰尘、杂质等都有可造成轴承发热。润滑脂加得过多或过少也会造成轴承发热,因为润滑脂过多时,轴承旋转部分和润滑之间会产生很大的摩擦;而润滑脂加得过少时,则可能出现干摩擦而发热。因此,必须调整润滑脂用量,使其约为轴承室空间体积的1/2-1/3。对不合适的或变了质的润滑脂应清洗干净,换上合适的和洁净的润滑脂。

什么是滑动轴承

什么是滑动轴承 轴承按轴承工作时的摩擦性质不同可分为:滑动轴承和滚动轴承。 利用轴和轴承用滑动运动而承受载荷的轴承叫滑动轴承。根据滑动轴承两个相对运动表面油膜形成原理的不同。可分为流体动压润滑轴承(也称动压轴承)和流体静压轴承(也称静压轴承)。一般讨论的是流体动压润滑轴承,它通过轴和轴承的相对运动把油带入两表面之间,形成足够的压力膜,将两表面隔开,从而承受载荷。 在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳-石墨,聚四氟乙烯(PTFE)、改性聚甲醛(POM)、等。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。

滑动轴承主要故障 滑动轴承在工作时由于轴颈与轴瓦的接触会产生摩擦,导致表面发热、磨损甚而“咬死”,所以在设计轴承时,应选用减摩性好的滑动轴承材料制造轴瓦,适的润滑剂并采用合适的供应方法,改善轴承的结构以获得厚膜润滑等。 1 、瓦面腐蚀:光谱分析发现有色金属元素浓度异常;谱中出现了许多有色金属成分的亚微米级磨损颗粒;润滑油水分超标、酸值超标。 2 、轴颈表面腐蚀:光谱分析发现铁元素浓度异常,铁谱中有许多铁成分的亚微米颗粒,润滑油水分超标或酸值超标。 3 、轴颈表面拉伤:铁谱中有铁系切削磨粒或黑色氧化物颗粒,金属表面存在回火色。 4、瓦背微动磨损:光谱分析发现铁浓度异常,铁谱中有许多铁成分亚微米磨损颗粒,润滑油水分及酸值异常。 5 、轴承表面拉伤:铁谱中发现有切削磨粒,磨粒成分为有色金属。 6 、瓦面剥落:铁谱中发现有许多大尺寸的疲劳剥落合金磨损颗粒、层状磨粒。 7 、轴承烧瓦:铁谱中有较多大尺寸的合金磨粒及黑色金属氧化物。 8、轴承磨损:由于轴的金属特性(硬度高,退让性差)等原因,易造成粘着磨损、磨料磨损、疲劳磨损、微动磨损等状况。

润滑的目的与方式润滑

润滑的目的与方式润滑 对轴承来说,润滑是左右其性能的重要重要问题。润滑剂或润滑方式的合适与否将大大影响轴承的寿命。 润滑的作用如下: 1)润滑轴承的各部分,减少沟道面和钢球的回转摩擦、钢球和保持器的滑动 摩擦、保持器和沟道导向面内的滑动摩擦 2)带走轴承内部内部摩擦发生的热和其它从外部传来的热,防止轴承的发热 和润滑剂的劣化 3)使轴承的滚动接触面经常形成适当的油膜,缓解冲击负荷集中应力及延长 轴承的疲劳寿命 4)防止钢球、沟道、保持器的锈蚀以及垃圾、异物、水分 的侵入,轴承的防锈和防尘。 轴承的润滑方式主要分为脂润滑和油润滑,其一般性比较如下所示: 脂润滑 脂润滑可做到充填一次润滑脂后长时间不需补充,而且其密封装置的结构也较简单,因此使用广泛。 脂润滑有预先在密封型轴承中充填润滑脂的密封方式,以及在外壳内部充填适量润滑脂,每隔一段时间进行补充或更换的充填供脂方式。 此外,对有多处轴承需要润滑的机械,还采用管道连接至各润滑处的集中供脂方式。 1)润滑脂的充填量 外壳内的润滑脂充填量随外壳的结构和容积而有所不同,一般充填至容积的1/3-1/2为宜。 充填量过多时,润滑脂因搅拌发热发生变质,老化和软化,应加以注意。 但用于低速轴承时,为防止异物侵入,有时也充填至容积的2/3-1。 2)润滑脂的补充与更换 润滑脂的补充与更换同润滑方式有密切的关系,无论采用何种方式,都必须使用清洁的润滑脂,并注意防止外部异物的侵入。

补充的润滑脂应昼为同一品牌号的润滑脂。 补充润滑脂时,尤为重要的是应保证新润滑脂确实进到轴承内部。 油润滑 油润滑适用于高速轴承并可耐一定程度的高温,而且还对减小振动和降低噪音有效,大多用于脂润滑不适用的场合。 油润滑大体分为: (1)油浴润滑 (2)滴油润滑(3)飞溅润滑 (4)循环润滑(5)喷射润滑(6)油雾润滑 (7)油气润滑 标准润滑剂 油脂是由基油、增粘剂、添加剂构成的半固体状润滑剂,需根据其组合选择合适于用途的油脂。 (1) 基油 油脂的基油一般大多使用矿油,但为了提高耐热性、低温流动性,故也使用硅酮油等合成油。 (2) 增粘剂 增粘剂有各种复合剂等,是控制机械稳定性、耐水性、使用温度范围等特性的东西。 (3) 添加剂 根据使用目的,加上各种添加剂。 ·极压添加剂使冲击负荷和重负荷特性向上。 ·氧化添加剂防止长时间无补充时的氧化劣化。 ·防锈添加剂防止轴承及其周围的锈蚀。 (4) 粘度 表示油脂硬度的程度,是5秒内规定重量的金属圆锥内倒入油脂深度(用0.1mm表示)的物理量,数值越大越软。 (5) 滴点 油脂加热后变成流动状态,从规定的孔开始滴下时的温度叫滴点,其值越高使用温度越高。 (6) 异种油脂的混合 增粘剂和添加剂混合,油脂的性质变化,故原则上各种不同的油脂最好避免混合。 (7) 油脂的封入量 (8) 油脂的寿命 (9) 油脂的补充间隙 即使使用高品质的油脂,但因长期使用、周围环境等影响,油脂的性能退化,润滑性能低下,因此需要适

滑动轴承概述

轴承 轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11—1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001~0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。因而摩擦系数大,=0.05~0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、滑动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精 度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在 起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11—2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

轴承的润滑方式

轴承润滑的七种方式 1.油杯滴油润滑 通过油杯中的节油口向轴承滴油进行润滑的一种润滑方式.油杯滴油润滑的优点是结构简单,使用方便,省油。而且供油量可以由节油口进行调节,一般滴油量以每3~8秒一滴为宜,因为,过多的油量会引起轴承温升增加。缺点是对润滑油的粘度有一定要求,不能使用粘度大的润滑油,没有散热功能。油杯滴油润滑适用于低速轻载工作温度较低的场合。 2.油浴(浸油)润滑 把轴承部分浸入润滑油中,通过轴承运转后将油带入到轴承其它部分的一种润滑方式。油浴润滑是使用最为普遍而简便的润滑方式之一。 考虑到油浴润滑时的搅拌损耗及温升,对于水平轴,轴承部分侵入润滑油中的高度应有一定限制,一般将油面控制在轴承最下面滚动体的中心附近。油浴(浸油)润滑,润滑充分,但供油量不易调节,若油箱中没有过滤装置容易把杂质带入轴承内部损伤轴承,油浴(浸油)一般适用于低速或中速场合,在低转速轴承上使用较为普遍。 经验:可分离的加强肋可装在轴承座的底部以减少搅动和/或散热。静态油位应稍低于应用于水平轴的轴承最低滚动体的中心,对于垂直轴,静态油位应覆盖50%-80%的滚动体。如果使用油浴系统轴承的温度比较高可以改为使用滴漏方式,飞溅或循环油系统。 3.飞溅润滑 通过其它运转零件将油飞溅后带入轴承的一种润滑方式。 飞溅润滑供油量不易调节,润滑油面也不能太高,否则容易产生搅拌损耗及温升,还容易将油箱中的杂质带入轴承内部损伤轴承。 在飞溅润滑中,油通过装在轴上的旋转体(叶轮或“抛油环”)飞溅到轴承上,轴承不浸没在油中。 经验:在齿轮箱中,齿轮和轴承经常与作为抛油环的齿轮共用一台油箱。由于齿轮用油的粘度可能与轴承要求的不同,而且油中含来自齿轮的磨损微粒,可分离的润滑系统或方法可供改善轴承寿命。 4.循环油润滑 通过油泵将润滑油从油箱吸油后输送到轴承需要润滑的部位,然后从回油口返回油箱,经过滤后重新使用的一种润滑方式。 循环油润滑润滑充分、供油量容易控制、散热和除杂质能力强。循环油润滑适用于以散热或除杂质为目的的场合,以及高速高温、重载的场合,使用可靠性高。循环油润滑是一种比较理想的润滑方式。但需要独立的供油系统,制造成本相对较高。供油系统由油泵、冷却器、过滤器、油箱、输油管道等组成。

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

第十二章 滑动轴承习题解答

第十二章 滑动轴承习题及参考解答 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题5—2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算 ][pv pv ≤是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷

9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制 pv 值的主要目的是防止轴承 。 A. 过度发热而胶合 B. 过度磨损 C. 产生塑性变形 D. 产生咬死 20 下述材料中, 是轴承合金(巴氏合金)。 A. 20CrMnTi B. 38CrMnMo C. ZSnSb11Cu6 D. ZCuSn10P1 21 与滚动轴承相比较,下述各点中, 不能作为滑动轴承的优点。 A. 径向尺寸小 B. 间隙小,旋转精度高 C. 运转平稳,噪声低 D. 可用于高速情况下 22 径向滑动轴承的直径增大1倍,长径比不变,载荷不变,则轴承的压强 p 变为原来的 倍。 A. 2 B. 1/2 C. 1/4 D. 4 23 径向滑动轴承的直径增大1倍,长径比不变,载荷及转速不变,则轴承的pv 值为原来的 倍。 A. 2 B. 1/2 C. 4 D. 1/4

滑动轴承设计

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满 足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用限制 pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写 为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

轴承润滑方法

关于电机润滑的方法 一、加油方法: (一)使用黄油枪加油 1、不停机润滑步骤: - 拔除润滑油嘴塞或打开隔离阀。 - 确保润滑通道已打开。 - 将适量的润滑油挤入轴承。 - 让电机运行1 到2 个小时,以便将所有多余的润滑油甩出轴承。 - 关闭润滑油嘴塞或隔离阀。 2、停机润滑 - 在这种情况下,请使用半量润滑油,然后让电机全速运转数分钟。 - 电机停止后,将剩下的润滑油挤入轴承。 - 运转1 到2 小时后,关闭润滑油嘴塞或隔离阀。 说明: - 最好在开机的状态下加油,实现困难时,再使用停机加油的方法。 - 在停机润滑时加油的过程中,尽可能地转动电机转子,以使轴承滚珠、保持架之间的旧油尽可能排出。 (二)不用黄油枪加油方法: 将旧油清理干净,补充新油,一定注意加油量,2极电机加油量为轴承内部空间的二分之一,四极电机为轴承内部空间的三分之二。 二、影响润滑间隔时间的因素: 1、立式电机的润滑间隔时间为下表数值的一半。 2、润滑间隔时间基于轴承操作温度80°C (环境温度约为+25°C)。轴承温度升高15°C 时应将上述数值减半。 注意: 1、环境温度升高会相应提高轴承温度; 2、从电极表面轴承部位测得的温度,不能等同于轴承温度,充分考虑到其温差。

三、变频器传动 高速操作时,如在应用变频器或低速高负荷的情况下,需要缩短润滑间隔时间。请向当地ABB 营业部咨询这类情况。将速度提高一倍后,润滑间隔时间通常需减至上述数值的约40%。 2009年版ABB电机润滑间隔时间 根据L1原则的润滑间隔时间 机座号润滑 油量g/ 轴承 KW 3600r /min 3600r/ min KW 1800r/ min 1500r/ min KW 1000r/ min KW 500-9 00r/mi n 球轴承 工作期中的润滑间隔时间 112 10 全部10000 13000 全部18000 21000 全部25000 全部28000 132 15 全部9000 11000 全部17000 19000 全部23000 全部26500 160 25 ≤18.5 9000 12000 ≤15 18000 21500 ≤11 24000 全部24000 160 25 >18.5 7500 10000 >15 15000 18000 >11 22500 全部24000 180 30 ≤22 7000 9000 ≤22 15500 18500 ≤15 24000 全部24000 180 30 >22 6000 8500 >22 14000 17000 >15 24000 全部24000 200 40 ≤37 5500 8000 ≤30 14500 17500 ≤22 23000 全部24000 200 40 >37 3000 5500 >30 10000 12000 >22 16000 全部20000 225 50 ≤45 4000 6500 ≤45 13000 16500 ≤30 8000 全部24000 225 50 >45 1500 2500 >45 5000 6000 >30 8000 全部10000 250 60 ≤55 2500 4000 ≤55 9000 11500 ≤37 15000 全部18000 250 60 >55 1000 1500 >55 3500 4500 >37 6000 全部7000 280 60 全部2000 3500 - - - - - - - 280 60 - - - 全部8000 10500 全部14000 全部17000 280 35 全部1900 3200 - - - - 280 40 - - 全部7800 9600 全部13900 全部15000 315 35 全部1900 3200 - - - - 315 55 -- - 全部5900 7600 全部11800 全部12900 355 35 全部1900 3200 -- - - - 355 70 - - 全部4000 5600 全部9600 全部10700 400 40 全部1500 2700 - - - - 400 85 - - 全部3200 4700 全部8600 全部9700 455 40 全部1500 2700 - - - - 455 95 全部2500 3900 全部7700 全部8700

滑动轴承润滑分类和选择

滑动轴承润滑分类和选择 滑动压滑动轴承的分类 动压滑动轴承是滑动轴承中应用最广泛的一类,包括液体(油与非油润滑介质)与气体动压润滑两种类型。油润滑动压轴承,包括有单油楔(整体式)、双油楔、多油楔(整体或可倾瓦式)、阶梯面等多种类型,润滑特点各有不同。一般要求在回转时产生动压效应,主轴与轴承的间隔较小(高精度机床要求达到1~3μm),有较高的刚度,温升较低等。 滑动轴承润滑剂的选择 滑动轴承一般使用普通矿物润滑油和润滑脂作为润滑剂,在特殊情况下(如高温系统),可选用合成油、水和其它液体。在选择滑动轴承润滑油时应考虑的主要因素 (1)载荷 根据一般规律,重载荷应采用较高粘度的油,轻载荷采用低粘度的油,为了衡量滑动轴承负荷的大小,一般以轴承单位面积所承受的载荷大小来定。 (2)速度 主轴线速度高低是选择润滑油粘度的重要因素。根据油楔形成的理论,高速时,主轴与轴承之间的润滑处于液体润滑的范围,必须采用低粘度的油以降低内摩擦:低速时,处于边界润滑的范围,必须采用高粘度的油。 (3)主轴与轴承间隙 主轴与轴承之间的间隙取决于工作温度、载荷、最小油膜厚度、摩擦损失、轴与轴承的偏心度、轴与轴承的表面粗糙度的要求。间隙小的轴承要求采用低粘度油,间隙大的采用高粘度油。

(4)轴承温度对于普通滑动轴承 影响轴承温度的最重要的性质是润滑剂的粘度。粘度太低,轴承的承载能力不够,粘度太高,功率损耗和运转温度将会不必要地过高。矿物油的粘度随温度升高而降低。润滑脂的性能在很大和程度上决定于在其配制过程中基油的粘度和稠化剂的种类。 (5)轴承结构 载荷、速度、间隙、速度、温度、轴承结构等并不是单一影响因素,在选择滑动轴承润滑油时,要综合考虑这些因素的影响。

轴承的润滑及密封方法

轴承的润滑及密封方法 轴承在运动过程中,轴承内外圈以及滚动体之间必然产生相对运动,这样运动体之间就要产生摩擦,消耗一部分动力,引起内外圈和滚动体之间发热、磨损。为了减少摩擦阻力,减缓轴承的磨损速度并控制轴承的温升,提高轴承的使用寿命,在使用轴承的机构设计中必须考虑轴承的润滑问题,而为了使轴承保持润滑,还必须考虑轴承的密封。 润滑的作用 减少摩擦、磨损在摩擦面之间加入润滑剂,在相对运动体之间形成液体或半液体摩擦,降低相对运动体之间的摩擦系数,从而减少摩擦力。由于在相对运动体之间形成油膜隔离,避免两摩擦面之间相互接触导致磨损。 降低温升 由于摩擦系数降低,减少了两摩擦面的摩擦,相应减少轴承的发热;同时润滑油流过润滑面时,可以带走一部分热量。 防止锈蚀和清洗作用润滑油能够形成油膜,保护零件表面免受锈蚀,同时滚动体带动润滑油流过零件表面时可以把摩擦面之间的赃物带走,起到清洗作用。 密封润滑剂可以形成密封的作用,并与密封装置在一起,阻止外界的灰尘等杂物进入轴承,保护轴承不受外物的入侵。 润滑剂的选用原则 为了获得良好的润滑效果,润滑剂必须具备:较低的摩擦系数,良好的吸附能力以及渗入能力,以便能够很好地渗入到摩擦副的微小间隙内,牢固吸附在摩擦面上,形成具有一定强度的抗压油膜。在机械结构的设计中,应该根据轴承的类型、速度和工作负荷选择润滑剂的种类和润滑方式,如果润滑剂和润滑方式选择得合适,可以降低轴承的工作温度并延长轴承的使用寿命。 滚动轴承的润滑 滚动轴承可以用润滑脂或润滑油来润滑。试验说明,在速度较低时,用润滑脂比用润滑油温升低;速度较高时,用润滑油较好。一般情况下,判断的指标是速度因数dn。d为轴承内径(mm),n为转速(r/min)。各种滚动轴承适用脂润滑或油润滑,油润滑适用什么样的润滑方式的dn值,可以查《机床设计手册》。 1. 脂润滑 脂润滑可用于dn值较低,又不需要冷却的场合。脂润滑的结构比较简单,不存在漏油问题。使用润滑脂进行润滑,润滑脂的充填量不宜过多,不能把轴承填满。否则将引起轴承发热并把脂熔化流出,润滑效果将适得其反。另外填充油脂时不要用手抹(因手上有汗,会腐蚀轴承),应该用针筒注入,使滚道和每个滚动体都粘上脂。 2. 油润滑 油润滑适用一切转速,既可以起润滑作用,又能起冲洗降温作用。润滑油的粘度,是随油温的升高而降低的。为了保证滚动体与滚动道接触面内有足够强度的油膜,应使润滑油在轴承工作温度下的粘度为 12-23cst。转速越高,粘度应越低;负荷越重,粘度应越高。如果轴系机械结构中使用普通轴承,而且轴系运行速度不是很高,润滑一般采用油浴方式;对于精度较高的设备,要求使用精密轴承,建议使用滴油或循环方式供油润滑,因为采用这两种润滑方式,可以对润滑油进行更好的过滤,减少赃物进入轴承,同时这两种润滑方式可以使润滑油充分散热,可以更好使轴承降温。 3. 密封结构 机械系统中的密封结构,对于油润滑的轴承结构来说,为的是防止润滑油外漏和灰尘屑末切削液等进入;对于脂润滑的轴承结构来说,由于脂不会外泄,主要是防止上述外物。脂润滑的机械结构对防止外物进入的要求高些。因此对于密封结构的设计主要是考虑防漏和外物的侵入。 润滑油的防漏主要靠疏导,同时也要设计合理的结构。由于角接触轴承有泵油作用,而轴承一般是背靠背安装,所以主轴箱和端盖之间要有回油通道,以便润滑和防漏。如图所示的甩油环密封结构,在工作

滑动轴承润滑

机械设计课程专题研究报告 ——滑动轴承润滑分析 组员:李军伟08221129 李欣镓08221132 李思瑶 08221131 冯辉 08221124

滑动轴承润滑分析 一、润滑原理 二、润滑油的性质和性能 三、润滑在零件中的使用 四、体会和心得 五、参考文献 一、润滑原理 1、摩擦和磨损 摩擦和磨损毫无疑问的存在于一切机械设备之中。随着现代化工业的发展,机械设备的功率、速度、精度等要求日益提高,生产的连续性和自动化水平日臻完善,为了减小摩擦、磨损的影响,正确的使用润滑是最有效的手段。 摩擦磨损的产生:接触面的凹凸不平和相对的运动是产生摩擦的原因,并且在当今的加工水平来看是不可能加工出表面完全平整的表面的,因此摩擦是不可避免的。有了摩擦机械的磨损也就会随之而来。 2、润滑剂的应用 摩擦系数是和摩擦力的大小密切相关的,而摩擦系数的大小取决于接触的两个物体的材料性质,并且由实验证明:同一对摩擦副在真空中的摩擦系数比在空气中的大2~3倍或更多。这是因为:在空气中能形成剪切强度较低的氧化膜,同时表面上又可能吸附着灰尘或水蒸气,由于这些物质的存在能大大的降低了摩擦阻力。所以为了降低摩擦阻力,常常将剪切强度小的材料覆盖在剪切强度大的金属上。油因为其剪切强度较弱,摩擦系数较小,因此广泛的用作机械设备的润滑剂。 常见的润滑方式有: 手工润滑 油池润滑 滴油润滑 飞溅润滑 油池油垫润滑 油环、油链润滑集中润滑强制润滑循环润滑喷雾润滑不循环润滑 涂刷润滑 装填密封润滑 滴下润滑 强制润滑 整体润滑 覆盖膜润滑 组合、复合材料润滑 粉末润滑 强制供气润滑

二、润滑油的性质和性能 1、润滑油的性质 :氧化安定性和粘度 滑油的一个重要梨理化性质,也是一个基本指标,和机械相对运动的摩擦生热、擦损失、机械效率、负载荷能力、油膜厚度、润滑油流量、磨损及密封性泄漏等情况有密切关系。 润滑油的安定氧化性是一个及其重要的指标,因为油品在使用中变质的主要原因是氧化。 3、 润滑油的润滑性能:油膜在摩擦表面的承载能力、抗磨损效能以及摩擦系数。 三、润滑在零件中的使用 1、 润滑在各种零部件中 通用零部件中的润滑包括:滑动轴承的润滑、滚动轴承的润滑、齿轮和涡轮副的润滑、导轨的润滑、离合器和联轴器的润滑、链条和钢丝的润滑 2、 具体的例子:液体动力润滑径向轴承设计计算 (a ) 液体动力润滑的承载机理 (b ) 液体动力润滑的基本方程 基本假设 利用y=0和y=h (为所取单元体处的油膜厚度)处的速度边界条件,即可求出油层的速度分布,进而可得到 y x p ??- =??τ 平衡方程:y v ??-=η τ粘度公式:2 2)y v y v y x p ??=????-=??ηη(-代入:

相关主题
文本预览
相关文档 最新文档