当前位置:文档之家› 徕卡DNA03高精度数字水准测量技术

徕卡DNA03高精度数字水准测量技术

徕卡DNA03高精度数字水准测量技术
徕卡DNA03高精度数字水准测量技术

高精度时间间隔测量方法

高精度时间间隔测量方法综述 孙杰潘继飞 (解放军电子工程学院,安徽合肥,230037) 摘要:时间间隔测量技术在众多领域已经获得了应用,如何提高其测量精度是一个迫切需要解决的问题。在分析电子计数法测量原理与误差的基础上,重点介绍了国内外高精度时间间隔测量方法,这些方法都是对电子计数法的原理误差进行测量,并且取得了非常好的效果。文章的最后给出了高精度时间间隔测量方法的发展方向及应用前景。 关键词:时间间隔;原理误差;内插;时间数字转换;时间幅度转换 Methods of High Precision Time-Interval Measurement SUN Jie , PAN Ji-fei (Electronic Engineering Institute of PLA, HeFei 230037, China) Abstract: Technology of time-interval measurement has been applied in many fields. How to improve its precision is an emergent question. On the bases of analyzing electronic counter’s principle and error, this paper puts emphasis upon introducing high precision time-interval measurements all over the world. All these methods aim at electronic counter’s principle error, and obtain special effect. Lastly, the progress direction and application foreground of high precision time-interval measurement methods are predicted. Key Words: time interval; principle error; interpolating; time-to-digital conversion; time-to-amplitude conversion 0引言 时间有两种含义,一种是指时间坐标系中的某一刻;另一种是指时间间隔,即在时间坐标系中两个时刻之间的持续时间,因此,时间间隔测量属于时间测量的范畴。 时间间隔测量技术在通信、雷达、卫星及导航定位等领域都有着非常重要的作用,因此,如何高精度测量出时间间隔是测量领域一直关注的问题。本文详细分析了目前国内外所采用的高精度时间间隔测量方法,指出其发展趋势,为研究新的测量方法指明了方向。 1 电子计数法 1.1 测量原理与误差分析 在测量精度要求不高的前提下,电子计数法是一种非常好的时间间隔测量方法,已经在许多领域获得了实际应用,其测量原理如图1所示:

水准测量精度控制的工程实践

水准测量精度控制的工程实践 建筑工程学院工程管理2班薛梦圆 120145178 水准测量又名“几何水准测量”,是用水准仪和水准尺测定地面上两点间高差的方法。在地面两点间安置水准仪,观测竖立在两点上的水准标尺,按尺上读数推算两点间的高差。水准测量是利用一条水平视线,并借助水准尺,来测定地面两点间的高差,这样就可由已知点的高程推算出未知点的高程。 而由于使用水准仪对于使用调零等要求较高,而使用上的小误差也会对测量结果造成较大的影响,故水准测量的精度控制在整个测量过程中起到很重要的地位。 水准测量的误差莫过于仪器误差、观测误差以及外界条件影响。可以说,水准测量的误差是不可避免的,但是可以通过一系列手段控制其精准度—— 一、仪器误差 1.仪器校正后的残余误差 在水准实验前虽然仪器经过了严格的校正与调零,但仍然可能存在未完全校正的几率。理论上水准管轴应与视准轴平行,若两者不平等,即两轴线不平行形成角,这种误差的影响与仪器至水准尺的距离成正比,属于系统误差。遇到系统误差,由于其影响与仪器至水准尺的距离成正比例,则能够在测量中采取一定的方法加以减弱或消除。若观测时使前、后视距相等,可消除或减弱此项误差的影响。 2.水准尺误差 主要包含尺长误差(尺子长度不准确)、刻划误差(尺上的分划不均匀)和零点差(尺的零刻划位置不准确),对于较精密的水准测量,一般应选用尺长误差和刻划误差小的标尺。尺的零误差的影响,控制方法可以通过在一个水准测段内,两根水准尺交替轮换使用(在本测站用作后视尺,下测站则用为前视尺),并把测段站数目布设成偶数,即在高差中相互抵消。同时可以减弱刻划误差和尺长误差的影响。 二、观测误差 1.水准管气泡居中误差 由于符合水准气泡未能做到严格居中,造成望远镜视准轴倾斜,产生读数误差。读数误差的大小与水准管的灵敏度有关,主要是水准管分划值τ的大小。此外,读数误差与视线长度成正比。只要观测时符合水准管气泡能够认真仔细进行居中,且对视线长度加以限制,与中间法一致,此误差可以消除。 2.读数误差 在水准尺上估读毫米数的误差,与人眼的分辨能力、望远镜的放大倍率以及视线长度有关。

【CN209783529U】一种高精度激光测量系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920523390.9 (22)申请日 2019.04.17 (73)专利权人 西安航天计量测试研究所 地址 710100 陕西省西安市15号信箱7分箱 (72)发明人 马车 常莹 赵米峰 张永攀  杨建  (74)专利代理机构 西安智邦专利商标代理有限 公司 61211 代理人 汪海艳 (51)Int.Cl. G01B 11/06(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 一种高精度激光测量系统 (57)摘要 本实用新型属于精密测量技术领域,公开了 一种高精度激光测量系统,可应用于包括液体火 箭发动机微小零部件在内的其他工件的厚度测 量。包括底座、紧固螺钉、下限位板、Z向滑块、立 柱、上限位盖、承重块、平移台、定位块、吸附平台 以及激光位移传感器。底座上安装有立柱和承重 块;立柱上分别是上限位盖、下限位板和Z向滑 块;Z向滑块和下限位板分别通过紧固螺钉进行 夹紧固定,而上限位盖通过自身的螺纹与立柱旋 紧;激光位移传感器通过Z向滑块支撑;平移台、 吸附平台和定位块通过螺钉与承重块相连接。本 专利装置具备高精度(测量不确定度U≤5μm)测 量工件厚度的能力。权利要求书1页 说明书4页 附图3页CN 209783529 U 2019.12.13 C N 209783529 U

权 利 要 求 书1/1页CN 209783529 U 1.一种高精度激光测量系统,其特征在于:包括激光位移传感器(1)和定位台(2); 所述定位台(2)包括平移台(21)及固定在平移台(21)上表面的吸附平台(22); 所述平移台(21)能够沿X、Y向平移及在XY平面内旋转; 所述吸附平台(22)为中空腔体,腔体上开有进气口(221)及抽气口(222),所述进气口(221)位于吸附平台(22)上表面的中间部位;所述吸附平台(22)的上表面用于放置待测工件; 所述激光位移传感器(1)用于测量待测工件上表面及吸附平台(22)上表面距激光位移传感器(1)的距离。 2.根据权利要求1所述的高精度激光测量系统,其特征在于:所述定位台(2)还包括用于限制吸附平台(22)位移的定位块(23),所述定位块(23)上设有固定待测工件的通孔。 3.根据权利要求2所述的高精度激光测量系统,其特征在于:所述定位块(23)与平移台(21)可拆卸连接,定位块(23)底部开有与吸附平台(22)匹配的凹槽,吸附平台(22)位于所述凹槽内,定位块(23)侧壁开有与吸附平台(22)抽气口相通的开孔(231)。 4.根据权利要求2所述的高精度激光测量系统,其特征在于:所述定位台(2)还包括位于平移台(21)底部的承重块(24)。 5.根据权利要求4所述的高精度激光测量系统,其特征在于:还包括底座(4)及立柱(3),所述立柱(3)与承重块(24)固定在底座(4)上; 所述立柱(3)上安装有Z向滑块(25),所述Z向滑块(25)用于固定激光位移传感器(1)。 6.根据权利要求5所述的高精度激光测量系统,其特征在于:所述立柱(3)上还安装有下限位板(26)与上限位盖(27); 所述下限位板(26)位于Z向滑块(25)的下方,通过紧固螺钉(10)固定在立柱(3)上;所述上限位盖(27)位于立柱(3)的顶端。 7.根据权利要求5所述的高精度激光测量系统,其特征在于:还包括隔震平台,底座(4)设置在隔震平台上。 8.根据权利要求1所述的高精度激光测量系统,其特征在于:所述平移台(21)包括底板(211)、X向平移板(212)、Y向平移板(213)及旋转台(214); 所述底板(211)上设有X向凹槽,所述X向平移板(212)底部设有凸起,所述凸起能够在X 向凹槽内滑动; 所述X向平移板(212)上表面设有Y向凹槽,所述Y向平移板(213)底部设有凸起,所述凸起能够在Y向凹槽内滑动; 所述旋转台(214)包括伺服电机(215)、小齿轮及大齿轮,伺服电机(215)的输出轴与小齿轮连接,所述小齿轮与大齿轮啮合; 所述吸附平台(22)固定在大齿轮的上表面。 2

国产高精度位置和姿态测量系统

国产高精度位置和姿态测量系统 LDPOS的发展与应用 周落根邓晓光洪勇( 摘要:本文详细介绍了高精度位置和姿态测量系统的发展,我国具有完全自主知识产权的移动测量和实景三维技术和产品的研究、应用和服务情况,以及地面无控航测系统,并对其未来的发展进行展望。 关键词:高精度位置和姿态测量系统LDPOS 地面无控航测系统 一引言 高精度位置和姿态测量系统(Position and Orientation System,POS)集全球导航卫星系统、惯性测量单元、导航处理计算机技术于一体,可以实时获取运动物体的高精度空间位置和三维姿态信息,广泛应用于飞机、轮船和陆地载体的导航定位。POS通过全球导航卫星系统(Global Navigation Satellite System ,GNSS)接收定位数据,利用高精度光学陀螺捷联惯性测量单元(Inertial Measurement Unit,IMU)提供设备瞬间的速度、加速度和方向信息,然后通过数据处理与融合软件对所接收的定位定姿信息进行数据处理,获得载体设备的高精度位置及姿态信息,同时给载荷传感器提供高精度同步信息,直接解算观测成果的高精度外方位元素,输出具有直接地理参考的影像数据。 POS解决了GNSS动态可靠性差,会出现信号遮挡、丢失,同时数据输出的频率低等问题。POS系统将GNSS长期、低动态定位精度高的特性与惯性导航系统(INS)的短期、高动态定位精度高的性能有机地结合起来,不但提高了系统的精度,加强了系统的抗干扰能力,同时解决了GNSS动态应用采样频率低的问题。 POS 系统可为载体或航空传感器提供高精度、高频率(200HZ)的实时位置与姿态(X,Y,Z,φ,ω,κ)数据,应用于各种不同类型的传感器:如航空胶片或数字相机、线阵扫 周落根,立得空间信息技术股份有限公司副总经理;邓晓光、洪勇,立得空间信息技术股份有限公司。

水准测量原理

第二章 水准测量 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。高程测量按所使用的仪器和施测方法不同,主要有水准测量和三角高程测量等。水准测量是高程测量中最常用的一种方法。本章主要介绍水准测量原理、水准仪的构造及其使用、水准测量的施测方法与成果整理以及仪器的检验与校正等内容。 2-1 水准测量原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供的一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图2-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为: b a h AB -= (2-1) 图2-1 水准测量

原理 设水准测量是由A 点向B 点进行,如图2-1中箭头所示,则规定A 点为后视点,其水准尺读数a 为后视读数;B 点为前视点,其水准尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果a

角度测量的原理及其方法

角度测量的原理及其方法 角度测量原理 一、水平角测量原理 地面上两条直线之间的夹角在水平面上的投影称为水平角。如图 3-1所示,A、B、O为地面上的任意点,通OA和OB直线各作一垂 直面,并把OA和OB分别投影到水平投影面上,其投影线Oa和Ob 的夹角∠aOb,就是∠AOB的水平角β。 如果在角顶O上安置一个带有水平刻度盘的测角仪器,其度盘 中心O′在通过测站O点的铅垂线上,设OA和OB两条方向线在水 平刻度盘上的投影读数为a1和b1,则水平角β为: β= b1 - a1(3-1) 二、竖直角测量原理 在同一竖直面内视线和水平线之间的夹角称为竖直角或称垂直 角。如图3-2所示,视线在水平线之上称为仰角,符号为正;视线在 水平线之下称为俯角,符号为负。

图3-1 水平角测量原理图图3-2 竖直角测 量原理图 如果在测站点O上安置一个带有竖直刻度盘的测角仪器,其竖盘中心通过水平视线,设照准目标点A时视线的读数为n,水平视线的读数为m,则竖直角α为: α= n - m (3-2) 光学经纬仪 一、DJ6级光学经纬仪的构造 它主要由照准部(包括望远镜、竖直度盘、水准器、读数设备)、水平度盘、基座三部分组成。现将各组成部分分别介绍如下:1.望远镜 望远镜的构造和水准仪望远镜构造基本相同,是用来照准远方目标。它和横轴固连在一起放在支架上,并要求望远镜视准轴垂直于横轴,当横轴水平时,望远镜绕横轴旋转的视准面是一个铅垂面。为了控制望远镜的俯仰程度,在照准部外壳上还设置有一套望远镜制动和

微动螺旋。在照准部外壳上还设置有一套水平制动和微动螺旋,以控制水平方向的转动。当拧紧望远镜或照准部的制动螺旋后,转动微动螺旋,望远镜或照准部才能作微小的转动。 2.水平度盘 水平度盘是用光学玻璃制成圆盘,在盘上按顺时针方向从0°到360°刻有等角度的分划线。相邻两刻划线的格值有1°或30′两种。度盘固定在轴套上,轴套套在轴座上。水平度盘和照准部两者之间的转动关系,由离合器扳手或度盘变换手轮控制。 3.读数设备 我国制造的DJ6型光学经纬仪采用分微尺读数设备,它把度盘和分微尺的影像,通过一系列透镜的放大和棱镜的折射,反映到读数显微镜内进行读数。在读数显微镜内就能看到水平度盘和分微尺影像,如图3-4所示。度盘上两分划线所对的圆心角,称为度盘分划值。 在读数显微镜内所见到的长刻划线和大号数字是度盘分划线及其注记,短刻划线和小号数字是分微尺的分划线及其注记。分微尺的长度等于度盘1°的分划长度,分微尺分成6大格,每大格又分成10,每小格格值为1′,可估读到0.1′。分微尺的0°分划线是其指标线,它所指度盘上的位置与度盘分划线所截的分微尺长度就是分微尺读数值。为了直接读出小数值,使分微尺注数增大方向与度盘注数方向相反。读数时,以在分微尺上的度盘分划线为准读取度数,而后读取该度盘分划线与分微尺指标线之间的分微尺读数的分数,并估读

1 高精度测量方案及原理

1 高精度测量方案及原理 铂电阻传感器是利用金属铂(Pt)的电阻值随温度变化而变化的物理特性而制成的温度传感器。以铂电阻作为测温元件进行温度测量的关键是要能准确地测量出铂电阻传感器的电阻值。按照IEC751国际标准,现在常用的Pt1000(Ro=1 000 Ω)是以温度系数TCR=0.003 851为标准统一设计的铂电阻。其温度电阻特性是: 本温度测量系统采用三线制恒流源驱动法驱动铂电阻传感器。三线制恒流源驱动法是指用硬件电路消除铂电阻传感器的固定电阻(零度电阻),直接测量传感器的电阻变化量。图l为三线制恒流源驱动法高精度测量方案,参考电阻与传感器串联连接,用恒流源驱动,电路各元件将产生相应的电压,传感器因温度变化部分电阻的电压可以由后面的放大电路和A/D转换器直接测量,并采用2次电压测量—交换驱动电流方向,在每个电流方向上各测量一次。其特点是直接测量传感器的电阻变化量,A/D转换器利用效率高,电路输出电压同电阻变化量成线性关系。传感器采用三线制接法能有效地消除导线电阻和自热效应的影响。利用单片机系统控制两次测量电压可以避免接线势垒电压及放大器、A/D转换器的失调与漂移产生的系统误差,还可以校准铂电阻传感器精度。恒流源与A/D转换器共用参考基准,这样根据A/D转换器的计量比率变换原理,可以消除参考基准不稳定产生的误差,不过对恒流源要求较高,电路结构较为复杂。为了进一步克服噪声和随机误差对测量精度和稳定度的影响,最后在上位机中采用MLS数值算法实现噪声抵消,大大提高了温度测量精度和稳定度。 2 系统电路设计 2.1 三线制恒流源驱动电路 恒流源驱动电路负责驱动温度传感器Pt1000,将其感知的随温度变化的电阻信号转

工业设备安装中高精度测量方法

工业设备安装中高精度测量方法 摘要:随着科学技术的发展,工业设备安装工程中的安装精度要求越来越高,尤其是大跨度、长距离、高速运转的自动化生产线的设备安装,如造纸生产线设备的安装,其水平度及垂直度的允许偏差均仅为0.3mm。 关键词:工业设备安装;安装精度要求;精度测量;地脚螺栓;测量放线;自动化生产线 随着科学技术的发展,工业设备安装工程中设备安装精度要求越来越高,尤其是大跨度、长距离、高速运转的自动化生产线的设备安装,如造纸生产线设备的安装,其水平度及垂直度的允许偏差均为0.3mm。 设备安装的精度取决于地脚螺栓的预埋精度,而在较大范围内的地脚螺栓预埋精度则由测量放线的精确度所决定。因此掌握整套的高精度测量放线技术是保证设备安装精度的基础。 1、主要技术特点 1.1使用本工法,建立基准线网络,各基准线之间的平等度、垂直度均能达到很高的精度要求。 1.2 网格基准线贯穿于整个厂房,无论是整条生产线,还是单体设备均能借助该基准线,利用精密仪器保证其安装精度。 1.3 利用网格基线来控制设备地脚螺栓的预埋偏差,减少误差传播量,从而保证设备安装精度。 1.4 利用网格基准线上基准点(线)的永久保存性,更方便于将来生产运行过程中的设备维修。 2、适用范围 本工法适用于安装精度要求较高、大跨度、长距离、高速度运转的自动生产线设备安装。例如造纸机生产线安装,厂区钢结构管架安装等。 3、施工准备 利用厂房原始的纵、横向的控制点,借助精密测量仪器(如T2经纬仪、GTS-311全站仪等)测设出厂房内设备的成条中心线,以及平等和垂直此中心线的纵、横辅助中心线,并在其纵向辅助中心线上设立各控制点,从而建立一基准线网格。

地面高精度数字重力仪

地面高精度数字重力仪 High-precision ground digital gravimeter 通过国家863计划重大项目支持,北京地质仪器厂及北京奥地探测仪器有限公司成功研制出地面高精度数字重力仪,填补了我国数字重力仪空白。 地面高精度数字重力仪基于石英重力传感器技术设计及制作工艺,温度、倾斜、漂移和固体潮自动补偿改正,重力值测量过程全自动化,实现多点间重力场值段差的相对测量。 The high-precision ground digital gravimeter is developed by Beijing geological instrument factory and Beijing Aodi detection instruments limited company, which has filled the domestic blank and reached the domestic leading level. This project is supported by the National High-Technology Project (863). Based on the technology and fabrication of quartz sensor, the gravimeter can be used to accomplish the relatively measurement of gravity difference in multipoint gravity field. The measurement process is completely automated with the corrections of tides, tilts, drift and temperature. 地面高精度数字重力仪总体技术指标与国外同类仪器水平相当,读数分辨率0.001 毫伽,最小直读范围不小于7000毫伽(在测程范围内格值线性度满足规范要求),残余长期漂移≤ 0.03 毫伽/24H ,观测误差优于±0.02毫伽,整机功耗≤10瓦(环境温度25℃时),重量≤10Kg,工作温度范围-20~45℃。广泛应用于地质科学研究,矿产资源勘探,土木工程勘查,地质灾害调查,国防建设等领域。 The general specifications of high precision ground digital gravimeter are equal to the similar products at abroad, such as the following. Reading resolution: 0.001 mGal. Operation range: world-wide(≥7000 mGal without reseting). Residual long-term drift: ≤0.03mGal/day. Standard deviation: ≤0.02mGal.Power consumption: ≤10W(at ambient temperature of 25℃).Operation temperature: -20℃~45℃.Weight: ≤10Kg. The instruments are widely used in geological science, mineral resources exploration, civil engineering survey, geological hazard survey and so on. 高精度数字重力仪图1 高精度数字重力仪图2

精密水准仪的检校与精度分析

精密水准仪的检校与精度分析 文献综述 1概述 水准测量的基本原理是利用水准仪提供的一条水平视线,在两水准标尺上读数,从而求得两点间的高差,为达到高精度水准测量的要求,水准仪的视准轴与水准轴必须保持相互平行的关系。水准仪由于制造工艺水平的限制及各种外界因素的影响,使仪器的视准轴与水准轴相互平行的关系难于绝对保持,即仪器提供的水平视线不可能绝对水平,而且在仪器使用过程中,其关系还在不断地发生变化。所以水准仪的视准轴与水准轴一般既不在同一平面内,也不互相平行,而是两条空间直线,它们在垂直面上投影的交角称为i角误差,在水平面上投影的交角称为?角误差,影响水准测量的主要误差来源与i角误差,对于?角误差. 2国内外研究现状 2.1数字水准仪i角检校方法探讨 随着测绘仪器制造技术的飞速发展,数字水准仪的普及率愈来愈高。数字水准仪具有测量速度快,读数记录客观,精度高,操作简电,易于实现内外业一体化等特点,具有比光学水准仪更多的优点和技术发展空间,代表了水准仪的发展方向。数字水准仪中存在两种i角,视准轴与水准轴不平行引起的误差称为“光i角”,由经过物镜光心的水平入射光线与这条水平光线经过补偿器到CCD探测器参考点的水平视准线之间的夹角称为"电i角",其中“光i角”影响照准及调焦,。电i 角”影响数字水准仪的读数。在实际应用中,。光i角”可以通过前、后视距相等的方法削弱其对测量结果的影响,只要不超限即可。对于“电i角”虽然数字水准仪DiNill/12能通过软件改正它引起的误差,但在测量过程中外界条件随时在变化“电i角”也随之变化。 与检验光学水准仪i角完全一样,可以在室内进行。预先调平平行光管作为基准水平线,将仪器置于可以升降的工作台上,调平仪器上的圆水准气泡,通过仪器调焦,观察仪器十字线横丝与平行光管内基准水平线是否重合。若两者有偏离,表明仪器i角存在,其i角大小视其偏离程度而定。

4、常用高精度温度测量方法

常用湿度采集传感器及湿度测量原理 湿度传感器,基本形式都为利用湿敏材料对水分子的吸附能力或对水分子产生物理效应的方法测量湿度。有关湿度测量,早在16世纪就有记载。许多古老的测量方法,如干湿球温度计、毛发湿度计和露点计等至今仍被广泛采用。现代工业技术要求高精度、高可靠和连续地测量湿度,因而陆续出现了种类繁多的湿敏元件。 湿敏元件主要分为二大类:水分子亲和力型湿敏元件和非水分子亲和力型湿敏元件。利用水分子有较大的偶极矩,易于附着并渗透入固体表面的特性制成的湿敏元件称为水分子亲和力型湿敏元件。例如,利用水分子附着或浸入某些物质后,其电气性能(电阻值、介电常数等)发生变化的特性可制成电阻式湿敏元件、电容式湿敏元件;利用水分子附着后引起材料长度变化,可制成尺寸变化式湿敏元件,如毛发湿度计。金属氧化物是离子型结合物质,有较强的吸水性能,不仅有物理吸附,而且有化学吸附,可制成金属氧化物湿敏元件。这类元件在应用时附着或浸入被测的水蒸气分子,与材料发生化学反应生成氢氧化物,或一经浸入就有一部分残留在元件上而难以全部脱出,使重复使用时元件的特性不稳定,测量时有较大的滞后误差和较慢的反应速度。目前应用较多的均属于这类湿敏元件。另一类非亲和力型湿敏元件利用其与水分子接触产生的物理效应来测量湿度。例如,利用热力学方法测量的热敏电阻式湿度传感器,利用水蒸气能吸收某波长段的红外线的特性制成的红外线吸收式湿度传感器等。 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气中吸收水分后引起的物理化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏元件分别是根据其高分子材料吸收后的介电常量、电阻率和体积随之发生变化而进行湿度测量的。 湿度传感器是由湿敏元件和转换电路等组成,它是将环境湿度变换为电信号的装置。湿度传感器在工业、农业、气象、医疗以及日常生活等方面都得到了广泛的应用,尤其是随着科学技术的发展,对于湿度的检测和控制越来越受到人们的重视并进行了大量的研制工作。通常,理想的湿度传感器的特性要求是,适合于在宽温、湿范围内使用,测量精度要高;使用寿命长,稳定性好;响应速度快,湿滞回差小,重现性好;灵敏度高,线性好,温度系数小;制造工艺简单,易于

基于PT1000的高精度温度测量系统

基于PT1000的高精度温度测量系统 时间:2010-12-14 18:32:17 来源:电子设计工程作者:方益喜雷开卓屈健康刘奎乔子椋杨海波精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。采用铂电阻测量温度是一种有效的高精度温度测量方法,但具有以下难点:引线电阻、自热效应、元器件漂移和铂电阻传感器精度。其中,减小引线电阻的影响是高精度测量的关键点。对于自热效应,根据元件发热公式P=I2R,必须使流过元件的电流足够小才能使其发热量小,传感器才能检测出正确 的温度。但是过小的电流又会使信噪比下降,精度更是难以保证。此外,一些元器件和仪器很难满足元器件漂移和铂电阻传感器精度的要求。 易先军等提出了以铂电阻为测温元件的高精度温度测量方案,解决了高精度测量对硬件电路的一些苛刻要求问题,但是精度不佳(±0.4 ℃);杨彦伟提出了以MAX1402、AT89C51和Pt500铂电阻设计的精密温度测量系统方案解决了基本的高精度问题,但是系统功耗大,精度仍然不佳;李波等提出采用以负温度系数热敏电阻为核心的高精度测量方案,较好解决了高精度的问题,但是性价比不高,实施效果不佳,测温分辨率能达到0.01℃,测温准确度只达到O.1℃。这里提出采用三线制恒流源驱动方案克服引线电阻、自热效应,利用单片机系统校正控制方案实现元器件漂移和铂电阻传感器精度校准,最后在上位机中采用MLS数值算法实现噪声抵消,大大提高了温度测量精度和稳定度。 1 高精度测量方案及原理 铂电阻传感器是利用金属铂(Pt)的电阻值随温度变化而变化的物理特性而制成的温度传感器。以铂电阻作为测温元件进行温度测量的关键是要能准确地测量出铂电阻传感器的电阻值。按照IEC751国际标准,现在常用的Pt1000(Ro=1 000 Ω)是以温度系数TCR=0.003 851为标准统一设计的铂电阻。其温度电阻特性是: 本温度测量系统采用三线制恒流源驱动法驱动铂电阻传感器。三线制恒流源驱动法是指用硬件电路消除铂电阻传感器的固定电阻(零度电阻),直接测量传感器的电阻变化量。图l 为三线制恒流源驱动法高精度测量方案,参考电阻与传感器串联连接,用恒流源驱动,电路各元件将产生相应的电压,传感器因温度变化部分电阻的电压可以由后面的放大电路和A /D转换器直接测量,并采用2次电压测量—交换驱动电流方向,在每个电流方向上各测量一次。其特点是直接测量传感器的电阻变化量,A/D转换器利用效率高,电路输出电压同电阻变化量成线性关系。传感器采用三线制接法能有效地消除导线电阻和自热效应的影响。利用单片机系统控制两次测量电压可以避免接线势垒电压及放大器、A/D转换器的失调与漂移产生的系统误差,还可以校准铂电阻传感器精度。恒流源与A/D转换器共用参考基准,这样根据A/D转换器的计量比率变换原理,可以消除参考基准不稳定产生的误差,不过对恒流源要求较高,电路结构较为复杂。为了进一步克服噪声和随机误差对测量精度和稳定度

高精度平面度测量方法

高精度平面度测量方法探讨 摘要:道路工程测量是道路施工的首要工序,在整个施工过程中起桥梁和纽带作用,是各工序确保施工质量的重要依据。本文对施工控制网及放样点位的精度进行了分析,并提出加强建筑工程测量精度的相关技术措施。 关键词:道路工程测量;精度分析;施工放样;有效控制 abstract: the road engineering measurement is the way of the construction of the primary process, in the whole construction process the bridge and the link function, is each working procedure, the important basis to ensure the construction quality. in this paper, the construction control nets and the accuracy of lofting point are analyzed, and puts forward the accuracy of measurement of construction engineering related technical measures. keywords: road engineering measurement; precision analysis; construction lofting; effective control 中图分类号:tb22 文献标识码:a文章编号: 建筑施工测量的精度如何,直接关系到整个建筑工程建设的速度和工程的质量。因此对施工过程中测量作业的精度提出了较高的要求,如何能够保证道路工程施工测量的安全准确,成为目前施工单位所普遍关心的一个问题。本文主要针对这一问题,对道路工程

天宝DiNi高精度电子水准仪在二等水准测量中的应用

天宝DiNi高精度电子水准仪在二等水准测量中的应用 摘要:随着测绘技术的不断发展,精密水准仪在工程测量中的应用越来越广泛,极大的提高了测量精度和工作效率。本文重点对天宝DINI03电子水准仪在二等水准测量中的应用进行研究与分析。 关键词:DiNi电子水准仪;二等水准测量;一体化 1电子水准仪的原理和特点 电子水准仪测量系统主要是由编码标尺、光学望远镜、补偿器、CCD传感器以及微处理控制器和相关的图象处理软件等组成。工作基本原理是标尺上的条码图案经过光反射,一部分光束直接成像在望远镜分划板上,供目视观测,另一部分光束通过分光镜被转折到线阵CCD传感器的像平面上,经光电转换、整形后再经过模数转换,输出的数字信号被送到微处理器进行处理和存储,并将其与仪器内存的标准码(参考信号)按一定方式进行比较,即可获得高度读数和水平距离。 2工程实例 本次工程为辽宁省锦州机场二等水准线路测量。测区主要测量四个GPS 控制点G01、G03、G04、G05,在实测过程中考虑到以后测量的需要在测区内沿线布设七个水准点B5、Q1、17A、M5、D20、D43、Z75,构成14个闭合环,12个结点,31个侧段,线路总长约64.272km,水准线路如图4-1所示。都按照国家二等水准测量规范进行施测。经过踏勘,2个水准点标石保存完好,埋设位置及点位清晰,可以利用并作为高程起算数据。 使用仪器为天宝Dini03型号电子水准仪,精度指标为每公里往返中误差±0.3mm,铟瓦条码尺2m。作业前对水准仪及水准尺进行了检验,检验结果附合《国家一、二等水准测量规范》及《国家三、四等水准测量规范》要求。 水准测量前根据国家一、二等水准测量限差规定对测站主要限差进行了设置:最大视距长度为50m,最小视距为3m;一站前后视距差≤1m,前后视距累计差≤3m;最高视线高度≤2.2m,最低视线高度0.5m;两次读数差≤0.3mm;两次所测高差之差≤0.5mm;检测间歇点高差之差≤1.0mm。 观测时,按后—前—前—后的顺序进行,每一测段为偶数个测站,水准尺侧前贴上标签,标记前尺、后尺,测的过程中后尺落在固定点上。 3 数据平差计算

精密水准测量的误差来源及减弱方法

精密水准测量的误差来源及减弱方法 [摘要] 本文通过对电子水准仪水准测量误差来源进行分析,提出了在外业作业中应着重考虑的几个问题及减弱方法。对提高测量精度和工作效率有指导作用。 [关键字] 精密水准测量误差来源减弱方法 0 引言 随着高精度电子水准仪的问世,克服了过去水准观测过程中所存在的人为误差,使水准测量的精度有了明显的提高,偶然误差对测量成果的影响与系统误差相比,已处于次要地位。因此,从误差理论的角度来看,要进一步提高地面高程点的精度,就需要对水准测量中存在的各项系统误差进行研究分析,根据其对测量成果的影响精度,提出减弱或消除系统误差影响的措施。 在进行水准测量时,会受到各种误差的影响,在这里就几种主要的误差进行分析,并讨论对精密水准测量观测成果的影响。 1 主要误差来源 1.1 仪器误差 1.1.1 水准仪视准轴与水准轴不平行的误差 照准轴与水准轴不平行而产生的i角误差,是仪器误差的主要来源,虽然经过角的检验校正,但要使两轴完全保持平行是困难的,因此,当水准气泡居中时,视准轴仍不能保持水平,使水准标尺上的读数产生误差,并且与视距成正比。 图1中,S前,S后为前后视距,由于存在角,并假设角不变的情况下,在前后水准标尺上的读数误差分别为i’’·S前/ρ’’和i’’·S后/ρ’’,对高差的误差影响为: δs=i’’·S前/ρ’’(1) 对于两个水准点之间一个测段的高差总和的误差影响为: ∑δs=i’’·(∑S后-∑S前)/ρ’’(2) 由此可见,在i角保持不变的情况下,一个测站上的前后视距相等或一个测段的前后视距总和相等,则在观测高差中由于i角的误差影响可以得到消除。但在实际作业中,要求i角小于15″,并使前后视距近量相等。

水准测量的方法及其实施

水准测量的方法及其实施 水准测量原理 水准测量的基本测法是:在图2-1中,已知A点的高程为H A,只要能测出A点至B点的高程之差,简称高差h AB。,则B点的高程 H B就可用下式计算求得: H B=H A+h AB (2-1) 差h AB。的原理如图2-1所示, 在A、B两点上竖立水准尺, 并在A、B两点之间安置— 图2-1 水准测量原理示意图架可以得到水平视线的仪器 即水准仪,设水准仪的水平视线截在尺上的位置分别为M、N,过A 点作一水平线与过B点的竖线相交于C。因为BC的高度就是A、B 两点之间的高差h AB。,所以由矩形MACH就可以得到计算h AB的式: h AB = a - b (2-2) 测量时,a、b的值是用水准仪瞄准水准尺时直接读取的读数值。 因为A点为已知高程的点,通常称为后视点,其读数a为后视读数,

而B点称为前视点,其读数b为前视读数。即 h AB = 后视读数-前视读数 视线高H i=H A+a (2-3)B点高程H B=H i-b (2-4)综上所述要测算地面上两点间的高差或点的高程,所依据的就是一条水平视线,如果视线不水平,上述公式不成立,测算将发生错误。因此,视线必须水平,是水准测量中要牢牢记住的操作要领。 水准仪和水准尺 一、微倾式水准仪的构造 如图2-2所示,微倾式水准仪主要由望远镜、水准器和基座组成。水准仪的望远镜能绕仪器竖轴在水平方向转动,为了能精确地提供水平视线,在仪器构造上安置了一个能使望远镜上下作微小运动的微倾螺旋,所以称微倾式水准仪。 1.望远镜 望远镜由物镜、目镜和十字丝三个主要部分组成,它的主要作用是能使我们看清远处的目标,并提供一条照准读数值用的视线。 十字丝是在玻璃片上刻线后,装在十字丝环上,用三个或四个可

GNSS水准测量方法研究及精度分析

GNSS水准测量方法研究及精度分析 发表时间:2018-02-05T13:50:37.800Z 来源:《防护工程》2017年第28期作者:李明彭安华 [导读] GNSS测量技术以其快速、全天候、无须通视、精度高、操作简便、自动化高等特点赢得广大测绘工作者青睐。 四川恒信四维测绘有限公司四川成都 610081 摘要:GNSS测量技术以其快速、全天候、无须通视、精度高、操作简便、自动化高等特点赢得广大测绘工作者青睐。GNSS能精确测定地面点的大地高,其基准面是参考椭球面;而我国使用的正常高基准面是似大地水准面,所以GPS高程不能直接应用到工程测量中。如何将GNSS精确测得的大地高转化为正常高,成为解决GNSS高程代替常规水准的关键。 关键词:大地高;正常高;方法研究;精度分析 引言 作为GNSS家族中的先驱,GPS最早出现在19世纪80年代。随着格洛纳斯、伽利略、北斗系统的日趋完善,GNSS家族不断壮大,其速度快、自动化程度高、精度高、使用范围广、全天候作业等特点让深爱他们的广大测量工作者越来越广泛应运于各行各业的测绘工作中。在各行各业的测绘工作中,GNSS的平面精度毋庸置疑,然而由于我们国家采用的坐标系并非严密的笛卡尔坐标系,平面和高程的参考面不统一导致GNSS虽然能测得高精度的大地高,但正常高的测量精度始终不理想。因此,如何应用GNSS来精确测量正常高成为测绘界翘首以盼期待解决的新课题。 1 GNSS测量误差来源 为寻求GNSS高程代替常规水准高程的方法,必须清楚GNSS测量高程的误差来源。GNSS测量中影响观测精度的因素众多,与卫星系统有关的误差包括测量原理误差、卫星钟差、卫星轨道偏差、相对论效应导致的误差;与卫星信号传播有关的误差有电离层折射、对流层影响、多路径效应;与接收终端设备相关的误差包括天线相位偏差、接收机钟差、观测误差、载波相位观测整周未知数影响等。随着GNSS技术的不断完善和广泛应用,这些误差均有一定方法加以消除或减小误差,本文着重讨论在采取措施后获取高精度大地高之后将大地高转化为较高精度正常高的方法。 2 GNSS水准测量的方法研究 GNSS高程是以WGS-84参考椭球面为基准面的大地高,我国现行的高程系统是以似大地水准面为基准面的正常高。大地高与正常高之间的差距实际上就是两个基准面之间的差距即高程异常。由于各基准面的特性,高程异常值并非常量。为了将GNSS测定的大地高转换为正常高,以代替作业效率不高的几何水准测量,需要高精度的高程异常值,高程异常差的精度要与几何水准精度相适应。因此将大地高转化为高精度的正常高的关键是高精度的求取相应精度的高程异常值,求取高程异常的方法也就是GNSS水准测量的方法。 2.1 天文水准法 天文水准是利用天文大地垂线偏差推算大地水准面差距或高程异常的方法。垂线偏差分量用天文经纬度和大地经纬度计算。利用CCD 天顶摄影仪获得天顶星空的恒星像片坐标,守时记时和电子星表的应用可得到测点的天文经纬度,GNSSS测量确定测点的大地坐标,利用点距较近的垂线偏差数据和距离可以求得相当于四等水准精度的高程。 2.2 重力位模型法 利用卫星观测资料和重力测量资料,以球谐级数建立地球重力场模型和高程异常模型的方法,得到了广泛的利用。其优点在于适用于全球,只要给定待求点的地理位置,便可在计算机上计算出相应的大地水准面高程。它所确定的大地水准面高程属于地心参考系统,易于和GNSS测量基准相联合。 2.3 GNSS高程拟合法 GNSS高程拟合法是利用一定数量的已知高程点,从而利用已知大测正常高和大地高求取已知点的高程异常值,把测区的似大地水准面假想为平面、多项式曲面、多面函数曲面或其它数学曲面去拟合已知高程异常的点,再到拟合的曲面中内插求取其它点的高程异常值,从而求取正常高。拟合方法需根据当地地形情况和已知点确定,在平原地区可采用零次多项式拟合,仅需确定一个参数,需要至少一个已知点;地形较复杂地区则需采用一次多项式拟合,需要确定三个参数,则至少需要三个已知点;地形复杂区域则需采用二次多项式拟合,需要确定留个参数,因此至少需要六个以上已知点;更复杂的区域则需要分区拟合或多曲面拟合,需要更多的已知点。为了减少内插误差,已知点尽量分布均匀。 2.4 区域似大地水准面精化成果平差法 似大地水准面是我国高程系统的基准面。似大地水准面只是通过一定的数学关系对应于地面的一个几何曲面,是不具有物理意义的水准面。区域似大地水准面精化是综合利用水准成果、重力资料、地形资料、重力场模型,按照一定的分辨率,采用物理大地测量理论与方法,应用移去-恢复技术确定区域性精密似大地水准面。换句话说,利用区域似大地水准面精化成果和大地坐标求取正常高。 以上几种GNSS水准测量方法中,天文水准法受天文观测条件及垂线偏差精度限制,重力位模型法受重力测量资料的精度和密度限制,这两种方法在工程测量中推广难度较大。采用足够精度和密度的水准控制点,利用合适的拟合方法,GNSS高程拟合法普遍应用到工程测量中。随着计算机技术的不断发展,大数据、云等技术的不断完善,似大地水准面精化的分辨率不断提高,通过似大地水准面精化成果平差获取正常高的可行性越来越高。 3 GNSS水准测量精度分析 为验证GNSS水准测量精度,本文引用某一控制网施测数据加以精度分析。控制网为某高速公路首级控制网,呈东西向带状分布,采用双频GNSS按三等精度施测,同时施测三等水准。成果如下:(单位m)

相关主题
文本预览
相关文档 最新文档