当前位置:文档之家› 血管生成素受体Tie2在直肠癌中的表达及作用

血管生成素受体Tie2在直肠癌中的表达及作用

血管生成素受体Tie2在直肠癌中的表达及作用
血管生成素受体Tie2在直肠癌中的表达及作用

(完整版)小鼠表达谱芯片及服务

小鼠表达谱芯片及服务 热点推荐 芯片名称:Agilent SurePrint G3 Mouse Gene Expression 8x60K HOT! 芯片介绍:安捷伦基于G3平台最新设计的小鼠表达谱芯片。涵盖39,430 条Entrez Gene RNAs 外,及16,251条lincRNA。除了检测蛋白编码RNA表达量变化,还能检测非编码lincRNA 的表达量变化。探针设计参照的数据库为:RefSeq Build 37;Ensembl Release 55;Unigene Build 176;GenBank (April 2009);RIKEN 3。lincRNA探针是Agilent和John Rinn 实验室(麻省理工学院-哈佛大学Broad研究所)共同设计的。 Agilent 小鼠表达谱芯片服务 芯片名称:Agilent SurePrint G3 Mouse Gene Expression 8x60K NEW! 芯片介绍:安捷伦基于G3平台最新设计的小鼠表达谱芯片。涵盖39,430 条Entrez Gene RNAs 外,及16,251条lincRNA。除了检测蛋白编码RNA表达量变化,还能检测非编码lincRNA 的表达量变化。探针设计参照的数据库为:RefSeq Build 37;Ensembl Release 55;Unigene Build 176;GenBank (April 2009);RIKEN 3。lincRNA探针是Agilent和John Rinn 实验室(麻省理工学院-哈佛大学Broad研究所)共同设计的。 芯片推荐:Agilent Whole Mouse Genome Oligo Microarray(4×44K) 芯片介绍:Agilent小鼠全基因组表达谱芯片,真正代表小鼠基因组中所有已知基因及其产生的转录本,代表了超过41,174 个小鼠基因和转录本。设计该产品所用的序列信息源于UCSC、NIA、RefSeq、Ensembl、Unigene和RIKEN等数据库,而且绝大多数探针经过Agilent专利的实验验证程序的检验和优化。 Affymetrix 小鼠表达谱芯片服务 芯片名称:GeneChip Mouse Genome 430 2.0 Array 详细介绍:涵盖了39,000个转录本,代表34,000个的小鼠基因。序列信息基于GeneBank、dbEST、RefSeq,The sequence clusters 在UniGene database (Build 107, June 2002)创建,并通过了Whitehead Institute for Genome Research (MGSC, April 2002)小鼠基因组进行了分析比较。 芯片推荐:Affymetrix GeneChip HT MG-430 PM Array Plate 芯片介绍:该款芯片信息与Affymetrix 小鼠基因组430 2.0芯片相同。涵盖了39,000个转录本,代表34,000个的小鼠基因。序列信息基于GeneBank、dbEST、RefSeq,The sequence clusters 在UniGene database (Build 107, June 2002)创建,并通过了Whitehead Institute for Genome Research (MGSC, April 2002)小鼠基因组进行了分析比较。 Phalanx小鼠表达谱芯片及服务 芯片名称:Phalanx MOA V5 Mouse OneArray? 芯片介绍:源自台湾工业研究院专利生产技术,依据美国食品药品管理局(FDA)制定的生物芯片质量评估标准MAQC计划规范,总探针数27,294个,基因探针数26,423个,参考数据库:RefSeq release 42;Ensemble release 59。 Illumina小鼠表达谱芯片服务 芯片推荐:Illumina Mouse WG-6 expression beadchips

肺癌血管生成以及抗血管生成治疗(一)

肺癌血管生成以及抗血管生成治疗(一) 【摘要】肺癌与其它实体瘤一样,其发生、发展和转移均依赖于血管生成,当肿瘤直径达到一定大小时,就会启动“血管生成开关”,促进新的血管生成,以保证肿瘤生长的血供需要。肺癌血管生成是一个极其复杂的过程,受多种正性和负性血管生成因子的调控。因此,抑制血管生成过程中关键步骤阻断肿瘤血管生成,从而切断肿瘤的营养来源和迁移通道,已成为近年来癌症治疗的新策略。本文就近年来此领域的最新研究进展做一综述。 【关键词】肺癌血管生成抗血管生成 肺癌(Lungcancer)是最常见的恶性肿瘤之一,严重威胁着人类的生命和健康,它已经成为全世界癌症死亡的最主要原因之一。1971年,Folkman等提出了肿瘤生长依赖于血管生成的假说,他认为一些来源于肿瘤细胞的化学信号可以通过打开“血管生成开关”而使肿瘤从静止期转换到快速生长期。静止期的肿瘤没有血管生成,肿瘤直径被限制在大约0.2mm-2mm,如果超过这一时期,肿瘤细胞就可以作用于周围的血管,引起血管扩张、扭曲、通透性增加,从而引起血管的发芽。许多研究都表明血管生成对肺癌的发生起着非常关键的作用,而且癌前病变或者肺癌早期也存在微血管密度的增加1],后者是非小细胞肺癌术后预后非常重要的一个指标,因此针对血管生成治疗肺癌很可能成为一种非常有效的方法。 一肺癌血管生成调控 1.VEGF血管内皮生长因子(vascularendothelialgrowthfactor,VEGF)家族是一个以二硫键或非共价键连接的同源二聚体的糖蛋白,目前所知的VEGF家族成员包括:VEGF-A(VEGF),VEGF-B,VEGF-C,VEGF-D,VEGF-E和胎盘生长因子(PIGF)。其中VEGF被证明是内皮细胞特有的一种生长因子,在血管生成中起到非常重要的作用2]。VEGF为低氧诱导的生长因子,分子质量为34~46Ku,由于其mRNA拼接不同,其有五种形式:VEGF121,VEGF145,VEGF165,VEGF183,VEGF189,VEGF206,其中以VEGF165较为常见,而且生物学活性最强。VEGF和其两个高亲和力受体VEGFR-1或者Flt-1(Fms-liketyrosinekinase),及VEGFR-2或者Flk-1(Fetalliverkinase)/KDR(kinaseinsertdomain-containingreceptor)结合,结合以后其受体通过自身二聚化、磷酸化激活而介导信号转导。VEGF可以使血管床的通透性增加,促进内皮细胞分裂、增殖、迁移和运动,刺激新生毛细血管生成,协助肿瘤细胞进入脉管系统,促进肿瘤侵袭转移。 2.EGFR表皮生长因子受体(epidermalgrowthfactorreceptor,EGFR)是ErbB家族成员之一,分子量为170kDa,是一种跨膜糖蛋白,由细胞外区、跨膜区和细胞内区构成。EGFR通过细胞外区结合特异性的配体诸如EGF、TGF-α等而被激活,配体与EGFR结合导致细胞内区的自动磷酸化,以及细胞内酪氨酸激酶活性的激活。酪氨酸激酶磷酸化常伴随下游信号传导蛋白分子的激活,介导下游不同信号通路,比如ras–raf–MAPK,STAT,PI3K–Akt等通路的激活,从而引起肿瘤细胞的增殖、扩散转移及凋亡的抑制。 3.蛋白水解酶与血管生成和肿瘤生物学行为有关的蛋白水解酶主要有基质金属蛋白酶(matrixmetalloproteinase,MMP)、纤维蛋白溶酶原激活物(plasminogenactivator,PA)、尿激酶型纤溶酶原激活物(urokinasetypeplasminogenactivator,uPA)和组织金属蛋白酶抑制物(tissueinhibitorofmetalloproteinase,TIMP)等。MMP家族成员众多,但以间质胶原酶(MMP1)、明胶酶A(MMP2)、基质分解素–1(MMP3)和明胶酶B(MMP9)最为常见。MMP参与细胞外基质的降解,促使内皮细胞的迁移,血管生成,并在肿瘤的侵袭性生长和转移方面,发挥了至关重要的作用3]。纤维蛋白溶酶原激活物除与MMP的作用基本一致外,尚有促进VEGF、bFGF和TGFβ的血管生成调节作用。TIMP能促进细胞增殖,但对血管内皮细胞的迁移和新生血管的生成有抑制作用。 4.COX-2环氧合酶(Cyclooxygenase,COX)是催化花生四烯酸生成前列腺素和血栓戊烷的关键酶,它包括两种异构体COX-1和COX-2。COX-1在所有的细胞内几乎都持续表达,并且在许

基因表达谱芯片的数据分析

基因表达谱芯片的数据分析(2012-03-13 15:25:58)转载▼ 标签:杂谈分类:生物信息 摘要 基因芯片数据分析的目的就是从看似杂乱无序的数据中找出它固有的规律, 本文根据数据分析的目的, 从差异基因表达分析、聚类分析、判别分析以及其它分析等角度对芯片数据分析进行综述, 并对每一种方法的优缺点进行评述, 为正确选用基因芯片数据分析方法提供参考. 关键词: 基因芯片; 数据分析; 差异基因表达; 聚类分析; 判别分析 吴斌, 沈自尹. 基因表达谱芯片的数据分析. 世界华人消化杂志2006;14(1):68-74 https://www.doczj.com/doc/0513055747.html,/1009-3079/14/68.asp 0 引言 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析, 通过有效数据的筛选和相关基因表达谱的聚类, 最终整合杂交点的生物学信息, 发现基因的表达谱与功能可能存在的联系. 然而每次实验都产生海量数据, 如何解读芯片上成千上万个基因点的杂交信息, 将无机的信息数据与有机的生命活动联系起来, 阐释生命特征和规律以及基因的功能, 是生物信息学研究的重要课题[1]. 基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析, 假如分类还没有形成, 非监督分析和聚类方法是恰当的分析方法; 假如分类已经存在, 则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3], 我们对基因芯片数据分析方法分类如下: (1)差异基因表达分析: 基因芯片可用于监测基因在不同组织样品中的表达差异, 例如在正常细胞和肿瘤细胞中; (2)聚类分析: 分析基因或样本之间的相互关系, 使用的统计方法主要是聚类分析; (3)判别分析: 以某些在不同样品中表达差异显著的基因作为模版, 通过判别分析就可建立有效的疾病诊断方法. 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验, 可以对2样本的基因表达数据进行差异基因表达分

血管生成素:抗血管生成药物的新靶点

血管生成素:抗血管生成药物的新靶点 生意社11月7日讯阿瓦斯丁是目前市场上抗血管生成生物药物的典范,该人源化单克隆抗体靶向作用于血管内皮生长因子。尽管美国食品药品管理局最近撤销了阿瓦斯汀治疗乳腺癌的适应证,但此药在世界各地仍广泛用于治疗大肠癌、脑癌、肺癌和肾细胞癌。而且,抗血管生成药物也可用于其他疾病的适应证,例如,雷珠单抗是 1

一种来自于贝伐单抗的单克隆抗体片段,已被批准用于治疗湿性年龄相关性黄斑变性。拜耳和Regeneron公司联合开发的湿性AMD药物Eylea,也是一种VEGF受体1和2的胞外结构域融合人IgG1的Fc部分组成的重组融合蛋白。 随着对抗血管生成药物研究的不断深入,科学家发现,血管生成素有望成为抗血管生成药物的新靶点。 血管生成素途径受到关注 开发更安全和更有效的抗血管生成药物一直是制 2

药行业努力的方向。血管生成素途径近年来受到越来越多的关注,有望改变VEGF通路已作为重要靶点的现状。对几种血管生成素家族成员的研究已经确定,血管生成素1和血管生成素2与其酪氨酸蛋白激酶受体TIE-2已成为研究热点。血管生成素-TIE通路被认为是一个特别有吸引力的治疗干预系统,因为其重要性不仅表现在对血管生成和血管内环境稳定上,同时也是血管生成和炎症通路的重要环节。 3

ANG-1和ANG-2是TIE-2受体酪氨酸激酶的功能性配体。ANG-1表达于许多类型的细胞,如周皮细胞、平滑肌细胞和成纤维细胞,作为TIE-2激动型配体。ANG-1介导的TIE-2激活可导致血管内皮细胞通透性和血管发育稳定性下降。另外,ANG-2由血管内皮细胞表达,可阻断ANG-1介导的TIE-2激活,作为TIE-2的拮抗剂发挥作用。ANG-2上调与不同类型的癌症转移和恶化相关。 而且,血管生成疾病都发现了ANG-2上调的现象。 4

抗血管生成治疗在肝癌介入治疗中作用要点

抗血管生成治疗在肝癌介入治疗中的作用 肝癌是常见的富血管性肿瘤,在我国发病率和死亡率均极高,严重危害人们的健康。目前在我国很大一部分肝癌在就诊时因肿瘤体积大,不能外科手术,经肝动脉化学性栓塞(TACE)是其首选的治疗方法[1,2],但TACE的疗效并不令人满意。影响TACE的疗效的因素很多,其中TACE后肿瘤的侧枝血管形成是重要因素之一,栓塞术后肿瘤的侧枝血管形成越快、越多,介入治疗的难度就越大,肿瘤易复发和转移,预后差[3,4]。TACE后肿瘤的侧枝血管形成是肿瘤血管生成的结果。现就肿瘤血管形成的机理、抗血管生成抑制剂的研究现状、肝癌TAE 术与血管生成的关系及其治疗对策作一综述。 1、肿瘤的生长与血管生成: 血管生成(angiogenesis)是从已存在的微血管上芽生出新的毛细血管过程。实体肿瘤生长经历了两个时期:在肿瘤直径小于2~3mm的时候,肿瘤无需新生血管,肿瘤细胞是通过组织间液获取从毛细血管渗透的营养物质,排泄代谢产物,并进行氧气交换,此时称为血管前期[5,6]。在此期促血管生成因子(angiogenesis activators)和血管生成抑制因子(angiogenesis inhibitors)处于动态的平衡。随着肿瘤细胞的进一步增殖,肿瘤出现缺氧、PH值升高、NO升高等微环境的变化[5],刺激肿瘤细胞和宿主细胞产生促血管生成因子,并下调血管生成抑制因子,打破了二者在肿瘤局部组织的平衡,从而启动了血管生成。当肿瘤有血管生成时,肿瘤可呈指速加速增大,并且获得转移能力,称血管期[7,8]。肿瘤血管生成有多种因子参与,其过程为[5-10]:①肿瘤组织在缺血缺氧等因素的作用下产生一些可溶性的促血管生成因子,如血管内皮细胞生长因子(VEGF)、碱性成纤维细胞生长因子(bFGF)等。②毛细血管内皮层下基底膜降解和血管周围细胞外基质的重塑。在此期原有的血管充血,通透性增高,细胞连接松弛,基底膜被多种消化酶消化而溶解断裂,形成间隙。此过程有多种水解酶参与,如肝素酶、组织蛋白酶B、D,纤溶酶,纤溶酶原激活剂,弹性蛋白酶和基质金属蛋白酶等。③内皮细胞迁移和增殖。此期内皮细胞大量增殖,穿过原有血管的细胞间隙到达血管周围组织,形成管状由内皮细胞构成的血管芽。④新生血管形成。新形成的血管芽吻合成襻,周皮细胞和成纤维细胞合成基底膜,覆盖血管芽。新形成的小血管逐渐分化成小动脉和小静脉,与原有的血管形成完整的血管网。在血管期除肿瘤细胞分泌的生长因子刺激自身生长以外,新生的血管能通过旁分泌作用使血管内皮细胞产生生长因子刺激肿瘤细胞生长,使肿瘤长至临床可见的地步。同时由于血管基底膜破坏,肿瘤细胞容易进入血管内形成远处转移。 2、肿瘤的转移与血管生成: 肿瘤的转移是一个复杂的、多步骤的过程,一般分为[11]:①肿瘤细胞从原发灶脱落;②降解细胞外基质及血管基底膜,迁徙、浸润并粘附于血管内皮细胞;③进入循环系统,随血液流至远处血管壁;④透过血管壁,侵入细胞外基质,形成转移灶。上述各步骤几乎都与血管生成的过程有关,表现在以下几个方面:①肿瘤血管增多为转移提供了条件;②在血管生成过程中,细胞外基质的降解、血管基底膜的通透性增加、血管内皮间隙增大等均对肿瘤细胞的脱落、迁徙、侵入血管有利[12];③转移灶的生长亦有赖于血管生成。 3、与肿瘤血管生成有关的主要因子及作用: 参于肿瘤血管生成的因子很多,有些是促进血管生成,有些是抑制血管生成,还有些因子起调控作用。现将几种主要的与肿瘤血管生成有关的因子介绍如下:

肿瘤抗血管生成药物的毒副反应及其机理-综述

文献综述 肿瘤抗血管治疗相关的毒副反应及其机制的探讨 大量分子靶向药的临床应用,使肿瘤患者,特别是晚期肿瘤患者,可以选择比化疗药物疗效有优势,而且毒副作用更小的药物。但是,任何药物都不是万能的,许多靶向药物也具有或多或少的副作用,而且很多副作用产生的机理需要临床医生去掌握。本文就临床常见的抗血管生成的分子靶向药物,如贝伐单抗(Bevacizumab,Avastin),舒尼替尼(sunitinib malate, SU11248, 索坦)和索拉菲尼(sorafenib,BAY 43-9006,多吉美),范德他尼ZD6474、V andetanib),沙利度胺(thalidomide), 雷利度胺(lenalidomide)等药物的常见毒副反应及其可能的机制做一概述。 1、凝血功能紊乱:出血和血栓 人体正常血管内皮具有保持血管完整性,维持正常凝血和抗凝的功能。然而,一些炎症(如直接或者间接由肿瘤细胞引起的炎症)可能打乱这一平衡,使之向血栓形成前的状态发展。而在微血管内部,内皮细胞功能的破坏可能打乱促凝和抗凝之间的平衡,从而影响血管的完整性和血液的流动。 一项包含12617例患者的荟萃分析发现,在所有实体瘤的患者中,不同严重程度出血事件的发生率为30.4% ,其中严重出血事件的患者为3.5%。然而,使用贝伐单抗的患者,与对照组相比,发生出血事件的相对危险度(RR)是2.48 。而RR也与贝伐单抗的剂量成正比,每周剂量5mg和2.5 mg的患者,其相对危险度分别为3.02和2.01。严重出血的风险也增加(RR=1.91)[1]。1级鼻出血是贝伐单抗引起的最常见的出血事件。在舒尼替尼治疗的晚期转移性肾癌患者中,轻微的鼻出血和和其它部位的出血事件发生率为26%[2]。另外,很多抗血管生成的药物的使用过程中,都发生了一定比例的静脉血栓事件。如在对沙利度胺治疗多发性骨髓瘤的研究中,有学者报道了7%-34%的血栓发生率[3-4]; 而在贝伐单抗的临床应用中,也报导静脉血栓和动脉血栓事件的报道[5-7]。一项荟萃分析发现:在使用贝伐单抗的患者中,不同程度的血栓事件发生率以及重度血栓事件的发生率分别为11.9%和6.3%,其中包括致死性血栓事件[8]。对于年龄超过65岁,既往发生过血栓事件的患者,使用贝伐单抗发生动脉血栓事件的风险

人血管生成素2(ANG-2)酶联免疫分析

人血管生成素2(ANG-2)酶联免疫分析 试剂盒使用说明书 本试剂盒仅供研究使用 产品编号:CSB-E04500h 检测范围:0.78 ng/ml - 50 ng/ml 最低检测限:0.195 ng/ml 特异性:本试剂盒可同时检测天然或重组的人ANG-2,且与其他相关蛋白无交叉反应。 有效期:6个月 预期应用:ELISA法定量测定人血清、血浆、心包积液、细胞培养上清或其它相关生物液体中ANG-2含量。 说明 1.试剂盒保存:-20℃(较长时间不用时);2-8℃(频繁使用时)。 2.浓洗涤液低温保存会有盐析出,稀释时可在水浴中加温助溶。 3.中、英文说明书可能会有不一致之处,请以英文说明书为准。 4.刚开启的酶联板孔中可能会含有少许水样物质,此为正常现象,不会对实验结果造成任何影响。 概述 血管生成素(angiopoietin,Ang)是近年来发现的与血管新生密切相关的一个新家族,包括Ang-1、Ang-2、Ang-3、Ang-4,参与胚胎血管的发生及成年机体生理、病理性血管形成,尤其Ang-2,在肿瘤组织中的表达明显高于周围正常组织。Ang-2是特异性血管生成刺激因子,也是恶性肿瘤早期的标志分子。Ang-2与Ang-1 60%同源,相互间易形成异二聚体结构,自身也常以同源二聚体及多聚体结构存在。Ang-2的生物学功能与Ang-1完全相反。Ang-1与血管内皮细胞的Tie-2受体结合,促进血管成熟及稳定,Ang-2与Tie-2结合,不使Tie-2磷酸化而激活Tie-2,反而拮抗Ang-1的生物活性,破坏血管完整性,影响内皮细胞之间及其与支持细胞之间的连接。在肿瘤发生的早期,Ang-2参与破坏瘤体周边原有的正常血管,而促进肿瘤新生血管的生成,在瘤体周边形成所谓的血管共择(co-option)区。当肿瘤形成以后,Ang-2与血管内皮生长因子(VEGF)有协同作用,共同促进肿瘤血管生成,并阻碍血管的完整性,使得肿瘤新生血管能在各种因子的刺激下不断增生。 实验原理 用纯化的抗体包被微孔板,制成固相载体,往包被抗ANG-2抗体的微孔中依次加入标本或标准品、生物素化的抗ANG-2抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB 显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的ANG-2呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。 试剂盒组成及试剂配制 1.酶联板(Assay plate ):一块(96孔)。 2.标准品(Standard):2瓶(冻干品)。 3.样品稀释液(Sample Diluent):1×20ml/瓶。 4.生物素标记抗体稀释液(Biotin-antibody Diluent):1×10ml/瓶。 5.辣根过氧化物酶标记亲和素稀释液(HRP-avidin Diluent):1×10ml/瓶。 6.生物素标记抗体(Biotin-antibody):1×120μl/瓶(1:100) 7.辣根过氧化物酶标记亲和素(HRP-avidin):1×120μl/瓶(1:100) 8.底物溶液(TMB Substrate):1×10ml/瓶。

1表达谱芯片

康成生物全基因组表达谱芯片技术服务 康成生物为您提供全基因组表达谱芯片技术服务,您只需要提供保存完好的组织或细胞标本,康成的芯片技术服务人员就可为您完成全部实验操作, 并提供完整的实验报告。根据您的需要您可选择不同厂家提供的全基因组表达谱芯片,包括Phalanx , Agilent和NimbleGen。 Phala nx 全基因组表达谱芯片 华联生物科技开发的标准规格的高密度基因组芯片(Phalanx Whole Genome Microarray)在开发过程中透过台湾工业技术研究院与英国 Sanger Institute等国外权威研究机构合作,从设计到生产再到实验的各个步骤中均执行严格标准,采用创新技术,广泛吸收现有芯片的优点,使得其生产的高密度基因组芯片获得了优异的国际品质。康成生物为您提供华联生物高密度基因组芯片及全程技术服务。 Phalanx Slide TM专利片基处理技术 华联生物的高密度基因组芯片,探针设计采用台湾工业技术研究院特有探针设计软件平台( Integrated Massive Probes Optimal Recognition Tool ,IMPORT )。在芯片的制作过程中,华联生物应用表面化学专利技术( PhalanxSlide TM Technology )对片基表面进行处理,使得片基与寡核苷酸探针的亲和活力更高,背景噪音更低,点阵的均一性更强。 高速的PhalanxArray探针布放技术 华联生物在点样过程中,采用非接触式基因探针布放技术,并以方阵基因探针高速布放技术(PhalanxArray Technology)之优势,大量生产。PhalanxArray 同时使用196个排列整齐的PhalanxJets,在一张芯片上布放39,200个均一的探针。PhalanxArray能够布放多达1,000,000张高 密度芯片,布放效率和产量是目前市场上一般芯片布放系统的100倍。 先进的PhalanxJet TM专利点样技术 华联生物开发出独特的PhalanxJet TM系统,结合其先进的非接触式基因探针布放技术和专利的片基处理技术,保证了探针布放的高重复性。尤其重要 的是,PhalanxJet TM系统可以最大限度的避免探针布放中可能的探针交叉污染。每个单独的PhalanxJet TM包含200个独立的点样针,分别对应不同 的探针,在布放时彼此独立,不会相互干扰。 严谨的检测探针和控制探针设计 华联生物的的高密度基因组芯片,寡核苷酸探针均经过严格筛选,能特异性检测数据库中的基因,灵敏度高,特异性强。人类基因组表达谱芯片,探针 信息主要基于数据库UniGene V.175版,同时整合了各大重要数据库信息。小鼠基因组表达谱芯片,探针信息基于数据库MEEBO (Mouse Exonic Evidence Based Oligonucleotide) 。 华联生物的高密度基因组芯片,实验控制探针设计严谨,包括GAM,OGAM,CGAMs,IHCs,ITQC,ETQC等等,并且还采用了多家公司已经设计好的芯片检测探针,如SpotReport Oligo Array 验证系统,Stratagene 的Alien Oligo Array 验证系统,以及Ambion 公司的ArrayControl Sense Oligo Spots系统等等,从而全面检测样品质量,杂交反应效果,标记反应效果等。使得芯片质量与实验效果得到双重保障。 生物芯片质量评估标准MAQC规范 依据美国食品药物管理局(FDA)与国际上主要生物芯片企业协商制定的生物芯片质量评估标准MAQC计划规范,华联全基因组表达谱芯片各项指标,

促血管生成素 (Ang)

促血管生成素(Ang) DOI:10.3760/cma.j.issn.1671-0282.2015.02.003 作者单位:100029 北京,卫计委中日友好医院急诊科 脓毒症(sepsis)是指由感染引起的全身炎症反应综合征,病情凶险,病死率高。目前,脓毒症的全球病死率高达30%~70%,脓毒症的高发病率与病死率逐渐成为威胁人民健康的全球性问题之一。最新美国国家卫生研究院资料显示,在美国ICU?澳甏笤加?70万至90万脓毒症患者入院,其中大约有20万患者死于脓毒症。目前脓毒症确切的发病机制尚未完全阐明,有大量的研究表明,细菌内毒素、失控的炎症反应、凝血功能紊乱、免疫功能紊乱、细胞凋亡、血管内皮细胞功能障碍、高代谢状态、基因多态性等因素与其发病机制均密切相关。促血管生成素(angiopoietin,Ang)是一个与新生血管生成密切相关的家族,近期的研究显示细菌内毒素可以调控Ang系统,影响脓毒症的血管内皮细胞功能,破坏血管内皮完整性,导致毛细血管通透性增加,最终引起多器官功能障碍和衰竭<sup>[1]</sup>。因此,Ang 系统在脓毒症的发生和发展过程中发挥了重要作用。 1Ang的编码基因、结构和表达 目前,已知Ang家族包括Ang-1 、Ang-2、Ang-3 和

Ang-4四个成员,主要在胚胎发育期表达,促进心血管系统的发育成熟,其中,Ang-1和Ang-2与血管生成的关系较为密切。成年以后,除在女性生殖系统(卵巢、子宫)表达水平较高外,在其他组织呈低水平表达。Ang各成员的蛋白结构基本相同,都由3部分组成:N-端疏水性分泌信号肽、α-螺旋的卷曲结构域及C-纤维蛋白原样结构域。卷曲结构域主要促进蛋白分子的多聚化;C-端纤维蛋白原样结构域是Ang中最具保守性的一部分,其中包含受体结合部分,决定某种Ang是否起激动作用。 1.1Ang-1,Ang-2的编码基因、结构和表达 人的Ang-1基因位于染色体8q22.3-23,包括9个外显子和8个内含子,其相对分子质量约为60 000~75 000。Ang-1是由498个氨基酸组成的同源六聚体,其卷曲结构域大约180个氨基酸,呈四面体结构,与肌球蛋白有弱的同源性;其C-纤维蛋白原样结构域大约有200个氨基酸,与纤维蛋白原、tenascin、hfrep、ficolin 及果蝇的SCABROUS有相似性,与受体的结合及磷酸化有关。胚胎心血管发育早期Ang-1主要在包绕心内膜的心肌上表达,后期则在血管周细胞上表达。其表达受缺氧、表皮生长因子(epidermal growth factor,EGF)、转化生长因子-β(transforming growth factor-β,TGF-β)等的调控。 Ang-2基因位于染色体8p21,编码496个氨基酸,与

基因表达谱芯片数据分析及其Bioconductor实现

基因表达谱芯片数据分析及其Bioconductor实现 1.表达谱芯片及其应用 表达谱DNA芯片(DNA microarrays for gene expression profiles)是指将大量DNA片段或寡核昔酸固定在玻璃、硅、塑料等硬质载体上制备成基因芯片,待测样品中的mRNA被提取后,通过逆转录获得cDNA,并在此过程中标记荧光,然后与包含上千个基因的DNA芯片进行杂交反应30min~20h后,将芯片上未发生结合反应的片段洗去,再对玻片进行激光共聚焦扫描,测定芯片上个点的荧光强度,从而推算出待测样品中各种基因的表达水平。用于硏究基因表达的芯片可以有两种:①cDNA芯片;② 寡核昔酸芯片。 cDNA芯片技术及载有较长片段的寡核昔酸芯片采用双色荧光系统:U前常用Cy3—dUTP (绿色)标记对照组mRNA, Cy5—dUTP (红色)标记样品组mRNAUl。用不同波长的荧光扫描芯片,将扫描所得每一点荧光信号值自动输入计?算机并进行信息处理,给出每个点在不同波长下的荧光强度值及其比值(ratio值),同时计算机还给出直观的显色图。在样品中呈高表达的基因其杂交点呈红色,相反,在对照组中高表达的基因其杂交点呈绿色,在两组中表达水平相当的显黄色,这些信号就代表了样品中基因的转录表达情况⑵。 基因芯片因具有高效率,高通量、高精度以及能平行对照研究等特点,被迅速应用于动、植物和人类基因的研究领域,如病原微生物毒力相关基因的。基因表达谱可直接检测mRNA的种类及丰度,可以同时分析上万个基因的表达变化,来揭示基因之间表达变化的相互关系。表达谱芯片可用于研究:①同一个体在同一时间里,不同基因的表达差异。芯片上固定的已知序列的cDNA或寡聚核昔酸最多可以达到30 000多个序列,与人类全基因组基因数相当,所以基因芯片一次反应儿乎就能够分析整个人的基因⑶。②同一个体在不同时间里,相同基因的表达差异。 ③不同个体的相同基因表达上的差异。利用基因芯片可以分析多个样本,同时筛选不同样本(如肿瘤组织、癌前病变和正常组织)之间差异表达的基因,这样可以避免了芯片间的变异造成的误差⑷。张辛燕⑸ 等将512个人癌基因和抑癌基因的cDNA用点样仪点在特制玻片上制成表达谱芯片,对正常人卵巢组织及卵巢癌组织基因表达的差异性进行比较研究,结果发现在卵巢癌组织中下调的基因有23个,上调的基因有15个,初步筛选出了卵巢癌相关基因。Lowe⑹等利用胰腺癌、问充质细胞癌等组织的cDNA制备基因芯片,筛选到胰腺癌细胞中高表达的基因,为医疗诊断、病理研究及新药设计 奠定基础。 2.表达谱芯片的数据处理技术

晚期NSCLC抗血管生成药物的治疗--推荐意见更新CSCO 2020

晚期NSCLC抗血管生成药物的治疗--推荐意见更新CSCO 2020 肺癌是目前我国乃至全世界致死率最高的恶性肿瘤之一。2018 年我国约有 77.4 万的新增肺癌病例,约有 69 万人死于肺癌。非小细胞肺癌(NSCLC)是肺癌中最常见的组织学类型,占比超过 80%。 在驱动基因阴性NSCLC 治疗决策演变的过程中,抗血管生成药物一直处于十分重要的位置。在2020 年CSCO 学术年会上,来自上海交通大学附属胸科医院的储天晴教授和大家分享了「晚期NSCLC 抗血管生成药物的治疗专家共识」-- 推荐意见更新。 主要就三大类抗血管生成药:抗VEGF/VEGFR 的大分子单抗,小分子多靶点抑制剂以及重组人血管内皮抑素的推荐使用意见进行了梳理。抗血管生成药物用于晚期NSCLC 的临床证据及推荐意见更新 由于药物可及性及临床适应症的限制,故今年指南更新与既往证据级别推荐相比采用了与CSCO 统一的等级推荐,I 级推荐主要为普适性的诊治措施。

晚期NSCLC 一线治疗及一线后维持治疗 一线治疗主要更新要点: ①对于驱动基因突变阴性,PS 0-1 分的晚期非鳞NSCLC 患者,推荐阿替利珠单抗联合贝伐珠单抗、卡铂及紫杉醇方案作为一线治疗选择(II 级推荐,1A 类证据,新增)。 ②有EGFR 敏感型突变的晚期非鳞NSCLC 患者中,贝伐珠单抗联合其他TKI(吉非替尼)可作为一线治疗选择(II 级推荐,2B 类证据,新增)。 ③ EGFR 敏感突变经TKI 治疗发生疾病进展后,且无证据提示T790M 突变的患者,或伴T790M 突变经奥希替尼治疗失败后的患者排除其他靶向药物治疗机会后,推荐使用阿替利珠

基因表达谱分析技术

基因表达谱分析技术 1微阵列技术(microarray) 这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA序列多态性、致病基因或疾病相关基因的一项新的基因功能研究技术。其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸“探针”(cDNA、ESTs或基因特异的寡核苷酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA或mRNA反转录生成的第一链cDNA进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。包括cDNA芯片(cDNA microarray)和DNA芯片(DNA chips)。 cDNA芯片使用的载体可以是尼龙膜,也可以是玻片。当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cm×18cm的膜上。尼龙膜上所点的一般是编好顺序的变性了的双链cDNA片段。要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。杂交使用的探针一般为mRNA的反转录产物,标记探针使用32PdATP。如果使用玻片为载体,点阵的密度要高于尼龙膜。杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂交。洗去未杂交的探针以后,能够结合标记cDNA的点受到激发后会发出荧光。通过扫描装置可以检测各个点发出荧光的强度。对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。一般来讲,显示出来的图像中,黄色的点表示在不同的样品中丰度的差异不大,红色和绿色的点代表在不同样品中其丰度各不相同。使用尼龙膜为载体制作cDNA芯片进行研究的费用要比玻片低,因为尼龙膜可以重复杂交。检测两种不同的组织或相同组织在不同条件下基因表达的差异,只需要使用少量的尼龙膜。但是利用玻片制作的cDNA芯片灵敏度更高,而且可以使用2种探针同时与芯片杂交,从而降低了因为杂交操作带来的差异;缺点是无法重复使用还必须使用更为复杂的仪器。 Guo等(2004)将包含104个重组子的cDNA文库点在芯片上,用于检测拟南芥叶片衰老时的基因表达模式,得到大约6200差异表达的ESTs,对应2491个非重复基因。其中有134个基因编码转录因子,182个基因预测参与信号传导,如MAPK级联传导路径。Li等(2006)设计高密度的寡核苷酸tiling microarray方法,检测籼稻全基因组转录表达情况。芯片上包含13,078,888个36-mer寡核苷酸探针,基于籼稻全基因组shot-gun测序的序列合成,大约81.9%(35,970)的基因发生转录事件。Hu等(2006)用含有60,000寡核苷酸探针(代表水稻全部预测表达基因)的芯片检测抗旱转基因植株(过量表达SNAC1水稻)中基因的表达情况,揭示大量的逆境相关基因都是上升表达的。 2基因表达系列分析(Serial analysis of gene expression,SAGE) 基因表达系列分析(SAGE)是一种转录物水平上研究细胞或组织基因表达模式的快速、有效的技术,也是一种高通量的功能基因组研究方法,它可以同时将不同基因的表达情况进行量化研究(Velculescu et al.,1995)。SAGE的基本原理是:每一条mRNA序列都可以用它包含的9bp的小片段(TAG)代替,因此考查这些TAGs出现的频率就能知道每一种mRNA 的丰度。首先利用生物素标记的oligo(dT)引物将mRNA反转录成双链cDNA,然后利用NlaIII 酶切双链cDNA。NlaIII酶的识别位点只有4bp,因此cDNA都被切成几十bp的小片段。带有生物素标记的小片段cDNA被分离出来,平均分成2份。这2份cDNA分别跟2个接头连接,2个接头中均有一个FokI酶切位点。FokI是一种II S型核酸内切酶,其识别位点不对称,切割位点位于识别位点下游9bp且不依赖于特异的DNA序列。FokI酶切分成2份的cDNA之

全基因组表达谱基因芯片技术服务

全基因组表达谱基因芯片技术服务 康成生物为您提供全基因组表达谱芯片技术服务,您只需要提供保存完好的组织或细胞标本,康成的芯片技术服务人员就可为您完成全部实验操作,并提供完整的实验报告。根据您的需要您可选择不同厂家提供的全基因组表达谱芯片,包括Roche-NimbleGen和Agilent 。 Roche-NimbleGen全基因组表达谱芯片 * 无膜芯片合成技术 NimbleGen表达谱芯片采用无膜芯片合成技术,使基因芯片制作从数月缩短到数小时,为客户提供最新的芯片设计、高重复性的芯片制作和高可信度的统计结果。 * 唯一将长探针与单转录本多探针设计相结合的表达谱芯片平台对于基因表达分析,长寡核苷酸探针(60mer)可以提供更高的信噪比、灵敏度、专一性和辨别能力;同时,NimbleGen的超高密度芯片(2.1M)使每个基因可通过多个独立的探针得到结果,针对单个转录本的多个探针的平均信号增加了统计的可靠性,降低了探针表现不稳定对芯片结果的影响,增加信号准确性。 * 高密度、高通量分析、节约成本 NimbleGen提供每张片子含135,000个探针的12×135K表达谱芯片,每张芯片上的单个基因设计了3-5个探针,提高了芯片检测的准确性,平均数据有更可靠的统计学意义。 * 至今,在国际顶级期刊上,已有很多利用NimbleGen表达谱芯片技术发表的高质量文章。 1. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2. Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 3. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 更多文献请参考NimbleGen公司网站: https://www.doczj.com/doc/0513055747.html,/products/pubs/publist.xml

表达谱芯片数据分析项目示例

芯片项目分析内容说明(示例): 1)原始芯片数据处理: 我们重老师提供的数据列表中下载了408张非重复的芯片,这些芯片来自13批不同的数据,首先,我们使用RMA算法对每一个批次的芯片,分批进行了信号值处理,经过PCA分析后发现,不同的芯片按照不同的批次被分开,说明来自不同实验的数据之间存在非常强的批次效应。 对应文件为: 01原始芯片数据处理\RMA_in_Batches\all_exp.xls.PCA3D.pdf 截止,我们将所有芯片的放在一起,一起使用RMA算法进行信号值处理,经过PCA分析后发现,纵使是将所有芯片一起进行RMA处理,这些来自不同实验的数据还是存在批次效应。对应文件为:01原始芯片数据处理\RMA_in_Batches\ all_exp.xls.PCA3D.pdf 2)批次效应矫正: 因为,来自不同实验的数据之间存在批次效应,所以我们使用基于经验贝叶斯方法的ComBat 算法对不同批次的数据进行批次效应矫正。 我们使用将全部芯片放在一起进行RMA处理后的数据作为输入文件,进行批次效应表达量矫正,然后使用PCA分析发现,批次效应基本被消除掉了。 对应文件为:02批次效应矫正\校正前\all_exp.xls.PCA3D.pdf 02批次效应矫正\校正后\Adjusted.all_exp.xls.out.xls.out.PCA3D.pdf 3)差异分析: 我们使用t_test和方差分析对批次效应矫正前后的数据都进行差异检测,我们使用t_test的pvalue<0.01和方差分析的pvalue<0.01为标准选取差异基因,对于校正后我们共得到26760个差异探针,对于校正前我们23349个差异探针,我们对得到的差异探针都经行了PCA分析和cluster分析 对应文件:03差异表达\ 4)特征选择: 我们使用SVMRFE算法,一种基于支持向量机的特征选取算法,对差异探针,进行了特诊选择。我们对校正前和校正后的差异探针都进行了特征选择 SVMRFE会将特征基因按照从高到低的顺序进行排序,我们选择排名前10,前20,前30,前40的探针,进行PCA分析,观测使用特征基因进行分类是否准确。 对应文件:04SVMRFE\ 其中nohup.out文件为进行SVM分类时,选取不同数量特征基因,使用留一法交叉验证所得到的准确率。 下图为特征选择前后样本的热图分析结果。

基因表达谱数据分析技术

第18卷第6期微阵列技术[1-3]的到来对生物学和医学来说是一场 革命,通过它可以同时观测成千上万个基因的表达水平,从而能够在基因组水平上以系统的、 全局的观念去研究生命现象及其本质。还可以根据基因在不同条件下表达的差异性来进行复杂疾病诊断、药物筛选、个性化治疗、基因功能发现、农作物优育和优选、环境检测和防治、食品卫生监督及司法鉴定等,因此对基因表达谱的研究具有重要的理论价值和应用意义。微阵列基因表达数据具有维数高、样本小、非线性的特点,这对一些传统的机器学习方法提出了新的挑战,对其数据的分析已成为生物信息学研究的焦点。 1基因表达数据采集 基因表达数据采集可分为三个步骤:微阵列设计、 图像分析和数据获取、过滤、标准化。基因芯片(gene chip ),简称为微阵列,就是指固着在载体上的高密度 DNA 微点阵,具体地说就是将靶基因或寡核苷酸片段有序地、高密度排列在玻璃、硅等载体上。mRNA (信使核糖核酸)的表达水平的获得是通过选取来自不同状态的样本(如正常组织与肿瘤组织、不同发育阶段组织,或用药之前与用药之后组织等,一种称为实验样本,另外一种称为参考样本),在逆转录过程中,实验样本和参考样本RNA (核糖核酸)分别用不同的红、绿荧光染料去标记,并将它们混合,与微阵列上的探针序列进行杂交,经适当的洗脱步骤与激光扫描仪对芯片进行扫描,获得对应于每种荧光的荧光强度图像,通过专用的图像分析软件,可获得微阵列上每个点的红、绿荧光强度(Cy5和Cy3),其比值(Cy5/Cy3)表示该基因在实验样本中的表达水平。在通常情况下,考虑Cy5和Cy3的数值时,还应考虑相应的背景数值,如果微阵列上某个基因的Cy5或Cy3数值比相应的背景数值低,则该基因的表达水平无法确定。为了方便数据处理,常 孟令梅等:一种基于DCT 变换的图像认证算法文章编号:1005-1228(2010)06-0017-03 基因表达谱数据分析技术 刘 玲 (江苏财经职业技术学院,江苏淮安 223001) 摘 要:人类基因组计划的研究已进入后基因组时代,后基因组时代研究的焦点已经从测序转向功能研究,主要采用无监 督和有监督技术来分析基因表达谱和识别基因功能,通过基因转录调控网络分析细胞内基因之间的相互作用关系的整体表示,说明生命功能在基因表达层面的展现,对目前基因表达谱数据分析技术及它们的发展,进行了综述性的研究,分析了它们的优缺点,提出了解决问题的思路和方法,为基因表达谱的进一步研究提供了新的途径。关键词:基因表达谱;分类;无监督;有监督;基因调控网络中图分类号:Q81;TP181 文献标识码:A Gene Expression Data Analysis LIU Ling (Jiangsu Vocational College of Finance &Econimics ,huai ’an 223001,China ) Abstract :As the work of sequencing the genome of the human has been fully finished,the post-genomic era has begun.Scientists are turning their focus toward identifying gene function from sequencing.Clustering technology,as one of the important tools of analyzing gene expression data and identifying gene function,has been used widely.Transcriptive regulatory networks are the global representation of multiple interactions between genes and their products ,which can help us understand the cell ’s function at the level of gene expression In this paper we discuss main clustering technology about gene expression data at present,analyze their advantages and disadvantages ,present the methods to solve the problems and given approaches to study gene expression data. Key words:gene expression profile ; classification ;gene regulatory network Vol.18No.6Dec 2010 第18卷第6期2010年12月 电脑与信息技术Computer and Information Technology 收稿日期: 2010-06-09项目资助: 江苏省淮安市科技发展计划项目(HAG08015)作者简介: 刘玲(1964-),山东胶州人,副教授,硕士,主要研究方向:生物信息。

相关主题
文本预览
相关文档 最新文档