当前位置:文档之家› 基于MATLAB股票市场的线性预测

基于MATLAB股票市场的线性预测

基于MATLAB股票市场的线性预测
基于MATLAB股票市场的线性预测

基于MATLAB 股票市场的线性预测 摘要:随着计算技术和信息科学的飞速发展,信号处理逐渐发展成一门独立的学科,成为信息科学的重要组成部分,广泛应用在经济、金融等各种领域中,其中线性预测是最为广泛的一种方法。本设计借助MATLAB 的技术工具软件对股票价格的数据信号图进行分析,来构造一个线性预测器。并用MATLAB 生成一个豪华的界面,把线性预测的结果直观、明了的表现出来。

本设计在理解信号与系统基本原理的前提下,利用MATLAB 设计了一个线性预测系统,该系统利用一个离散时间有限脉冲响应(FIR )滤波器来解决属于预测建模等问题。这是一个基于MATLAB 计算机仿真的股票线性预测模型,它用股票的开盘、收盘、最高、最低四种价位为源信号进行预测,可以选择滤波器的阶数来调整它的精确度,能够做到预测误差最小。 关键词:线性预测系统、MATLAB 、离散时间有限脉冲响应(FIR )滤波器

1.股票线性预测的原理

本文设计一个系统,它能够单独的根据过去的值预测x[n]信号的将来值。对于线性预测来说,这个系统是一个FIR 滤波器,它根据过去值的一种线性组合算出一个预测量:

[][]∑=∧--=p

k k k n a n X 1 (1-1)

式1-1中的就是预测值。因为用了信号先前的p 个值构成这种预测,所以这是一个p 阶预测器。给定某一固定的滤波器阶p ,线性预测问题就是要确定一组滤波器系数,以使得“最好的”实现1-1的预测确实这个“最好”系数的最常用的准则是某些系数,使得总的平方预测误差达到最小:

[][][]2121|

|||∑∑=∧=-==N n N n n x n x n e E (1-2)

式1-2中,假设序列x[n]的长度为N ,有几个途径可以用来对k a 求解以使式1-2中E 最小。最简单的方法是利用MATLAB 来解这个联立线性方程组。假设N>P,这个线性预测问题可以转换成式1-3的矩阵形式。

????????????++=????????????+++??????????????????????--+-][]2[]1[][]2[]1[]1[][]1[]2[][]1[11N x p x p x N e p e p e a a N x p N x p x x p x x (1-3)

式1-3还可以紧凑一些写成-Xa+e=x 。这个方程用来对向量a 求解,以使总平方预测误差e ’*e 最小。式1-3左边放一半减号是为了让“预测误差滤波器”能表示成e=Xa+x 。

2.利用matlab 实现股票预测的编程思想

利用matlab 实现股票线性预测的编程流程图如图1所示。

图1 股票预测流程图

首先根据信源X[n]构造矩阵X ,求出滤波器的系数k a ,得到第一个预测值,后重新构造矩阵X1,然后根据X1在循环回重新构造下一个矩阵X ,x 。得到最终的预测值。

若已知信源x[n],求解系数

k a ,则可根据上述流程求出x[n+1],x[n+2]

等一系列预测值。 3.计算机仿真股票线性预测模型

3.1模型简介

本模型一共有两个主程序,分别做出主界面“股票线性预测”与预测界面“预测现场”。主界面程序为feimain.m ,它调用了预测器界面程序highpan.m 在highpan.m 中又分别调用了子程序xtxs.m 来求解滤波器系数ak,子程序hqy_wav.m 来求解预测值,子程序gett.m 载入数据和四个信源,即开盘价Open.m 、收盘价Close21.m 、最高价High.m 与最低价Low.m 。

3.2使用简介

当执行feimain.m 时,将出现一个主界面如图2所示。 根据信源x[n]

构造矩阵X,x

得到预测值

求解滤波器系数k a

得到第一个预测值

重新构造矩阵X1

图2 股票预测主界面

点击“欢迎进入股市预测”按钮就可调出预测器界面,如图3所示。

图3 预测器界面

点击“指导老师”或者“设计人员”菜单项都可弹出相应的姓名。如图4所示。

图4

4主要编辑程序

4.1主界面程序

%主界面程序

clc;

nandy1=[0.5 0.5 0.5];

nandy=[1 1 1];

nandy2=[0.7 0.7 0.7];

%设定图形界面

h_mm=figure('name','股票预测界面',...

'units','normalized','position',[0.2 0.2 0.5 0.3],...

'menubar','none','numbertitle','off','C olor',nandy);

%设定图形句柄的各项属性

set(h_mm,'defaultuicontrolfontsize',13);

set(h_mm,'defaultuicontrolbackgroundcolor',nandy2);

set(h_mm,'defaultuicontrolunits','normalized');

set(h_mm,'defaultuicontrolfontunits','pixels');

set(h_mm,'defaultuicontrolfontname','隶书');

h_text=uicontrol(h_mm,'style','text','string','Welcome to

you!','position',...

[0.29 0.4 0.45 0.4],'backgroundcolor','w','fontsize',24);

h_push=uicontrol(h_mm,'style','push','string','欢迎进入股票预测

','position',...

[0.31 0.3 0.4 0.18],'backgroundcolor',...

[0.7 0.7 0.7],'fore','k','fontsize',18,'call','close,highpan');

运行主程序后如图5点击“欢迎进入股票预测”按钮就可调用预测器主程序运行结果。

图 5

4.2预测器主程序

nandy1=[0.6 0.6 0.6];

nandy=[1 1 1];

nandy2=[0.7 0.7 0.7];

N1=10;

N=10;

hyh=1;

%设置图形界面

h_mm=figure('name','预测现场',...

'units','normalized','position',[0.15 0.1 0.85 0.45],...

'menubar','none','numbertitle','off','color',nandy);

%设置图形句柄的各项属性

set(h_mm,'defaultuicontrolfontsize',13);

set(h_mm,'defaultuicontrolbackgroundcolor',nandy2);

set(h_mm,'defaultuicontrolunits','normalized');

set(h_mm,'defaultuicontrolfontunits','pixels');

set(h_mm,’defaultuicontrolfontname','隶书');

%设置轴对象

h_axes1=axes('position',[0.09 0.4 0.4 0.5],'visible','on');

grid on;

h_axes2=axes('position',[0.58 0.4 0.4 0.5],'visible','on');

grid on;

%设定菜单

h_menu1=uimenu(h_mm,'Label','指导老师|');

h_menu2=uimenu(h_mm,'Label','设计人员');

zmenu=uimenu(h_menu1,'Label','');

h_menu3=uimenu(h_menu2,'Label','徐海东','separator','on');

%设定空间区域框

h_framel=uicontrol(h_mm,'style','frame','position',...

[0.06 0.03 0.9 0.23],'backgroundcolor',nandy1);

%设定文本框

h_editl=uicontrol(h_mm,'style','edit','position',[0.38 0.07 0.15 0.08],...

'back','w','string','10','call',['N1=gett(h_editl,1);',...

'hqy_wav(h_axes1,h_axes2,N1,N,hyh)']);

h_edit2=uicontrol(h_mm,'style','edit','position',[0.6 0.07 0.15 0.08],...

'back','w','string','10','call',['N1=gett(h_edit2,1);',...

'hqy_wav(h_axes1,h_axes2,N1,N,hyh)']);

Ijp=('N1=get(h_editl,"value")');

%设定各种静态文本框

h_text1=uicontrol(h_mm,'style','text','position', [0.08 0.17 0.18

0.07],'string',...

'预测类型','backgroundcolor',nandy1,'fore','w');

h_text2=uicontrol(h_mm,'style','text','position', [0.35 0.17 0.18

0.07],'string',...

'预测阶数','backgroundcolor',nandy1,'fore','w');

h_text3=uicontrol(h_mm,'style','text','position', [0.58 0.17 0.18

0.07],'string',...

'预测周数','backgroundcolor',nandy1,'fore','w');

h_push=uicontrol(h_mm,'style','push','position', [0.8 0.07 0.1

0.1],'string',...

'1关闭',’call’,’close’,'backgroundcolor',nandy1,'fore','w');

%设定弹出框

h_popupl=uicontrol(h_mm,'style','popup','string',...

'最高价预测|最低价预测|开盘预测收盘预测',...

'position',[0.08 0.13 0.21

0.03],'back','w','call',['num=gett(h_popupl,2);',...

'if num==1,hyh=1;',...

'hqy_wav(h_axes1,h_axes2,N1,N,hyh);end,',...

'if num==2,hyh=2;',...

'hqy_wav(h_axes1,h_axes2,N1,N,hyh);end,',...

'if num==3,hyh=3;',...

'hqy_wav(h_axes1,h_axes2,N1,N,hyh);end,',...

'if num==4,hyh=4;',...

'hqy_wav(h_axes1,h_axes2,N1,N,hyh);end,']);

hqy_wav(h_axes1,h_axes2,N1,N,hyh);

主程序调用出预测界面(如图6)。

图 6

然后继续调用预测程序,求解系数子程序和数据载入程序,程序如下。

4.3预测程序

function hqy_wav(h_axes1,h_axes2,N1,N,mm)

if mm==1

x=High;

elseif mm==2

x=Low;

elseif mm==3

x=Open;

elseif mm==4

x=Close21;

end

axes(h_axes1);

cla;

plot(x);

grid on;

title('原价图');

xlabel('周数(Weeks)'); ylabel('道·琼斯工业指数'); axes(h_axes2);

cla;

for k=1:N;

n=length(x);

q=xtxs(x,N1);

m=0;

X=zeros(n-N1,N1);

for i=1:n-N1;

for j=1:N1;

X(i,j)=x(j+m);

end

m=m+1;

end

i=n-N1+1;

for j=1:N1-1;

X(i,j)=x(m+j);

end

X(i,N1)=x(m+N1);

yy=-X*q;

w=yy(n-N1+1,1);

x(1,n+1)=w;

end

plot(x);

axis([0,12,95,135]);

title('预测图');

xlabel('周数(Weeks)'); ylabel('道·琼斯工业指数'); grid on;

4.4 求解系数子程序

function a=xtxs(x,p)

n=length(x);

m=0;

X=zeros(n-p-1,p);

for i=1:n-p-1;

for j=1:p;

X(i,j)=x(j+m);

end

m=m+1;

end

i=n-p;

for j=1:p-1;

X(i,j)=x(m+j);

end

x(i,p)=x(m+p);

x1=zeros(n-p);

for i=1:n-p;

x1(i)=x(i+p);

end

i=n-p;

x1(i)=x(i+p);

a=-(X\x1');

%xk=-x*a

%k=xk'

4.5数据载入子程序

function T=gett(ha,tv)

%get the string or value of ha

if tv==1

T=str2double(get(ha,'string'));

elseif tv==2

T=get(ha,'value');

elseif tv==3

T=get(ha,'string');

end

最后通过选择道·琼斯工业指数的信源子程序进行预测。如图7所示。

图7

图7预测的是用10阶的预测器预测未来10周的股票最高价趋势。在预测类型的下拉菜单中可以选择“最高价预测”、“最低价预测”、“开盘预测”或“收盘预测”四个选项如图8所示。

图8

同时在预测阶数和预测周数文本框中填写数据得到不同的预测值。本设计模型的信源长度为104,随着阶数的增大,预测值精度不断提高,但当阶数增大到26时,其误差到达最小,如果继续增大阶数,已经不再影响其精度。

验证方法为:在道·琼斯指数的四个信源中取一种信源,其长度为104,截取最后的20个信源,把前84个信源载入预测器中。在周数相同的情况下,选择不同的阶数来预测后20个信源,把预测出来的结果与截取的后20个信源相比较,再求其误差就可观察该模型的精确度。

5结论

本设计内容在理解信号与系统基本原理的前提下,利用MATLAB设计了一个线性预测系统,该系统利用一个离散时间有限脉冲响应(FIR)滤波器来解决属于预测建模等问题。这是一个基于MATLAB计算机仿真的股票线性预测模型,它用股票的开盘、收盘、最高、最低四种价位为源信号进行预测,期望用选择滤波器的阶数来调整它的精确度,做到预测误差最小。

参考文献

1.张威,《MATLAB基础与编程入门》,西安电子大学出版社出版社,2007年第1版,第4页。

2.黄忠霖,《控制系统MATLAB计算及仿真》,国防工业出版社,2007年底版,第134页。

3.吴兆熊,《数字信号处理》,西安交通大学出版社,2006年第1版,第82页。

4.王嘉梅,《基于MATLAB的数字信号处理与实践开发》,西安电子大学出版社,2007年第1版,第157页。

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

用MATLAB解线性规划

用MATLAB 优化工具箱解线性规划 命令:x=linprog (c ,A ,b ) 2、模型: beq AeqX b AX ..min =≤=t s cX z 命令:x=linprog (c ,A ,b ,Aeq,beq ) 注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ]. 3、模型: VUB X VLB beq AeqX b AX ..min ≤≤=≤=t s cX z 命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB ) [2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X0) 注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval. 例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x j 解 编写M 文件小xxgh1.m 如下: c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) min z=cX b AX t s ≤..1、模型:

MatLab求解线性方程组

MatLab解线性方程组一文通 当齐次线性方程AX=0,rank(A)=r

运用Matlab进行线性规划求解(实例)

线性规划 线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。 8.2.1 基本数学原理 线性规划问题的标准形式是: ????? ??????≥=+++=+++=++++++=0,,,min 21221122222121112 121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z 或 ???? ?????=≥===∑∑==n j x m i b x a x c z j n j i j ij n j j j ,,2,1,0,,2,1,min 1 1 写成矩阵形式为: ?? ???≥==O X b AX CX z min 线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。不符合这几个条件的线性模型可以转化成标准形式。 MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。 8.2.2 有关函数介绍 在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。 linprog 函数的调用格式如下: ●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。 ●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。若没有不等式约束,则令A=[ ],b=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。若没有等式约束,令Aeq=[ ],beq=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。该选项只适用于中型问题,默认时大型算法将忽略初值。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options):用options 指定的优化参数进行最小化。 ●[x,fval]=linprog(…):返回解x 处的目标函数值fval 。 ●[x,lambda,exitflag]=linprog(…):返回exitflag 值,描述函数计算的退出条件。 ●[x,lambda,exitflag,output]=linprog(…):返回包含优化信息的输出参数output 。 ●[x,fval,exitflag,output,lambda]=linprog(…):将解x 处的拉格朗日乘子返回到lambda 参数中。

MATLAB解线性方程组的直接方法

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法. 3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)

利用MATLAB求线性方程组

《MATLAB语言》课成论文 利用MATLAB求线性方程组 姓名:郭亚兰 学号:12010245331 专业:通信工程 班级:2010级通信工程一班 指导老师:汤全武 学院:物电学院 完成日期:2011年12月17日

利用MATLAB求解线性方程组 (郭亚兰 12010245331 2010 级通信一班) 【摘要】在高等数学及线性代数中涉及许多的数值问题,未知数的求解,微积分,不定积分,线性方程组的求解等对其手工求解都是比较复杂,而MATLAB语言正是处理线性方程组的求解的很好工具。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 【关键字】线性代数MATLAB语言秩矩阵解 一、基本概念 1、N级行列式A:A等于所有取自不同性不同列的n个元素的积的代数和。 2、矩阵B:矩阵的概念是很直观的,可以说是一张表。 3、线性无关:一向量组(a1,a2,…,an)不线性相关,既没有不全为零的数 k1,k2,………kn使得:k1*a1+k2*a2+………+kn*an=0 4、秩:向量组的极在线性无关组所含向量的个数成为这个向量组的秩。 5、矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。记:R(B)

matlab线性规划练习

第11次课 (1) 某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4000 元与 3000 元 。 生产甲机床需用A 、B 机器加工,加工时间分别为每台 2 小时和 1 小时; 生产乙机床 需用A 、B 、C 三种机器加工,加工时间为每台各一小时。 若每天可用于加工的机器 时数分别为A 机器 10 小时、 B 机器 8 小时和 C 机器 7 小时,问该厂应生产甲、乙机床 各 几台,才能使总利润最大? (2)有两种农作物(大米和小麦),可用轮船和飞机两种方式运输,每天每艘轮船和每架飞机运输效果 如下:在一天内如何安排才能合理完成运输2000吨小麦和1500吨大米的任务? (3)设422+-=x y z ,式中变量y x ,满足条件?????≥-≤≤≤≤12201 0x y y x ,求z 的最小值和最大值. (4)某家俱公司生产甲、乙两种型号的 组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下: 问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少? (5) 某运输公司接受了向抗洪抢险地区每天至少送180t 支援物资的任务.该公司有8辆载重为6t 的A 型 卡车与4辆载重为10t 的B 型卡车,有10名驾驶员;每辆卡车每天往返的次数为A 型卡车4次,B 型 卡车3次;每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A 型或B 型卡车,所花的成本费分别是多少?

(6)一家玩具公司制造三种桌上高尔夫玩具,每一种要求不同的制造技术。高级的一种需要17小时加工装配劳动力,8小时检验,每台利润300元。中级的需要10小时劳动力,4小时检验,利润200元。低级的需要2小时劳动力,2小时检验,利润100元。可供利用的加工劳动力为1000小时,检验500小时。其次,有市场预测表明,对高级的需求量不超过50台,中级的不超过80台,低级的不超过150台。 问制造商如何决策才能得出使总利润为最大的最优生产计划。 (7)(任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。 假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低 (8)

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

线性方程组求解matlab实现

3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果 请注意:因为RA=RB> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B) 运行后输出结果 请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3 (4)在MATLAB 工作窗口输入程序

实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组 第一节 线性方程组的求解 一、齐次方程组的求解 rref (A ) %将矩阵A 化为阶梯形的最简式 null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基 础解系 【例1】 求下列齐次线性方程组的一个基础解系,并写出通解: 我们可以通过两种方法来解: 解法1: >> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans= 1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程 ??? ??=+--=+--=-+-0 22004321 43214321x x x x x x x x x x x x

取x2,x4为自由未知量,扩充方程组为 即 提取自由未知量系数形成的列向量为基础解系,记 所以齐次方程组的通解为 解法2: clear A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; B=null(A, 'r') % help null 看看加个‘r’是什么作用, 若去掉r ,是什么结果? 执行后可得结果: B= 1 0 1 0 0 1 0 1 ?? ?=-=-0 04321x x x x ?????? ?====4 4432221x x x x x x x x ??? ??? ??????+????????????=????? ???????1100001142 4321x x x x x x , 00111????? ? ??????=ε, 11002????? ???????=ε2 211εεk k x +=

用MATLAB求解规划问题

§15. 利用Matlab求解线性规划问题 线性规划是一种优化方法,Matlab优化工具箱中有现成函数linprog对如下式描述的LP问题求解: % min f'x % s.t .(约束条件):Ax<=b % (等式约束条件):Aeqx=beq % lb<=x<=ub linprog函数的调用格式如下: x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…) [x, fval, exitflag]=linprog(…) [x, fval, exitflag, output]=linprog(…) [x, fval, exitflag, output, lambda]=linprog(…) 其中: x=linprog(f,A,b)返回值x为最优解向量。 x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令 111

A=[ ]、b=[ ] 。 x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。 Options的参数描述: Display显示水平。选择’off’ 不显示输出;选择’I ter’显示每一步迭代过程的输出;选择’final’ 显示最终结果。 MaxFunEvals 函数评价的最大允许次数 Maxiter 最大允许迭代次数 TolX x处的终止容限 [x,fval]=linprog(…) 左端fval 返回解x处的目标函数值。 [x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分: exitflag描述函数计算的退出条件:若为正值,表示目标函数收敛于解x 处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。 output 返回优化信息:output.iterations表示迭代次数;output.algorithm表示所采用的算法;outprt.funcCount表示函数评价次数。 lambda返回x处的拉格朗日乘子。它有以下属性: lambda.lower-lambda的下界; lambda.upper-lambda的上界; lambda.ineqlin-lambda的线性不等式; lambda.eqlin-lambda的线性等式。 112

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

Matlab求解线性方程组非线性方程组

求解线性方程组 solve,linsolve 例: A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格 B=[3;1;1;0] X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B) diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式 diff(F); %matlab区分大小写 pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 为待解方程或方程组的文件名;fun其中 x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件fun.m: function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))]; >>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注: ...为续行符 m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。Matlab求解线性方程组 AX=B或XA=B 在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: X=A\B表示求矩阵方程AX=B的解; 的解。XA=B表示矩阵方程B/A=X. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有: m=n 恰定方程,求解精确解; m>n 超定方程,寻求最小二乘解; m

线性方程组求解Matlab程序(精.选)

线性方程组求解 1.直接法 Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); end

det=det*a(n,n); for k=n:-1:1 %回代 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k); end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法

[n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;% 选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n z=a(k,j);a(k,j)=a(r,j);a(r,j)=z; end z=b(k);b(k)=b(r);b(r)=z;det=-det; end

线性规划模型及matlab程序求解

§1 线性规划模型 一、线性规划课题: 实例1:生产计划问题 假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。 建立数学模型: 设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。 max f=70x1+120x2 s.t 9x1+4x2≤3600 4x1+5x2≤2000 3x1+10x2≤3000 x1,x2≥0 归结出规划问题:目标函数和约束条件都是变量x的线性函数。 形如: (1) min f T X s.t A X≤b Aeq X =beq lb≤X≤ub 其中X为n维未知向量,f T=[f1,f2,…f n]为目标函数系数向量,小于等于约束系数矩阵A为m×n矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。lb,ub为自变量取值上界与下界约束的n维常数向量。 二.线性规划问题求最优解函数: 调用格式: x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…) [x, fval, exitflag]=linprog(…) [x, fval, exitflag, outpu t]=linprog(…) [x, fval, exitflag, output, lambda]=linprog(…) 说明:x=linprog(f,A,b)返回值x为最优解向量。 x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令A=[ ]、b=[ ] 。 x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options 为指定优化参数进行最小化。

用matlab求解线性规划问题

1 实验四 用MATLAB 求解线性规划问题 一、实验目的: 了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。 二、实验内容: 线性规划的数学模型有各种不同的形式,其一般形式可以写为: 目标函数: n n x f x f x f z +++= 2211m i n 约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++ 22111 1212111 s n tn t t n n d x c x c x c d x c x c x c =+++=+++ 22111 1212111 ,,,21≥n x x x 这里n n x f x f x f z +++= 2211称为目标函数, j f 称为价值系数, T n f f f f ) ,,,(21 =称为价值向 量, j x 为求解的变量,由系数 ij a 组成的矩阵 ???? ? ?????=mn m n a a a a A 1 111 称为不等式约束矩阵,由系数ij c 组成的矩阵 ???? ? ?????=sn s n c c c c C 1 111 称为等式约束矩阵,列向量T n b b b b ) ,,,(21 =和 T n d d d d ) ,,,(21 =为右端向量,条件 ≥j x 称为 非负约束。一个向量 T n x x x x ) ,,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为 可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数 值,简称最优值。 我们这里介绍利用Matlab 来求解线性规划问题的求解。 在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下: X=linprog(f,A,b) [X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options) 这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。Aeq 和Beq 表示了线性规划中等式约束条件中的系数矩阵和右端向量。LB 和UB 是约束变量的下界和上界向量,X0是给定的变量的初始值,options 为控制规划过程的参数系列。返回值中fval 是优化结束后得到的目标函数值。exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;exitflag>0表示优化过

用matlab解决线性规划问题的几道题

一、用MATLAB 求解线性规划问题 (1) 编写的M 文件为: f=[-1;-1] A=[1 -2;1 2] b=[4,8] [x,feval]=linprog(f,A,b,[],[],zeros(2,1)) 所求解为:x 1=6,x 2=1;min f=-7 (2) 编写的M 文件为: f=[-4;-3] A=[3 4;3 3;4 2] b=[12;10;8] [x,feval]=linprog(f,A,b,[],[],zeros(1,2)) 所求得的解为:x 1=,x 2=;max f= (3) (4) 编写的M 文件为: f=[-1;-3;3] Aeq=[1 1 2;-1 2 1] beq=[4;4] [x,feval]=linprog(f,[],[],Aeq,beq,zeros(3,1)) 所求得的结果为:x 1=4/3,x 2=8/3,x 3=0;max f=28/3。 12121212min 24s.t.28,0f x x x x x x x x ì=--????-?镲í?+????3??121212121243max 3412..3310428,0f x x x x s t x x x x x x ì=+????+????+?í???+????3?? 12312312313min 3s.t.211423210(1,2,3)j f x x x x x x x x x x x x j =--ì????-+?????-++?í??-+=????????123123123max 3s.t.24240(1,2,3) j f x x x x x x x x x x j =+-ì????++=??í-++=????????min s.t.123f x y z x y x z ì?=++???+?í???+=???

用matlab解线性方程组

用matlab解线性方程组 2008-04-12 17:00 一。高斯消去法 1.顺序高斯消去法 直接编写命令文件 a=[] d=[]' [n,n]=size(a); c=n+1 a(:,c)=d; for k=1:n-1 a(k+1:n, k:c)=a(k+1:n, k:c)-(a(k+1:n,k)/ a(k,k))*a(k, k:c); %消去 end x=[0 0 0 0]' %回带 x(n)=a(n,c)/a(n,n); for g=n-1:-1:1 x(g)=(a(g,c)-a(g,g+1:n)*x(g+1:n))/a(g,g) end 2.列主高斯消去法 *由于“[r,m]=max(abs(a(k:n,k)))”返回的行是“k:n,k”内的第几行,所以要通过修正来把m 改成真正的行的值。该程序只是演示程序,真正机器计算不需要算主元素所在列以下各行应为零的值。 直接编写命令文件 a=[] d=[] ' [n,n]=size(a); c=n+1 a(:,c)=d; %(增广) for k=1:n-1 [r,m]=max(abs(a(k:n,k))); %选主 m=m+k-1; %(修正操作行的值) if(a(m,k)~=0) if(m~=k) a([k m],:)=a([m k],:); %换行 end a(k+1:n, k:c)=a(k+1:n, k:c)-(a(k+1:n,k)/ a(k,k))*a(k, k:c); %消去end end x=[0 0 0 0]' %回带 x(n)=a(n,c)/a(n,n); for g=n-1:-1:1 x(g)=(a(g,c)-a(g,g+1:n)*x(g+1:n))/a(g,g) end

(完整word版)用matlab解决线性规划问题的几道题

一、用MATLAB 求解线性规划问题 (1) 编写的M 文件为: f=[-1;-1] A=[1 -2;1 2] b=[4,8] [x,feval]=linprog(f,A,b,[],[],zeros(2,1)) 所求解为:x 1=6,x 2=1;min f=-7 (2) 编写的M 文件为: f=[-4;-3] A=[3 4;3 3;4 2] b=[12;10;8] [x,feval]=linprog(f,A,b,[],[],zeros(1,2)) 所求得的解为:x 1=0.8,x 2=2.4;max f=10.4 (3) (4) 编写的M 文件为: f=[-1;-3;3] Aeq=[1 1 2;-1 2 1] beq=[4;4] [x,feval]=linprog(f,[],[],Aeq,beq,zeros(3,1)) 所求得的结果为:x 1=4/3,x 2=8/3,x 3=0;max f=28/3。 12 121212min 24s.t.28 ,0f x x x x x x x x ì=--????-?镲í?+???? 3??12 1212121243max 3412 ..3310 428 ,0 f x x x x s t x x x x x x ì =+????+????+?í???+????3??123 12312313min 3s.t.211 423 21 0(1,2,3) j f x x x x x x x x x x x x j =--ì????-+?????-++?í??-+=?? ??? ???123 123123max 3s.t.24 24 0(1,2,3) j f x x x x x x x x x x j =+-ì????++=??í-++=???? ????

线性规划单纯形法matlab解法

%单纯形法matlab程序-ssimplex % 求解标准型线性规划:max c*x; . A*x=b; x>=0 % 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b % N是初始的基变量的下标 % 输出变量sol是最优解, 其中松弛变量(或剩余变量)可能不为0 % 输出变量val是最优目标值,kk是迭代次数 % 例:max 2*x1+3*x2 % . x1+2*x2<=8 % 4*x1<=16 % 4*x2<=12 % x1,x2>=0 % 加入松驰变量,化为标准型,得到 % A=[1 2 1 0 0 8; % 4 0 0 1 0 16; % 0 4 0 0 1 12; % 2 3 0 0 0 0]; % N=[3 4 5]; % [sol,val,kk]=ssimplex(A,N) % 然后执行 [sol,val,kk]=ssimplex(A,N)就可以了。 function [sol,val,kk]=ssimplex(A,N) [mA,nA]=size(A); kk=0; % 迭代次数 flag=1;

while flag kk=kk+1; if A(mA,:)<=0 % 已找到最优解 flag=0; sol=zeros(1,nA-1); for i=1:mA-1 sol(N(i))=A(i,nA); end val=-A(mA,nA); else for i=1:nA-1 if A(mA,i)>0&A(1:mA-1,i)<=0 % 问题有无界解 disp('have infinite solution!'); flag=0; break; end end if flag % 还不是最优表,进行转轴运算 temp=0; for i=1:nA-1 if A(mA,i)>temp temp=A(mA,i); inb=i; % 进基变量的下标 end

相关主题
文本预览
相关文档 最新文档