当前位置:文档之家› 第三章 静电能2 电场的能量和能量密度 利用静电能求静电力 20101019

第三章 静电能2 电场的能量和能量密度 利用静电能求静电力 20101019

电磁波衰减

[吸收系数]absorption coefficient 又称“衰减系数”当电磁波进入岩石中时,由于涡流的热能损耗,将使电磁波的强度随进入距离的增加而衰减,这种现象又称为岩石对电磁波的吸收作用。吸收或衰减系数β的大小和电磁波角频率ω、岩石导电率σ、岩石导磁率μ、岩石 介电系数ε有关, 1 ) 1( 22 2 2 - + = δ ω σ με ω β 。在导体中则简化为:2 ωμσ β= 。 第十六章机械波和电磁波 振动状态的传播就是波动,简称波. 激发波动的振动系统称为波源 16-1机械波的产生和传播 1. 机械波产生的条件 (1)要有作机械振动的物体,亦即波源. (2)要有能够传播这种振动的介质 波源处质点的振动通过弹性介质中的弹性力,将振动传播开去,从而形成 机械波。 波动(或行波)是振动状态的传播,是能量的传播,而不是质点的传播。 ◆质点的振动方向和波的传播方向相互垂直,这种波称为横波. ◆质点的振动方向和波的传播方向相互平行,这种波称为纵波. 2.波阵面和波射线 ●在波动过程中,振动相位相同的点 连成的面称为波阵面(wave surface)●波面中最前面的那个波面称为波前(wave front)波面 波 线

●波的传播方向称为波线(wave line)或波射线平面波球面波 3. 波的传播速度 由媒质的性质决定与波源情况无关 ●液体和气体中纵波传播速度 B-介质体变弹性模量 ρ-介质密度 ● 在 固 体 G-介质切变模量 中 Y-介质杨氏模量 4.波长和频率 ●一个完整波的长度,称为波长.

●波传过一个波长的时间,叫作波的周期 ●周期的倒数称为频率. 振动曲线波形曲线图形 研究 对象某质点位移随时间变化规律 某时刻,波线上各质点位移随位置变 化规律 物理意义由振动曲线可知 周期T. 振幅A 初相φ0 某时刻方向参看下一时刻 由波形曲线可知该时刻各质点 位移,波长λ,振幅A 只有t=0 时刻波形才能提供初相 某质点方向参看前一质点 特征对确定质点曲线形状一定曲线形状随t 向前平移 16-2 平面简谐波波动方程 ●前进中的波动,称为行波. ●描述介质中各质点的位移随时间变化的数学函数式称为行波的波动表式(或波 动方程)

大学物理常用公式(电场磁场 热力学)知识分享

大学物理常用公式(电场磁场热力学)

第四章 电 场 一、常见带电体的场强、电势分布 1)点电荷:201 4q E r πε= 04q U r πε= 2)均匀带电球面(球面半径R )的电场: 2 00 ()()4r R E q r R r πε≤?? =?>?? 00()4()4q r R r U q r R R πεπε?>??=??≤?? 3)无限长均匀带电直线(电荷线密度为λ):02E r λ πε= ,方向:垂直于带电直线。 4)无限长均匀带电圆柱面(电荷线密度为λ): 00()() 2r R E r R r λ πε≤?? =?>?? 5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。 二、静电场定理 1、高斯定理:0 e S q E dS φε= ?= ∑? 静电场是有源场。 q ∑指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的 全部电荷产生; S E dS ?? 指通过高斯面的电通量,由高斯面内的电荷决定。 2、环路定理:0l E dl ?=? 静电场是保守场、电场力是保守力,可引入电势能 三、 求场强两种方法 1、利用场强势叠加原理求场强 分离电荷系统:1n i i E E ==∑;连续电荷系统: E dE =? 2、利用高斯定理求场强 四、求电势的两种方法

1、利用电势叠加原理求电势 分离电荷系统:1 n i i U U == ∑;连续电荷系统: U dU =? 2、利用电势的定义求电势 五、应用 电势差:b U U E -=?? a 由a 到 b 电场力做功等于电势能增量的负值六、导体周围的电场 1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。 2)、导体表面的场强处处垂直于导体表面。E ⊥表表面。导体表面是等势面。 2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。 2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。 3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。 3n ε= 七、电介质与电场 1、在外电场作用下,在外电场作用下,非极性分子电介质分子正、负电荷中心发生相对位 移,产生位移极化; 极性分子电介质分子沿外电场偏转,产生取向极化。 2、—电介质介电常数,r ε—电介质相对介电常数。 3、无介质时的公式将0ε换成ε(或0ε上乘 r ε),即为有电介质时的公式 八、电容 1 3 C

电磁场的能量密度和能流密度

电磁场的能量密度和能流密度 电磁场能量 电磁场对电荷系统作功电磁能密度和电磁能流密度的表达式介质的极化能和磁化能 ( 1 ) 电磁场能量电磁场是一种物质。电磁场运动与其他物质运动形式之间能够互相转化,它们都具有共同的运动量度能量。这里,我们通过电磁场与带电物体相互作用过程中,电磁场能量和带电物体运动的机械能之间的相互转化,导出电磁场能量的表达式。能量是按照一定的方式分布在电磁场内的,而且随着电磁场的运动,能量将在空间中传播。引进:电磁能密度(体积电磁能) w,表示电磁场单位体积内的能量; 电磁能流密度矢量S,表示单位时间内流过与能量传输方向(矢量S 方向)垂直的单位横截面积的电磁能量( 2 ) 电磁场对电荷系统作功考虑空间某区域,设其体积为V,表面为A,自由电荷密度为e0,电流密度为j0. 以f 表示电磁场对电荷

的作用力密度, v 表示电荷的运动速度,则电磁场对 电荷系统所作功的功率为 f vdV, (V) 体积 V 内电磁场能量的增加率为 dw wdV dV, dt (V) (V) t 通过界面 A 流入 V 内的电磁能为 S d . (A) 能量守恒定律要求单位时间内通过界面 A 流入 V 内的 能量,等于场对 V 内电荷作功的功率以及 V 内电磁场 能量的增加率之和,即 (14.64) 利用奥 高斯公式可得,式 (14.64)的相应的微分形式是 (14.65) ( 3 ) 电磁能密度和电磁能流密度的表达式 ① 由洛仑兹力公式可得 f v ( E v B) v E ( v) E j 0. (14.66) ② 将麦克斯韦方程组中的式 S dA f vdV ( ) (V) (V) dV . f v.

电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:?????===?θθ?θd r dl rd dl dr dl r sin ,面积元:??? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元: ?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ? ? ? ??==+=?????===z z x y y x r z z r y r x arctan ,sin cos 2 2??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22 2 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2 '2 2''arccos ,cos sin z r z z r r r z r r 3、梯度

大学物理常用公式(电场磁场 热力学)

第四章 电 场 一、常见带电体的场强、电势分布 2 3)无限长均匀带电直线(电荷线密度为 ): E = ,方向:垂直于带电直线。 2 r ( r R ) 4)无限长均匀带电圆柱面(电荷线密度为): E = 2 r (r R ) 5)无限大均匀带电平面(电荷面密度为)的电场: E =/2 0 ,方向:垂直于平面。 二、静电场定理 1、高斯定理: e = ? E v dS v = q 静电场是有源场。 S q 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部 电荷产生; ? E v dS v 指通过高斯面的电通量,由高斯面内的电荷决定。 2、环路定理: ? E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能 三、 求场强两种方法 1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =1 2、利用高斯定理求场强 四、求电势的两种方法 n 1、利用电势叠加原理求电势 分离电荷系统:U = U i ;连续电荷系统: U = dU i =1 电势零点 v v 2、利用电势的定义求电势 U = 电势零点 E dl 五、应用 vv b 点电荷受力: F = qE 电势差: U ab =U a -U b = b E dr a E = 1 q U = q 4 r 2 4 r 1)点电荷: E = 0 (r R ) q 2 (r R ) 4 r 2 U = q (r R ) 4r q (r R ) 4 R

a 点电势能:W a = qU a 由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a ) 六、导体周围的电场 1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。 2)、导体表面的场强处处垂直于导体表面。 E v ⊥表面。导体表面是等势面。 2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。 2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。 3)导体腔内有电荷+q ,导体电量为 Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电 荷 Q + q 。 v v 3、导体表面附近场强: E = n v 七、电介质与电场 1、在外电场作用下,在外电场作用下,非极性分子电介质分子正、负电荷中心发生相对位 移,产生位移极化; 极性分子电介质分子沿外电场偏转,产生取向极化。 2、电位移矢量 D =E = 0r E —电介质介电常数, —电介质相对介电常数。 3、无介质时的公式将0换成 (或0上乘 r ),即为有电介质时的公式 1、无限长载流直导线的磁场分布: B = 0 I 2 、载流圆环圆心处磁场: B = 0 I 2r 2R 3、长直螺线管、密绕螺绕环内的磁场0 (单位长度上匝数 d :导线直径) 二、磁场定理 v v 1、磁通量:通过某一面元dS 磁通: d =B dS = B cos dS =B dS 2、磁场的高斯定理 :通过任意闭合曲面的磁通量为零: B dS = 0 稳恒磁场是无源场 S 3、安培环路定理: ? B dl = I 内 稳恒磁场是一非保守场 l 八、电容 1、电容器的电容: C =Q /U 2、平行板电容器:C = 0d r S U =Ed 3、电容串联: 1 = 1 + 1 +L 1 C = C 1+C 2+L C n 电容并联:C = C 1 +C 2 +L C n 4、电容器的储能 :W =1Q =1CU 2 2C 2 第五章 稳恒磁场 一、常见电流磁场分布 5、电场的能量密度: e = 2 E 2 = 2D E

锂离子电池和金属锂离子电池的能量密度计算

锂离子电池和金属锂离子电池的能量密度计算 吴娇杨,刘品,胡勇胜,李泓 (中国科学院物理研究所,北京,100190) 摘要:锂电池是理论能量密度最高的化学储能体系,估算各类锂电池电芯和单体能达到的能量密 度,对于确定锂电池的发展方向和研发目标,具有积极的意义。本文根据主要正负极材料的比容 量、电压,同时考虑非活性物质集流体、导电添加剂、粘结剂、隔膜、电解液、封装材料占比,计算了不同材料体系组成的锂离子电池和采用金属锂负极、嵌入类化合物正极的金属锂离子电池 电芯的预期能量密度,并计算了18650型小型圆柱电池单体的能量密度,为电池发展路线的选择 和能量密度所能达到的数值提供参考依据。同时指出,电池能量密度只是电池应用考虑的一个重 要指标,面向实际应用,需要兼顾其它技术指标的实现。 关键词:锂离子电池;金属锂离子电池;能量密度;18650电池;电芯 中图分类号:O O646.21文献标志码:A 文章编号: Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries WU Jiaoyang,Liu pin, HU Yongsheng, LI Hong (Institute of Physics, Chinese Academy of Science, Beijing 100190, China) Abstract:Lithiumbatteries have the highest theoretical energy densities among all electrochemical energy storage devices. Prediction of the energy density of the different lithium ion batteries (LIB) and metallic lithium ion batteries (MLIB) is valuable for understanding the limitation of the batteries and determine the directions of R&D. In this research paper, the energy densities of LIB and MLIB have been calculated. Ourcalculation includes the active electrode materials and inactive materials inside the cell.For practical applications, energy density is essential but not the only factor to be considered, other requirements on the performances have to be satisfied ina balanced way. Key words:lithiumion batteries; metal lithium ion batteries; energy densitycalculation;18650 cell; batteries core 收稿日期:;修改稿日期:。 基金项目:国家自然科学基金杰出青年基金项目(51325206),国家重点基础研究发展计划(973)项目(2012CB932900)。第一作者:吴娇杨(1988-),女, 博士研究生,研究方向锂离子电池电解质E-mail:wujiaoyang8@https://www.doczj.com/doc/0312920279.html,;通讯联系人:李泓, 研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@https://www.doczj.com/doc/0312920279.html,。

试论介质中的电磁能量密度

试论介质中的电磁能量密度 【摘要】电磁技术是目前应用最广泛的现代化技术之一,如频率在300MHz-300GHz之间的微波段电磁波广泛用于无线通信、材料处理、微波加热、化工过程强化和医疗诊断等领域。电磁技术的进一步广泛应用需要对电磁场与物质相互规律的深入了解,尤其是物质对电磁波的吸收与消耗。 【关键词】极化能;磁化能;能量密度;电磁能量损耗功率密度 1.介质中的电场能量密度和磁场能量密度 1.1 电磁能量密度和能流密度 电(磁)场的能量特性通常采用能量密度和能流密度(也称为坡印廷矢量)来描述。能量密度是指在单位体积空间或介质中的能量;能流密度S是指电磁波在传播过程中,单位时间内通过垂直于传播方向单位面积的能量。导出电磁场能量密度的普遍方法是,根据电磁场与带电体相互作用过程中的能量守恒,利用麦克斯韦方程和洛伦兹力公式得到能量密度和能流密度。电磁场的能量平衡方程是 ■=-?塄·S-f■·v (1) 该方程的物理意义是单位时间单位体积内电磁场能的增加量?坠w/?坠t等于通过边界的流入量(-?塄·S)减去电磁场对运动电荷做功的功率密度f■·v。设介质中的电荷密度是?籽■,电荷的运动速度是v,单位体积介质受到的电磁作用力密度(洛伦兹力)是 f■=?籽■E+?籽■v×B (2) 利用洛伦兹力公式(2)可以将电磁场对运动电荷做的功率密度写为: f■·v=?籽■v·E=J■·E (3) 其中J■=?籽■v是电流密度。 电场对电介质的作用效果是产生极化电荷和极化电流,极化电荷(束缚电荷)密度是?籽■=-?塄·P,极化电流密度是J■=?坠P/?坠t,P是极化强度,即单位体积介质中的电偶极矩。磁场对磁介质的磁化效果是产生磁化电流,磁化电流密度是J■=?塄×M,M是磁化强度,即单位体积介质中的磁偶极矩。在电磁学理论中为了研究方便,通过定义D=?着■E+P,将极化效果归并到辅助场量D中;通过定义H=B/?滋■-M,而将磁化效果归并到辅助场量H中。因此在麦克斯韦方程中只需考虑自由电荷和自由电流,而不必考虑极化电荷和诱导电流。基于同样的原因,式(3)中的J■可视为自由电荷流密度J■。利用介质中的麦克斯韦方程组将

第四节 电场的能量和能量密度

第二章 静电场中的导体和电介质 §4 电场的能量和能量密度(P213) 1. 计算例题1中场能的一半分布在半径多大的球面内。 解: 2. 空气中一直径为10厘米的导体球,电位为8000伏,问它表面处的场能密度(即单位体积内的电场能量)是多少? 解: 3. 在介电常数为r ε的无限大均匀介质中,有一半径为R 的导体球带电荷Q 。求电场的能量。 解: 4. 半径为2.0厘米的导体球外套有一个与它同心的导体球壳,壳的内外半径分别为4.0厘米和 5.0厘米,球与壳间是空气。壳外也是空气,当内球的电荷量为8 3.010-?库仑时,⑴ 这个系统储藏了多少电能?⑵ 如果用导线把壳与球联在一起,结果如何? 解: 5. 球形电容器的内外半径分别为1R 和2R ,电位差为U 。⑴ 求电位能;⑵ 求电场的能量;比较两个结果。 解: 6. 半径为a 的导体圆柱外面,套有一半径为b 的同轴导体圆筒,长度都是l ,其间充满了介电常数为r ε的均匀介质。圆柱带电为Q ,圆筒带电为Q -,略去边缘效应。 ⑴ 整个介质内的电场总能量e W 是多少? ⑵ 证明:2 12e Q W C =,式中C 是圆柱和圆筒间的电容。

解: 7. 半径为a的长直导线,外面套有共轴导体圆筒,筒的内半径为b,导线与圆筒间充满介电常数为rε -。略去边缘效应,求沿轴线单位长的均匀介质。沿轴线单位长度上导线带电为λ,圆筒带电为λ 度的电场能量。 解: 8.圆柱电容器由一长直导线和套在它外面的共轴导体圆筒构成,设导线的半径为a,圆筒的内半径为 b。证明:这电容器所储藏的能量有一半是在半径r 证明:

电磁场的能量密度和能流密度

电磁场的能量密度和能流密度 ●电磁场能量 ●电磁场对电荷系统作功 ●电磁能密度和电磁能流密度的表达式 ●介质的极化能和磁化能 ( 1 ) 电磁场能量 电磁场是一种物质。 电磁场运动与其他物质运动形式之间能够互相转化,它们都具有共同的运动量度??能量。 这里,我们通过电磁场与带电物体相互作用过程中,电磁场能量和带电物体运动的机械能之间的相互转化,导出电磁场能量的表达式。 能量是按照一定的方式分布在电磁场内的,而且随着电磁场的运动,能量将在空间中传播。引进: 电磁能密度(体积电磁能) w,表示电磁场单位体积内的能量; 电磁能流密度矢量S,表示单位时间内流过与能量传输方向(矢量S方向)垂直的单位横截面积的电磁能量( 2 ) 电磁场对电荷系统作功 考虑空间某区域,设其体积为V,表面为A,自由电荷密度为ρe0,电流密度为j0. 以f表示电磁场对电荷

的作用力密度,v 表示电荷的运动速度,则电磁场对电荷系统所作功的功率为 ????) (d V V v f , 体积V 内电磁场能量的增加率为 ????????=)() (d d d d V V V t w V w t , 通过界面A 流入V 内的电磁能为 σ???-) (d A S . 能量守恒定律要求单位时间内通过界面A 流入V 内的能量,等于场对V 内电荷作功的功率以及V 内电磁场能量的增加率之和,即 ??????????+?=?-)()() (d d d A V V V t w V v f A S . (14.64) 利用奥-高斯公式可得,式(14.64)的相应的微分形式是 v f S ?-=??+??t w . (14.65) ( 3 ) 电磁能密度和电磁能流密度的表达式 ① 由洛仑兹力公式可得 0)()(j E v E v B v E v f ?=?=??+=?ρρρ. (14.66) ② 将麦克斯韦方程组中的式

大学物理常用公式(电场磁场 热力学)

第四章电?场 一、常见带电体得场强、电势分布 1)点电荷: 2)均匀带电球面(球面半径R)得电场: 3)无限长均匀带电直线(电荷线密度为):,方向:垂直于带电直线。 4)无限长均匀带电圆柱面(电荷线密度为): 5)无限大均匀带电平面(电荷面密度为)得电场:,方向:垂直于平面。 二、静电场定理 1、高斯定理:静电场就是有源场。 指高斯面内所包含电量得代数与;指高斯面上各处得电场强度,由高斯面内外得全部电荷产生;指通过高斯面得电通量,由高斯面内得电荷决定。 2、环路定理:静电场就是保守场、电场力就是保守力,可引入电势能 三、求场强两种方法 1、利用场强势叠加原理求场强分离电荷系统:;连续电荷系统: 2、利用高斯定理求场强 四、求电势得两种方法 1、利用电势叠加原理求电势分离电荷系统:;连续电荷系统: 2、利用电势得定义求电势 五、应用 点电荷受力: 电势差: a点电势能: 由a到b电场力做功等于电势能增量得负值 六、导体周围得电场 1、静电平衡得充要条件: 1)、导体内得合场强为0,导体就是一个等势体。 2)、导体表面得场强处处垂直于导体表面。表面。导体表面就是等势面。 2、静电平衡时导体上电荷分布:1)实心导体:净电荷都分布在导体外表面上。 2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。 3)导体腔内有电荷+q,导体电量为Q:静电平衡时,腔内表面有感应电荷-q,外表面有电荷Q +q。 3、导体表面附近场强: 七、电介质与电场 1、在外电场作用下,在外电场作用下,非极性分子电介质分子正、负电荷中心发生相对位移,产生位移极化; 极性分子电介质分子沿外电场偏转,产生取向极化。 2、电位移矢量—电介质介电常数,—电介质相对介电常数。 3、无介质时得公式将换成(或上乘),即为有电介质时得公式 八、电容 1、电容器得电容: 2、平行板电容器: 3、电容串联:?电容并联: 4、电容器得储能?: 5、电场得能量密度:第五章稳恒磁场 一、常见电流磁场分布 1、无限长载流直导线得磁场分布: 2、载流圆环圆心处磁场:

蓄电池能量密度

电池常用术语:能量密度和功率密度 (2010-06-21 10:52:38) 分类:储能 标签: 电池 在谈及电池的时候,能量密度和功率密度是两个经常提到的量 能量密度(Wh/kg)指的是的单位重量的电池所储存的能量是多少,1Wh等于3600焦耳(J)的能量。 功率密度(W/kg)指的是单位重量的电池在放电时可以以何种速率进行能量输出。 能量密度是由电池的材料特性决定的,普通铅酸电池的能量密度约为40Wh/kg,常用的电动两轮车用铅酸电池包为48V,10Ah, 储能480Wh,所以可以简单估计这种电池包的重量至少在12kg以上。 铅酸电池的能量密度是比较低的,所以无法用作电动汽车的动力源,因为如果使用铅酸电池驱动家用汽车行驶200km以上,需要将近1吨的电池,这个重量太大了,无法达到实用,当然铅有毒也是一个方面原因,铅酸电池的循环性能也比较差,但是我们可以看到,仅丛能量密度上就可以判断出铅酸电池不能作为纯电动汽车的动力源 目前比较热的锂离子电池的能量密度约在100~150Wh/kg左右,这个值比铅酸电池高出2~3倍,且锂离子电池的循环性要远远高于铅酸电池,所以目前锂离子电池是开发电动汽车的首选电池。 功率密度也是由材料的特性决定的,并且功率密度和能量密度没有直接关系,并不是说能量密度越高功率密度就越高,用专业的术语来说,功率密度其实描述的是电池的倍率性能,即电池可以以多大的电流放电,功率密度对于电池开发以及电动车开发而言非常重要,如果功率密度高,则电动车在加速的时候就会非常快,普通的铅酸电池的功率密度一般只有几十~数百瓦特/千克,这是一个非常低的

值,表明铅酸电池的高倍率放电性能较差,而锂离子电池目前的功率密度可以达到数千瓦特/千克。 值得指出的是,能量密度和功率密度都是一个会变化的量,电池在使用多次以后能量密度会降低(电池容量衰减),功率密度也会下降,并且这两个量也是随着环境的变化而变化的,比如在极为寒冷或炎热的季节中它们都会发生一定程度的变化(一般是减少)。 目前还没有任何一种电池的能量密度可以达到实用化的驱动电动汽车具有几百公里的续航里程。提高电池的能量密度也是目前电池研发中的重中之重,在安全性得到解决的前提下,如果电池的能量密度可以达到300~400Wh/kg的话,就具备了和传统燃油机车较量续航里程的资本,但是电池还有一个知名的问题就是寿命,电池的能量密度会随着电池的使用而衰减,并且这种衰减并非是线型的,而可能是突然的降低,所以,在开发车用电池的时候,循环性同样是决定性的因素。

电磁波衰减

第十六章机械波和电磁波 振动状态的传播就是波动,简称波. 激发波动的振动系统称为波源 16-1机械波的产生和传播 1. 机械波产生的条件 (1)要有作机械振动的物体,亦即波源. (2)要有能够传播这种振动的介质 波源处质点的振动通过弹性介质中的弹性力,将振动传播开去,从而形成 机械波。 波动(或行波)是振动状态的传播,是能量的传播,而不是质点的传播。 ◆ 质点的振动方向和波的传播方向相互垂直,这种波称为横波. ◆ 质点的振动方向和波的传播方向相互平行,这种波称为纵波. 2.波阵面和波射线 ● 在波动过程中,振动相位相同的点连成的面称 为波阵面(wave surface) ● 波面中最前面的那个波面称为波前(wave front) ● 波的传播方向称为波线(wave line)或波射线 波面波 线 平面波 球面 波 3. 波的传播速度 由媒质的性质决定与波源情况无关 ● 液体和气体中纵波传播速度 B-介质体变弹性模量 ρ-介质密度

● 在 固 体 中G-介质切变模量 Y-介质杨氏模量 4.波长和频率 ● 一个完整波的长度,称为波长. ● 波传过一个波长的时间,叫作波的周期 ● 周期的倒数称为频率.

16-2 平面简谐波波动方程 ● 前进中的波动,称为行波. ● 描述介质中各质点的位移随时间变化的数学函数式称为行波的波动表式(或波 动方程) 设坐标原点的振动 为: O 点运动传到 p 点需 用时 相位 落后 所以 p 点的运动方 程: 1.平面简谐波的波动表式 定义 k 为角波 数 又 因此下述表达式等价: 为波的 相位

● 波在某点的相位反映该点媒质的“运动状态”, 所以简谐波的传播也是媒质振动相位的传播。 设 t 时刻x处的相位经 dt 传到(x +dx)处, 则有 于 ——相速度(相速) 是得到 简谐波的波速就是相速 2.行波动力学方程 将平面波的波函数对空间和时间求导,可得 ——波动方程。各种平面波所必须满足的线性偏微分方 程 若 y1,y2 分别是它的解,则(y1+y2)也是它的解,即上述波动方程遵从叠加原理。 3.波动方程推导(以一维纵波为例) 取棒中任一小质元原长 dx,质量为dm=ρSdx 受其它部分的弹性力为 f 和 f+df 质元的运动学方程 为: 根据弹性模量的定 义:

电磁场公式总结

电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的 一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的. 名称 电场力 磁场力 库伦力 安培力 洛仑兹力 涡旋电场力 定义式 1202 1F 4q q r r πε= d d F I l B =? (微分式) d L F I l B =?? (积分式) F qv B =? 洛仑兹力永远不对粒子做功 涡旋电场对导体中电荷的作用力 名称 电场强度(场强) 电极化强度矢量 磁场感应强度矢量 磁化强度 定义 单位电荷在空间 某处所受电场力 的大小,与电荷 在该点所受电场 力方向一致的一 个矢量. 即:F E q = . 库伦定理: 12021F 4q q r r πε= 某点处单位体积内因极化而产生的分子电矩之和. 即:i V =?∑i p P 单位运动正电荷qv 在磁场中受到的最大力m F .即:m F B qv = 毕奥-萨法尔定律: 1012212L Idl r B 4r μπ?=? 单位体积内所有分子固有磁矩的矢量和m p ∑ 加上附加磁矩的矢量和.用m p ?∑ 表示. 均匀磁化:m m p p M V +?=?∑∑ 不均匀磁化:0lim m m V P p M V ?→+?=?∑∑ 电偶极距:e P l =q 力矩:P E ? L= 磁矩:m P ISn = L IS n B =? () 电力线 磁力线 静电场的等势面 定义 就是一簇假想的曲线,其曲线上任一点的切线方向都与该点处的E 方向一致. 就是一簇假想的曲线,其曲线上任一点的切线方向与该点B 的方向相同. 就是电势相等的点集合而成的曲面. 性质 (1) 电力线的方向即电场强度的方向,电力线的疏密程度表示电场的强弱. (2)电力线起始于正电荷,终止于负电荷,有头有尾,所以静电场是有源(散)场; (3) 电力线不闭合,在没有电荷的地方,任意两条电力线永不相交,所以静电场是无旋场. 静电场是保守场,静电场力是保守力. (1)磁力线是无头无尾的闭合曲线,不像电力线那样有头有尾,起于正电荷,终于负电荷,所以稳恒磁场是无源场. (2)磁力线总是与电流互相套合,所以稳恒磁场是有旋场. (3)磁力线的方向即磁感应强度的方向,磁力线的疏密即磁场的强弱. (1)沿等势面移动电荷时静电力不作功; (2)等势面的电势沿电力线的方向降低; (3)等势面与电力线处处正交; (4)等势面密处电场强,等势面疏处电场弱. 名称 静电场的环路定理 磁场中的高斯定理 定义 静电场中场强沿任意闭合环路的线积分通过任意闭合曲面S 的磁通量恒等于0.

能量密度和功率密度

能量密度和功率密度 Prepared on 22 November 2020

电池常用术语:能量密度和功率密度 (2010-06-2110:52:38) 标签:分类: 在谈及电池的时候,能量密度和功率密度是两个经常提到的量 能量密度(Wh/kg)指的是的单位重量的电池所储存的能量是多少,1Wh等于3600焦耳(J)的能量。 功率密度(W/kg)指的是单位重量的电池在放电时可以以何种速率进行能量输出。 能量密度是由电池的材料特性决定的,普通铅酸电池的能量密度约为40Wh/kg,常用的电动两轮车用铅酸电池包为48V,10Ah,储能480Wh,所以可以简单估计这种电池包的重量至少在12kg以上。 铅酸电池的能量密度是比较低的,所以无法用作电动汽车的动力源,因为如果使用铅酸电池驱动家用汽车行驶200km以上,需要将近1吨的电池,这个重量太大了,无法达到实用,当然铅有毒也是一个方面原因,铅酸电池的循环性能也比较差,但是我们可以看到,仅丛能量密度上就可以判断出铅酸电池不能作为纯电动汽车的动力源 目前比较热的锂离子电池的能量密度约在100~150Wh/kg左右,这个值比铅酸电池高出2~3倍,且锂离子电池的循环性要远远高于铅酸电池,所以目前锂离子电池是开发电动汽车的首选电池。 功率密度也是由材料的特性决定的,并且功率密度和能量密度没有直接关系,并不是说能量密度越高功率密度就越高,用专业的术语来说,功率密度其实描述的是电池的倍率性能,即电池可以以多大的电流放电,功率密度对于电池开发以及电动车开发而言非常重要,如果功率密度高,则电动车在加速的时候就会非常快,普通的铅酸电池的功率密度一般只有几十~数百瓦特/千克,这是一个非常低的值,表明铅酸电池的高倍率放电性能较差,而锂离子电池目前的功率密度可以达到数千瓦特/千克。 值得指出的是,能量密度和功率密度都是一个会变化的量,电池在使用多次以后能量密度会降低(电池容量衰减),功率密度也会下降,并且这两个量也是随着环境的变化而变化的,比如在极为寒冷或炎热的季节中它们都会发生一定程度的变化(一般是减少)。 目前还没有任何一种电池的能量密度可以达到实用化的驱动电动汽车具有几百公里的续航里程。提高电池的能量密度也是目前电池研发中的重中之重,在安全性得到解决的前提下,如果电池的能量密度可以达到300~400Wh/kg的话,就具备了和传统燃油机车较量续航里程的资本,但是电池还有一个知名的问题就是寿命,电池的能量密度会随着电池的使用而衰减,并且这种衰减并非是线型的,而可能是突然的降低,所以,在开发车用电池的时候,循环性同样是决定性的因素

电磁场与电磁波1-6章公式总结.

三种坐标下的位矢表示: 直角坐标系: 圆柱坐标系: 球坐标系: 标量的梯度: 矢量的散度: 矢量的旋度: 散度定理: 斯托克斯定理: 拉普拉斯运算符: 标量拉普拉斯运算:矢量拉普拉斯运算: 电流的连续性方程:, 恒定电流场:(要电流不随时间变化,即要电荷在空间分布不随时间变化) 电场强度:

高斯定理:电场性质: 磁感应强度: 安培环路定理:磁场性质: 媒质的传导特性:(表示电荷的运动速度) 法拉第电磁感应定律: 麦克斯韦方程组与磁场的边界条件: 静电场和恒定磁场的基本方程和边界条件如上可查(电场与磁场不相互影响,故有略去项) 电位函数: 微分方程:边界方程: 系统电容:1取适合坐标;2设带等量相反电荷;3求出电场;4求出电位差;5计算荷差比。 静电场的能量:能量密度: 矢量磁位:,

微分方程:边界方程: 标量位矢: 微分方程:边界方程: 系统电感: 恒定磁场的能量:能量密度: 恒定电场分析:本构以,电荷密度对恒定电场无影响可以置零。 对比电容与漏电导: 唯一性定理:在场域的边界面上给定或的值,则泊松方程或拉普拉斯方程在场域内具有唯一解。 镜像法遵循的原则:1所有镜像电荷必须位于所求的场域以外的空间中;2镜像电荷的个数、位置及电荷量的大小以满足场域边界面上的边界条件来确定。 波动方程: 达朗贝尔方程(依洛仑兹规范): 洛仑兹规范:库仑规范: 电磁能量守恒:(坡印廷定理)

时谐电磁场的复数表示: 复矢量的麦克斯韦方程:,,, 亥姆霍兹方程(波动方程的复数化):,, 时谐场的位函数:洛仑兹条件变为 达朗贝尔方程变为 平均能流密度: 平均电、磁场能量密度: 理想介质中的均匀平面波函数:,第一项为方向,第二项为方向 理想介质中的均匀平面波的传播特点: 沿任意方向传播的均匀平面波: 合成波的极化形式取决于和分量的振幅和相位之间的关系: 有:,

_能量密度充电倍率测试方法_动力电池、燃料电池相关技术指标测试方法_试行_

动力电池、燃料电池相关技术指标测试方法(试行) 1、 动力电池能量密度(PED)测试方法 1.1测试对象 测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。 1.2 测试步骤 室温(25℃±2℃)环境下,按照如下步骤测试: 1)按照企业规定的且不小于I 3(A)的电流放电至企业规定的放电终止条件,静置不小于30min; 2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min; 3)重复步骤1),计量放电能量E(以Wh计); 4)重复步骤2)~3)2次,取3次放电能量E的平均值E average 。 5)用衡器测量测试对象的质量M(以kg计,称重时至少包括GB/T 31467.3-2015 附录A.1规定的组成部分); 6)计算测试对象放电能量密度PED(以Wh/kg计),计算公式如下: /average PED E M 2、动力电池(含超级电容器)最大充电倍率(CR)测试方法 2.1测试对象

测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。 2.2 测试步骤 室温(25℃±2℃)环境下,按照如下步骤测试: 1)按照企业规定的且不小于I 3(A)的电流放电至企业规定的放电终止条件,静置不小于30min; 2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min; 3)重复步骤1),计量放电容量Q 0(以Ah计); 4)按照企业规定的最快充电方式(该充电方式应不高于GB/T 31484-2015的6.1.1.3使用的充电方式)充电至80%SOC (SOC值为电池管理系统上报数值),静置30min,计量充电时间t(以s计); 5)按照步骤1)相同的电流放电至20%SOC(SOC值为电池管理系统上报数值),静置30min,计量放电容量Q 1(以Ah计),如果Q 1低于0.55 Q 0,则终止试验; 6)重复步骤4)~5)10次,如果测试过程中测试对象温度超过企业规定的最高工作温度,则终止试验; 7)取步骤6)10次充电时间t的平均值t average ,并计算测试对象最大充电倍率CR(以C计),计算公式如下: 2160/average CR t 3、燃料电池系统(发动机)额定输出功率测试方法

丁荣培:电磁场能量密度公式新应用(百度文库4)

论电子、质子半径的新计算方法及其延伸意义 丁荣培 湖南省长沙市白沙路255号(410002) E-mail:drp2004@https://www.doczj.com/doc/0312920279.html, 摘要:本文从γ射线在重原子核附近可产生正负电子对这一物理现象出发,分析了电子经典半径的由来及其存在的问题,提出电子与质子内部本质上就是量子化的涡旋闭合电磁场的观点。再由麦克斯韦方程组导出的电磁场能量密度公式以及质能公式、电磁强度公式三个公式结合推导 出电子、质子半径公式及电荷量子化与粒子稳定条件常数 od mr G=等系列新公式并说明其物理意义。根据系列新的计算公式,计算出描述电子、质子的有关物理特征的新参数,从全新的角度统一地解释物质的微观世界和宏观世界,并初步分析了可能由此对物理学带来的影响。 关键词:电子、质子半径电荷量子化与粒子稳定条件常数 od mr G=黑洞物理宇宙物理 中图分类号:O41,O57文献标志码:A 1.引言 1.1.电子对的产生与湮灭 中国物理学家赵忠尧首先发现了能量大于两倍电子静质量能(2m c2=1.02MeV)的γ射线在重原子核附近可产生正负电子对。[1] 物理教科书上估算的电子经典半径r e ≈2.8×10-15 m,[2]质子半径r p ≈1.2×10-15m。[3]质子 质量约是电子质量的1836倍,按我们通常理解质子直径比电子直径大得多,事实恰恰相反;现有物理框架对此仍然无法作出合理解释。 1.2.目前电子的经典半径的由来[4]及其存在的问题 估算电子经典半径r e ≈2.8×10-15m基于以下设想: (1)设想电子是一个半径为r e 均匀带电球; (2)设想电子静止质量对应的能量2 e m c由静电自能提供。 1.3.存在的主要问题

能量密度和营养质量指数

能量密度和营养质量指数 食品营养价值分析 一、食品能量密度和营养质量指数评价方法 食物的营养价值是指食物中所含的能量和营养素满足人体需要的程度。包括营养素的种类是否齐全,营养素的数量和比例是否合理,是否易于被人体消化吸收和利用等几个方面的评价。 1. 营养素的种类及含量; 把食物中的营养素与其提供的能量结合在一起,以判断食物能量和营养素之间的供求关系。根据INQ值的大小直观地对食物营养质量进行判断,INQ最大的特点就是可以按照不同人群的营养需求分别进行计算。 1.食物中能量密度计算 不同的食物能量差别可采用能量密度进行评估。选用100g食物为计量单位,根据食物标签的能量数值或者计算的能量数值,查询推荐的成人能量参考摄入量,根据公式求出能量密度。 能量密度=一定量食物提供的能量值/能量推荐摄入量 (1) 计算INQ 营养素密度=一定量食物提供的营养素含量/相应营养素推荐摄入量 食物营养质量指数(INQ)=营养素密度/能量密度 营养密度:指食品中以单位热量为基础所含重要营养素(维生素、矿物质、蛋白质)的浓度。如乳、瘦肉每千焦(KJ)提供的营养素多且好,所以营养密度较高,肥肉每千焦(KJ)提供的营养素很少,其营养密度则低;纯糖每千焦(KJ)提供的营养素(维生素、矿物质、蛋白质)没有,所以无营养密度,限制纯热量物质的摄入。 2.营养素质量;常用营养质量指数(index of nutritional qulity,INQ)来表示: 即营养素密度(某营养素占供给量的比)与热能密度(该食物所含热能占供给量的比)之比。

INQ=(某营养素密度)/(热能密度) =(某营养素含量/该营养素供给量标准)/ (某营养素产能量/热能供给量标准) (2) INQ评价标准 INQ=1,表示食物提供营养素的能力与提供热能的能力相当,二者满足人体需要的程度相等,表示该食物的营养素与能量含量达到平衡;为‘‘营养质量合格食物”。 INQ<1,表示该食物提供营养素的能力小于提供热能的能力,长期食用此食物,会发生该营养素不足或供能过剩的危险,为“营养价值低食物”。 INQ>1,表示该食物提供营养素的能力大于提供能量的能力,为“营养质量合格食物”,其营养价值高;特别适合体重超重和肥胖者选择。 INQ是评价食物营养价值的一简明指标。 以成年男子轻体力劳动者的营养供给量为标准,计算100克鸡蛋、大豆、大米主要营养素的INQ值。见下表。 鸡蛋、大米、大豆中几种营养素的INQ值 例.某食物中蛋白质INQ值大于1,则( A ) A.表示该食物蛋白质的供给量高于能量供给量; B. 表示该食物蛋白质的供给量低于能量供给量; C. 表示该食物蛋白质的供给量高于机体供给量; D. 表示该食物蛋白质的供给量低于机体供给量。 6. 食物营养价值的评定与()因素无关。 (A)营养素的种类及含量;

相关主题
文本预览
相关文档 最新文档