当前位置:文档之家› 冲压模液压系统设计

冲压模液压系统设计

冲压模液压系统设计
冲压模液压系统设计

攀枝花学院本科课程设计

摘要

液压机是一种用静压来加工金属、塑料、橡胶、粉末制品的机械,在许多工业部门得到了广泛的应用。液压机的类型很多,其中四柱式液压机是最为典型,应用也最广泛。这种液压机在它的四个立柱之间安置着主、辅两个液压缸。主液压缸驱动上滑块,实现“快速下行—慢速下行、加压—保压—卸压换向—快速返回—原位停止”的动作循环。

在这种液压机上,可以进行冲剪、弯曲、翻边、拉深、装配、冷挤、成形等多种加工工艺

关键词液压系统,液压机,冲压模

攀枝花学院本科课程设计

目录

摘要 (Ⅰ)

1 明确系统设计要求 (1)

1.1设计要求 (1)

1.2设计任务说明 (1)

1.2.1冲压模液压系统的工作原理 (1)

1.2.2 主机动作循环图 (1)

2 运动参数和负载参数分析 (2)

3 确定液压缸参数编制工况图 (3)

4拟定液压系统图 (5)

5液压元件的选择 (7)

5.1液压泵 (7)

5.2阀类元件及辅助元件 (7)

5.3油管元件 (8)

5.4油箱的容积计算 (9)

6液压系统性能的运算 (9)

6.1 压力损失和调定压力的确定 (9)

6.1.1 沿程压力损失 (9)

6.1.2 局部压力损失 (10)

6.1.3 总的压力损失 (10)

6.1.4压力阀的调定值计算 (10)

6.2油液温升验算 (11)

7油箱设计 (12)

7.1壁厚、箱顶及箱顶元件的设计 (12)

7.2箱壁、清洗孔、吊耳、液位计的设计 (12)

7.3箱底、放油塞及支架的设计 (13)

7.4油箱内隔板及除气网的设置 (13)

7.5油箱的装配图及零件图的绘制 (13)

参考文献 (14)

1.明确系统设计要求

1.1,设计要求

1、主机的用途、主要结构、总体布局;主机对液压系统执行元件在位置布置和空间尺寸以及质量上的限制。

2、主机的工艺流程或工作循环;液压执行元件的运动方式(移动、转动或摆动)及其工作范围。

3、主机各液压执行元件的动作顺序或互锁要求,各动作的同步要求及同步精度。

4、液压吃性元件的负载和运动速度的大小及其变化范围。

5、对液压系统工作性能(如工作平稳性、转换精度等)、工作效率、自动化程度等方面的要求。

6、液压系统的工作环境和工作条件,如周围介质、环境温度、湿度、尘埃情况、外界冲击振动等。

7、其他方面的要求,如液压装置在外观、色彩、经济性等方面的规定或限制。

1.2 设计任务说明

1.2.1.冲压模液压系统的工作原理:

冲压模的凸模安装在油缸上,凹模安装在工作台上,在工作台上10mm处安装有一接近开关,当冲压油缸快速下行到接近开关处时,变为慢速下降,直到将钢板冲进凹模,到达凹模的底部时,开时保压5秒,然后快速返回。设计参数,快速下行速度:0.05m/s;慢进下行速度:0.008m/s;最大冲压力:700KN;快速行程:350mm;慢事行程:100mm,起动时间为0.02s。

1.2.2.首先根据主机要求画出动作循环图,如图1.1所示

压制保压

速下降快速返回

停止

图1.1

2 运动参数和负载参数分析

由于冲压机作上下直线运动,且行程不大(450mm ),故可选择单杆液压缸作执行件。根据技术要求和已知参数对液压缸各工况负载进行计算,计算结果如下见表2.1

表2.1液压缸各工况负载

工况 计算公式 外负载/N

其它工况 质量忽略不计

慢速压制

700000=εF 700000

根据已知参数,各工况持续时间近似计算结果见表2.2

表2.2工况持续时间

工况 计算公式

时间/s 快速下降

11135050l t v =

= 7

慢速压制

2221008

l t v =

= 12.5

保压

35t = 5

快速返回 950

450134===

v l t 9

利用以上数据并在负载和速度过渡过阶段做粗略的线性处理得如图所示的冲压机液压缸负载循环图和速度循环图如图2.1

所示。

图2.1液压缸负载循环图和速度循环图

3 确定液压缸参数编制工况图

(1)计算液压缸有效面积

根据表23.2-7先选择液压缸的工作压力125P MPa =将液压缸的无杆腔作为主工作腔,考虑到液压缸下降时,滑块自重采用液压方式平衡,即要有一定的背压力,通过调节溢流阀3来产生背压力,取背压力20.5P MPa =,则可计算出液压缸无杆腔的有效面积,取机械效率为0.9m η= 液压缸无杆腔的有效面积:2max 16

1

700000

0.030.92510m F A m P η=

==??? 液压缸内径:1

440.03

0.195195A D m mm π

π

??=

=

==

按GB/T2348-1993,取标准值D=200mm=20cm 。根据有杆腔无杆腔面积比取标准值d=12.5cm

液压缸的实际有效面积为:22212031444

A D cm π

π

=

=

?=

2222223.191)5.1220(4

)(4

cm d D A =-=

-=

π

π

对于双作用单活塞缸来说,如3.1图所示。

图3.1活塞缸

1A ——活塞无杆腔侧有效面积,2m ,2A ——活塞有杆腔侧有效面积,2m

P ——供油压力(工作油压),MPa D ——活塞直径(即液压缸内径),m d ——活塞杆直径,m

(2)液压缸在工作循环中各阶段的压力和流量计算见表3.1

表3.1各阶段的压力和流量计算

工作阶段

计算公式

负载/N

工作腔压

力/Pa

输入流量

3/cm s

/min L

快速下降

11m

F

P A η=

111q v A = 28260 1000000

1570

94.2

减速压制保

21m

F

P A η=

221q v A = 700000 25000000 251.2 15.1

快速返回

32m

F

P A η=

332q v A = 13774 800000 956.5 57.4

(3)循环中各阶段的功率计算如表3.2:

表3.2各阶段的功率计算

减速保压

W q p P 6280102.251102566222=???==-

由表3.1和3.2的数据绘出工况图3.2

图3.2凸模液压机液压缸工况图

4拟定液压系统图

考虑到液压机工作时所需功率较大,固采用容积调速方式。

(1)当液压缸反向回程时,泵的流量恢复全流量供油。液压缸的运动方向采用在位四通M型电磁换向阀和二位二通电磁换向阀控制。停机时三位四通换向阀处于中位,使液压泵卸荷;

(2)为了防止压力头在下降过程中因自重而出现速度失控的现象,在液压缸有杆腔回路上设置一个调速阀;

(3)为了压制时保压,在无杆腔进油路上和有杆腔回油路上设置一个液控单向阀;

(4)为了使液压缸下降过程中压力头由于自重使下降速度越来越快,在三位四通换向阀处于右位时,回油路口应设置一个溢流阀作背压阀使回油路有压力而不至于使速度失控;

(5)为了使系统工作时压力恒定,在泵的出口设置一个溢流阀,来调定系统压力。由于本机采用接近开关控制,利用接近开关来切换换向阀的开与关以实行

自动控制;

(6)为使液压缸在压制时不至于压力过大,设置一个压力继电器,利用压力继电器控制最大压力,当压力达到调定压力时,压力继电器发出电信号,控制电磁阀实现保压;

液压系统原理图,如图4.1

图4.1液压系统原理图

5 液压元件的选择

5.1 液压泵

由液压缸的工况图,可以看出液压缸的最高工作压力出现在加压压制阶段时

MPa P 251=,此时液压缸的输入流量很小,且进油路元件较少故泵到液压缸的进油压力损失估计取为0.5P MPa ?=所以泵的最高工作压力

M P a P p 5.25255.0=+=,液压泵的最大供油量p q 按液压缸最大输入流量(94.2L/min )计算,取泄漏系数K=1.1,则min /6.1032.941.1L q p =?=。 根据以上计算结果查阅[1] ,选用规格为CY14-1B 的轴向柱塞泵,额定压力P=31.5MPa ,排量为100ml/r,额定转速为1200r/min ,流量为q=120L/min 。 由于液压缸在保压时输入功率最大,这时液压缸的压力为25.5MPa ,流量为

1.115.116.6/min L ?=,取泵的总效率0.85η=。

则液压泵的驱动电机所要的功率为:KW q p P p p 3.885

.0606

.165.2560=??=

=

η

,根据此数

据按JB/T9619-1999,选取Y160M-4型电动机,其额定功率11P KW =,额定转速1460r/min,按所选电动机的转速和液压泵的排量,液压泵最大理论流量

min /1461000/1001460L v n q t =?=?=大于计算所需的流量103.6L/min ,满足使用要求。

5.2 阀类元件及辅助元件

根据阀类元件及辅助元件所在油路的最大工作压力和通过该元件的最大实际流量可选出这些液压元件的型号及规格见表5.1

序 号 元件名称

额定压力/MPa

额定流量ml/r

型号及规格

说明

1

轴向柱塞泵

31.5

120

CY14-1B

额定转速1200r/min 驱动电机功率为11KW

2 溢流阀 32 120 YF3-*-20B-C 通径20mm

调压范围是0.5—6.3 3 背压阀 32 120 YF3-*-20B-C 4 三位四通换向阀 31.5 120 34DF3Y-H10B-D 5

调速阀

32 125 2FRM16 6 二位二通电磁换向阀 31.5 120 A-H*32L 7 液控单向阀 32 125 CPGD6-E-04-50

8

压力继电器

35

--

HED1KA

最高工作压力60MPa

5.3 油管元件

各元件间连接管道的规格按元件接口处尺寸决定,液压缸进出油管则按输入排出的最大流量计算,由于液压泵具体选定之后液压缸在各个阶段的进出位置已与已定数值不同,所以重新计算如下表5.2说明液压缸快进,快退,速度1v , 3v 与设计要求相近,这表明所选液压泵的型号,规格是适宜的。

表5.2液压缸在各个阶段的流量和速度

流量速度 快进

工进

快退

输入流量L/min

1112()/()p q A q A A =?-

=

5.423

.1913146

.16314=-? 115.1q =

6.1031==p q q

排出流量L/min

9

.25314

5

.423.191/)(1

122=?=?=A q A q 2

.9314

1

.153.191/)(1

122=?=?=A q A q 170

3

.1916

.103314/)(2

112=?=?=A q A q 运动速度m/min

35.13

.19131410

6.16)

/(211=-?=-=A A p v p 48

.0314

10

1.15/1

12=?==A q v 42

.53

.19110

6.103/2

13=?==A q v

由表中数值可知,当油液在压力管中速度取2m/min 时,按式2q

d v

π=?

?算得,液压缸进油路油管内径mm d 24.2160

102105.4223

6

=?????=π进;液压缸回油路管内径mm d 16.3360

102106.10323

6

=?????=π回;这两根油管按[1]选用,进油管的外径34mm Φ=,内径25mm Φ=,回油路管的外径mm 50=Φ,内径mm 40=Φ。

5.4 油箱的容积计算

容积计算按式由P V q ξ=,由于液压机是高压系统,11ξ=。所以油箱的容积1116.6182.6P V q L ξ==?=,按[1]JB/T7938-1999规定取标准值250V L =

6 液压系统性能的运算

6.1 压力损失和调定压力的确定

由上述计算可知,工进时油液流动速度较小,通过的流量为15.1L/min,主要压力损失为阀件两端的压降可以省略不计。快进时液压杆的速度

s m A q v p

/023.010

31460105.424

3

11=???==--,此时油液在进油管的速度s m A q v p

/44.160

102525.0105.426

23

=????==--π 6.1.1 沿程压力损失

沿程压力损失首先要判断管中的流动状态,此系统采用N32号液压油,室温

为20度时4

2

1.010/m s γ-=?,所以有232036010

0.1102544.1/4

3

<=???==--γvd R e ,油液在管中的流动状态为层流,则阻力损失系数178.0360/64/64===e R λ,若取

进油和回油的管路长均为2m ,油液的密度为3/900m kg =ρ,则进油路上的沿程压力损失为pa v d l p 4

23

21033.144.12

90010252178.02//1?=????

=???=?-ρλλ。 6.1.2 局部压力损失

局部压力损失包括管道安装和管接头的压力损失和通过液压阀的局部压力损失,由于管道安装和管接头的压力损失一般取沿程压力损失的10%,而通过液压阀的局部压力损失则与通过阀的流量大小有关,若阀的额定流量和额定压力损失分别为r r q q ?和,则当通过阀的流量为q 时的阀的压力损失r q ?,由

2

(

)r r

q p p q ξ?=??算得MPa P 063.0)1205.42(5.02=?=?ξ<原估算值0.5MPa,所以是安全的。

同理快进时回油路上的流量min /9.25314

3

.1915.421212L A A q q =?=?=

则回油管路中的速度s m v /34.010

4025.060109.256

23

=????=--π;由此可以计算出2320136100.1/104034.0/Re 43<=???==--γvd (层流); 74.0136

64

Re 64===λ,所以回油路上的沿程压力损失为

Pa v d l P 4

23

21013.0234.090010

40247.02?=????=??=?-ρλλ。 6.1.3 总的压力损失

由上面的计算所得求出:

MPa p A A p P 024.0)0013.00133.0(314

3.191)0013.00133.0(12=+++=?+

?=?∑λλλ这与估算值有差异,应该计算出结果来确定系统中的压力阀的调定值。

6.1.4压力阀的调定值计算

由于液压泵的流量大,在工进泵要卸荷,则在系统中卸荷阀的调定值应该满足快进时要求,因此卸荷阀的调定值应大于快进时的供油压力

MPa p A F p p 26.2024.0314

7001=+=∑?+=

,所以卸荷阀的调定压力值应该取2.3MPa 为好。溢流阀的调定压力值应大于卸荷阀的调定压力值0.3~0.5MPa ,所以取溢流阀的调定压力值为 2.7MPa 。因为忽略工作凸模的自重,所以背压阀的调定压力背p 可任意取值,取MPa p 15.0=背

6.2油液温升验算

在整个工作循环中,工进和快进快退所占的时间相差不大,所以,系统的发热和油液温升可用一个循环的情况来计算。

(1).工进时液压缸的有效功率为:07000000.008 5.6P Fv KW ==?= 泵的输出功率

KW pq p i 28.6==

因此工进液压系统的总发热量为:KW p p H i i 68.06.528.60=-=-= 按式(11—2)求出油液温升近似值

C T ο1.17250/)1068.0(323=?=?

温升没有超出允许范围,液压系统中不需要设置冷却器。 (2)系统发热量的计算

在液压系统中,损失都变成热量散发出来。发热量已在油温验算时计算出,所以 KW H 68.0=

(3)散热量的计算

当忽略系统中其他地方的散热,只考虑油箱散热时,显然系统的总发热功率H 全部由油箱来考虑。这时油箱散热面积A 的计算公式为H A=K t

? 式中 A —油箱的散热面积(2m ) H —油箱需要的散热功率(W )

t —油温(一般以55C ?考虑)与周围环境温度的温差

K —散热系数。与油箱周围通风条件的好坏而不同,通风很差时K=8~9;良好时K=15~17.5;风扇强行冷却时K=20~23;强迫水冷时K=110~175。

所以油箱散热面积A 为:234.21

.1717680

m t K H A =?=?=

7 油箱设计

由前面计算可知,该液压系统所需油箱的内内体积为:V=250L,且选择开式

油箱,考虑到油箱的整体美观大方,将其设计成为带支撑脚的长方体形油箱。

根据有关手册及资料初步确定其外形尺寸为如表7.1所示:

表8.1 油箱的轮廓参数

公称容量B1 L1 H 近似油深最小壁厚250L 500mm 1000mm 670mm 500mm 3mm

基于上表中数据设计油箱如附录B。

7.1壁厚、箱顶及箱顶元件的设计

δ=,并采由表中数据分析可采取钢板焊接而成,故取油箱的壁厚为:3mm

用将液压泵安装在油箱的上表面的方式,故上表面应比其壁要厚,同时为避免产

δ,并在生振动,则顶扳的厚度应为壁厚的2倍以上,所以取:mm

?

=

6

3

2=

液压泵与箱顶之间设置隔振垫。

在箱顶设置回油管、泄油管、吸油管、通气器并附带注油口,即取下通气帽

时便可以进行注油,当放回通气帽地就构成通气过滤器,其注油过滤器的滤网的

网眼小于250um,过流量应大于20L/min。另外,由于要将液压泵安装在油箱的

顶部,为了防止污物落入油箱内,在油箱顶部的各螺纹孔均采用盲孔形式,其具

体结构见油箱的结构图。

7.2箱壁、清洗孔、吊耳、液位计的设计

在此次设计中采用箱顶与箱壁为不可拆的连接方式,由于油箱的体积也相对

不大,采用在油箱壁上开设一个清洗孔,在法兰盖板中配以可重复使用的弹性密

封件。法兰盖板的结构尺寸根据油箱的外形尺寸按标准选取,具体尺寸见法兰盖

板的零件结构图,此处不再作详细的叙述。为了便于油箱的搬运,在油箱的四角

上焊接四个圆柱形吊耳,吊耳的结构尺寸参考同类规格的油箱选取。

在油箱的箱体另一重要装置即是液位计了,通过液位计我们可以随时了解油箱中

的油量,同时选择带温度计的液位计,我们还可以检测油箱中油液的温度,以保

证机械系统的最佳供油。将它设计在靠近注油孔的附近以便在注油时观察油箱内

的油量。

7.3箱底、放油塞及支架的设计

在油箱的底设置放油塞,可以方便油箱的清洗和换油,所以将放油塞设置在油箱底倾斜的最低处。同时,为了更好地促使油箱内的沉积物聚积到油箱的最低点,油箱的倾斜坡度应为:1/251/20~。在油箱的底部,为了便于放油和搬运方便,在底部设置支脚,支脚距地面的距离为170mm ,并设置加强筋以增加其刚度,在支脚设地脚螺钉用的固定。

7.4油箱内隔板及除气网的设置

为了延长油液在油箱中的逗留时间,促进油液在油箱中的环流,促使更多的油液参与系统中的循环,以更好地发挥油箱的散热、除气、沉积的作用,在油箱中的上下板上设置隔板,其隔板的高度为油箱内油液高度的2/3以上。并在下隔板的下部开缺口,以便吸油侧的沉积物经此缺口至回油侧,经放油孔排出。如图7.2。

在油箱中为了使油液中的气泡浮出液面,并在油箱内设置除气网,其网眼的直径可用网眼直径为0.5mm 的金属网制成,并倾斜1030??~布置。

在油箱内回油管与吸油管分布在回油测和吸油测,管端加工成朝向箱壁的45?

斜口,以便于油液沿箱壁环流。

油管管口应在油液液面以下,其入口应高于底面2~3倍管径,但不应小于20mm ,以避免空气或沉积物的吸入或混入。对泄油管由于其中通过的流量一般较小,为防止泄油阻力,不应插入到液面以下。另外在油箱的表面的通孔处,要妥善密封,所以在接口上焊上高出箱顶20mm 的凸台,以免维修时箱顶的污物落入油箱。

图7.2 油箱隔板

7.5油箱的装配图及零件图的绘制

采用CAD 绘制油箱的装配图及零件图见图-------

图8 油箱隔板

攀枝花学院本科课程设计

参考文献

[1] 成大先. 机械设计手册[M]。北京:化学工业出版社,2004.

[2] 李壮云. 中国机械设计大典[M]。南昌::江西科学技术出版社,2002.1

[3] 王文斌. 机械设计手册[M] 。北京:机械工业出版社,2004.8

[4] 雷天觉. 液压工程手册。北京。机械工业出版社。1990

凹模冲压模具设计

目录 前言 (1) 设计内容..............................................................................21、工艺性分析 (2) 2、工艺方案得确定 (2) 3、模具结构形式得确定.........................................................24、工艺设计........................................................................3(1)计算毛坯尺寸 (3) (2)画排样图 (3) (3)计算材料利用率 (4) (4)计算冲压力..................................................................5(5)初选压力机 (5) (6)计算压力中心 (5) (7)计算凸凹模刃口尺寸………………………………………………6 (8)卸料板各孔口尺寸 (6) (9)凸模固定板个孔口尺寸 (6) 5、模具结构设计 (6) (1)模具类型得选择 (6) (2)定位方式得选择 (6) (3)凹模设计……………………………………………………………6 (4)凹模刃口与边缘得距离 (6) (5)确定凹模周界尺寸…………………………………………………7 (6)选择模架及确定其她冲模零件尺寸………………………………7 6、绘制典型零件图与装配图 (8) 7、结束语 (9) 致谢 (9) 参考文献 (10) 前言

随着经济得发展,工业产品技术得也在不断发展,各行各业对模具得需求量越来越大,技术要求也越来越高、虽然模具种类繁多,但在“十一五"期间其发展重点应该就是既能满足大量需要,又具有较高得技术含量,特别就是目前国内尚不能自给、需大量进口得模具与能代表发展方向得大型、精密、复杂、长寿命模具。又由于模具标准件得种类、数量、水平、生产集中度等对整个模具行业得发展有重大影响.因此,一些重要得模具标准件也必须重点发展,而且其发展速度应快于模具得发展速度,这样才能不断提高我国得模具标准化水平,从而提高模具质量,缩短模具生产周期及降低成本。由于我国得模具产品在国际市场上占有较大得价格优势,因此对于出口前景好得模具产品也应作为重点来发展。而且应该就是目前已有一定基础,有条件、有可能发展起来得产品.如: 1)大型精密塑料模具塑料模具占我国模具总量得比例正逐年上升,发展潜力巨大.目前虽然已有相当技术基础并正在快速发展,但技术水平与国外仍有较大差距,总量也供不应求,每年进口几亿美元、 2)主要模具标准件目前国内已有较大产量得模具标准件主要就是模架、导向件、推杆推管、弹性元件等、这些产品不但国内配套大量需要,出口前景也很好,应继续大力发展、 虽然如此,我国得冲压模具设计制造能力与市场需要与国际先进水平相比仍有较大差距、这些主要表现在飞行器钣金件、高档轿车与大中型汽车覆盖件模具及高精度冲模方面,无论在设计还就是加工工艺与能力方面,都有较大差距.覆盖件模具,具有设计与制造难度大,质量与精度要求高得特点,可代表覆盖件模具得水平。虽然在设计制造方法与手段方面已基本达到了国际水平,模具结构功能方面也接近国际水平,在模具国产化进程中前进了一大步,但在制造质量、精度、制造周期等方面,与国外相比还存在一定得差距.标志冲模技术先进水平得多工位级进模与多功能模具,就是我国重点发展得精密模具品种、有代表性得就是集机电一体化得铁芯精密自动阀片多功能模具,已基本达到国际水平。 因此我们在学习完飞行器板金成形与模具相关基础课程后,老师让我们进行简单冲压件得模具设计,我们可经通过简单件得设计初步了解一下模具设计得过程。 设计内容 1、工艺性分析

注塑机液压系统设计

机电课程设计 题目:注塑机液压系统设计 学院:机械工程学院 专业:机械设计制造及其自动化班级:学号:学生姓名: 导师姓名: 完成日期:

课程设计任务书 设计题目:注塑机液压系统设计 姓名系别机械工程专业机械设计及其自动化班级学号 指导老师教研室主任 一、设计要求及任务 1.设计要求 (1)公称注射量:250 cm3;螺杆直径: d=40mm;螺杆行程:s1=200mm;最大注射压力p=153MPa;注射速度:vw=0.07m/s;螺杆转速:n=60r/min;螺杆驱动功率:Pm=5kW;注射座最大推力:Fz=27 (kN);注射座行程:s2=230(mm);注射座前进速度:vz1=0.06m/s;注射座后退速度:vz2=0.08m/s;最大合模力(锁模力)Fh=900 (kN);开模力:Fk=49 (kN);动模板(合模缸)最大行程:s3=350 (mm);快速合模速度:vhG = 0.1m/s;慢速合模速度:vhG =0.02m/s;快速开模速度:vhG =0.13m/s;慢速开模速度:vhG =0.03m/s; (2)注塑机工作参数设计计算; (3)液压系统原理方案设计;液压系统设计计算及元件选择; (4)注塑机及液压系统总图设计。 2.设计任务 (1)绘制注塑机合模缸、注塑装置和液压系统油箱的装配图; (2)绘制液压系统原理图; (3)系统零部件的计算与选型; (4)按照要求编写设计说明书和打印图纸。 二、进度安排及完成时间 1.设计时间:两周,2012年6月 25日至2012年7月6日。 2.进度安排 第19周:布置设计任务,查阅资料,熟悉设计要求及任务,进行系统设计。 第20周:整理资料,撰写设计说明书,答辩,交设计作业。(印稿及电子文档)。

25吨位起重机伸缩机构液压系统设计说明

设计及说明结果一、25吨汽车起重机伸缩臂架的设计 箱型吊臂连接尺寸的确定包含下列的容:1)吊臂根部铰点位置 的确定;2)吊臂各节尺寸的确定;3)变幅油缸铰点的确定。 1、吊臂根部铰点位置的确定 基本臂工作长度和吊臂最大工作长度的确定: 由图2.1可知,设为工作长度,则有 图2.1 三铰点有关尺寸图

式中:H—基本臂的起升高度,。 b—吊钩滑轮组最短距离,取。 、—根部铰点和头部滑轮轴心离吊臂基本截面中心线的距离,并带有符号。由于此项数值较小,所 以计算时可以忽略不计。 —吊臂仰角,取。 h—根部铰接点离地距离,取。 吊臂根部离铰点的距离e —最小工作幅度,取。 吊臂根部铰点离回转平面的高度 —回转支承装置的高度, —起重机汽车底盘的高度, 主吊臂最大长度 —最长主臂起升高度, a,r,b,h同上。 2、吊臂各节尺寸的确定 主吊臂的最长长度是由基本臂结构长度和外伸长度所组成。 、、—各节臂的伸缩长度,在设计中伸缩长度往往取

同一数值,即。外伸长度。 、、—为二、三、四节臂缩回后外漏部分的长度,在 计算时取同一数值(a=0.25m) 若假设为臂头滑轮中心离基本臂端面的距离,则基本臂结构长度加上即为基本臂的工作长度。 所以有 从中可以求出 k—吊臂的节数。 —主臂最大长度,初取35m。 —主臂最小长度,初取11m。 通常搭接长度应该短些,以减轻吊臂重量。但是,太短将搭接部分反力增大了,引起搭接部分吊臂的盖板或侧板局部失稳,同时,也使吊臂的间隙变形增大。因此搭接部分要根据实际经验和优化设计而定,一般为伸缩臂外伸长度的1/4—1/5(吊臂较长者取后者,较短者取前者,同步伸缩者可取后者)。 从而搭接长度为 在第i节臂退回后,除外露部分长度a外,在前节(i-1)节臂中的长度加上伸出后仍在前节臂中的那部分搭接长度。第i节臂插在前节臂的长度为(),设第i节臂的结构长度为,则

冲压模具设计

设计题目: 零件图:

前 言 从几何形状特点看,矩形盒状零件可划分成 2 个长度为 (A-2r) 和 2 个长度为 (B-2r) 的直边加上 4 个半径为 r 的 1/4 圆筒部分。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即321L L L ?=?=?,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图1所示) 。这些变化主要表现在: 图 1 ⑴直边部位的变形 直边部位的横向尺寸变形后间距逐渐缩小,愈向直边中间部位缩小愈少,纵向尺寸变形后,间距逐渐增大,愈靠近盒形件口部增大愈多,可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形 拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,越

向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。 盒形件拉深有以下变形特点: σ的分布是不均匀的。在圆角部分最大,直 (1) 凸缘变形区内径向拉应力 1 σ也远小于相应的圆筒形件的拉应力。边部分最小。即使在角部,平均拉应力 1 因此,就危险断面处载荷来说,矩形盒拉深时要小得多;对于相同材料,矩形盒拉深的最大成形相对高度要大于相同半径的圆筒形零件拉深时的最大成形相对高度。 (2) 由于直边和圆角变形区内材料受力情况不同,直边处材料向凹模流动的阻力要远小于圆角处,并且,直边处材料的径向伸长变形小而圆角处材料的径向变形大,使变形区内两处材料的变形量不同,直边处大于圆角处。由此引起两处位移速度差,因而必然诱发出切应力(图2),以协调直边与圆角处的变形。 图2 盒形件拉深时的应力分布 σ的分布也是不均匀的。从角部到中间直 (3)在毛坯外周边上,切向压应力 3 σ的数值逐渐减小。通常情况下,起皱都发生在角部,但是起边部位,压应力 3 皱的趋势要小于拉深相应圆筒形件时的情况。 常用相对圆角半径r/B表示矩形盒的几何形状特征,0

液压机液压系统设计

新疆大学 专业课课程设计任务书 班级:机械12-7 姓名:麦麦提阿卜杜拉学号:20122001702 课程设计题目:基于plc的液压动力滑台控制设计 说明书页数:19页 发题日期:2016 年 2 月26 日完成日期2016年4月15日 指导教师:穆合塔尔老师

目录 1.1.1设计任务- 2 - 2.1.1负载分析和速度分析- 2 - 2.11负载分析- 2 - 2.12速度分析- 2 - 3.1.1确定液压缸主要参数- 3 - 4.1.1拟定液压系统图- 6 - 4.11选择基本回路- 6 - 4.12液压回路选择设计- 7 - 4.13工作原理:- 8 - 5.1.1液压元件的选择- 9 - 5.11液压泵的参数计算- 9 - 5.12选择电机- 10 - 6.1.1辅件元件的选择- 11 - 6.11辅助元件的规格- 11 - 6.12过滤器的选择- 11 - 7.1.1油管的选择- 12 - 8.1.1油箱的设计- 13 - 8.11油箱长宽高的确定- 13 - 8.12各种油管的尺寸- 14 - 9.1.1验算液压系统性能- 14 - 9.11压力损失的验算及泵压力的调整- 14 - 9.12液压系统的发热和温升验算- 16 -

1.1.1设计任务 设计一台校正压装液压机的液压系统。要求工作循环是快速下行→慢速加压→快速返回→停止。压装工作速度不超过5mm/s,快速下行速度应为工作速度的8~10倍,工件压力不小于10KN。 2.1.1负载分析和速度分析 2.11负载分析 已知工作负载F w =10000N。惯性负载F a =900N,摩擦阻力F f =900N. 取液压缸机械效率 m η=0.9,则液压缸工作阶段的负载值如表2-1: (表2-1) 2.12速度分析 已知工作速度即工进速度为最大5mm/s,快进快退速度为工进速度的8-10倍。即40-50mm/s. 按上述分析可绘制出负载循环图和速度循环图:

液压系统设计计算实例250克塑料注射机

液压系统设计计算实例 ——250克塑料注射机液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

冲压模具设计步骤

冷冲压模具设计步骤 冷冲模设计的一般步骤如下: 1 .搜集必要的资料 设计冷冲模时,需搜集的资料包括产品图、样品、设计任务书和参考图等,并相应了解如下问题: l )了解提供的产品视图是否完备,技术要求是否明确,有无特殊要求的地方。 2 )了解制件的生产性质是试制还是批量或大量生产,以确定模具的结构性质。 3 )了解制件的材料性质(软、硬还是半硬)、尺寸和供应方式(如条料、卷料还是废料利用等),以便确定冲裁的合理间隙及冲压的送料方法。 4 )了解适用的压力机情况和有关技术规格,根据所选用的设备确定与之相适应的模具及有关参数,如模架大小、模柄尺寸、模具闭合高度和送料机构等。 5 )了解模具制造的技术力量、设备条件和加工技巧,为确定模具结构提供依据。 6 )了解最大限度采用标准件的可能性,以缩短模具制造周期。 2 .冲压工艺性分析 冲压工艺性是指零件冲压加工的难易程度。在技术方面,主要分析该零件的形状特点、尺寸大小(最小孔边距、孔径、材料厚度、最大外形)、精度要求和材料性能等因素是否符合冲压工艺的要求。如果发现冲压工艺性差,则需要对冲压件产品提出修改意见,经产品设计者同意后方可修改。 3 .确定合理的冲压工艺方案 确定方法如下: l )根据工件的形状、尺寸精度、表面质量要求进行工艺分析,确定基本工序的性质,即落

料、冲孔、弯曲等基本工序。一般情况下可以由图样要求直接确定。 2 )根据工艺计算,确定工序数目,如拉深次数等。 3 )根据各工序的变形特点、尺寸要求确定工序排列的顺序,例如,是先冲孔后弯曲还是先弯曲后冲孔等。 4 ) 根据生产批量和条件,确定工序的组合,如复合冲压工序、连续冲压工序等。 5 ) 最后从产品质量、生产效率、设备占用情况、模具制造的难易程度、模具寿命、工艺成本、操作方便和安全程度等方面进行综合分析、比较,在满足冲件质量要求的前提下,确定适合具体生产条件的最经济合理的冲压工艺方案,并填写冲压工艺过程卡片(内容包括工序名称、工序数目、工序草图(半成品形状和尺寸)、所用模具、所选设备、工序检验要求、板料规格和性能、毛坯形状和尺寸等): ; 4 确定模具结构形式 确定工序的性质、顺序及工序的组合后,即确定了冲压工艺方案也就决定了各工序模具的结构形式。冲模的种类很多,必须根据冲件的生产批量、尺寸、精度、形状复杂程度和生产条件等多方面因素选择,其选原则如下: l )根据制件的生产批量确定采用简易模还是复合模结构。一般来说简易模寿命低,成本低;而复合模寿命长,成本高。 2 )根据制件的尺寸要求确定冲模类型。 若制件的尺寸精度及断面质量要求较高,应采用精密冲模结构;对于一般精度要求的制件,可采用普通冲模。复合模冲出的制件精度高于级进模,而级进模又高于单工序模。 3 )根据设备类型确定冲模结构。 拉深加工时有双动压力机的情况下,选用双动冲模结构比选用单动冲模结构好很多

轮式装载机液压系统设计

开题报告

摘要 装载机主要用来装卸散状物料,也能进行轻度的铲掘工作,并且具有良好的机动性能,是工程机械中保有量较大的品种之一。 装载机液压系统设计是装载机设计的一个重要环节,它对装载机的使用性能和装载机在市场上的竞争力有着很大的影响。装载机性能的优劣和作业效率的发挥,离不开液压系统的设计,而且在很大程度上取决于液压系统的工作效率。 装载机的工作装置和转向机构都采取液压传动,本文通过对工作装置及转向机构工作要求和载荷分析对液压系统进行设计。主要包括对执行元件,控制元件辅助元件的选择、设计。 本文的设计,能够使读者对液压系统设计进一步加深了解,同时从中可以体会到一些设计理念,为以后从事此类工作得到一些帮助。 关键词:装载机液压传动液压系统设计

ABSTRACT The loader is mainly used for loading and unloading bulk materials, but also for light excavation work, and has good maneuverability, is the construction machinery to maintain a larger variety of one. The hydraulic system design of the loader is an important part of the loader design. It has a decisive influence on the performance of the loader and the competitiveness of the loader in the market. The performance of the loader and the operational efficiency of the play, can not be separated from the hydraulic system design, and to a large extent depends on the hydraulic system efficiency. The working device of the loader and the steering mechanism are taken hydraulic drive, this paper through the work device and steering mechanism requirements and load analysis of the hydraulic system design. Mainly include the implementation of components, control components of the selection of components, design. The design of this paper can make the reader to further deepen the understanding of the hydraulic system design, at the same time from which you can experience some of the design concept for the future to engage in such work to get some help. Key words: loader hydraulic transmission hydraulic pressure system

注塑机液压系统课程设计

《液压传动》 课程设计任务书 姓名:张阳 学号:077001583

注塑机是一种通用设备,通过它与不同专用注塑模具配套使用,能够生产出多种类型的注塑制品。注塑机主要由机架,动静模板,合模保压部件,预塑、注射部件,液压系统,电气控制系统等部件组成;注塑机的动模板和静模板用来成对安装不同类型的专用注塑模具。合模保压部件有两种结构形式,一种是用液压缸直接推动动模板工作,另一种是用液压缸推动机械机构通过机械机构再驱动动模板工作(机液联合式)。注塑机工作时,按照其注塑工艺要求,要完成对塑料原料的预塑、合模、注射机筒快速移动、熔融塑料注射、保压冷却、开模、顶出成品等一系列动作,因此其工作过程中运动复杂、动作多变、系统压力变化大。

注塑机的工作循环过程 注塑机对液压系统的要求是 1)具有足够的合模力熔融塑料以120~200MPa的高压注入模腔,在已经闭合的模具上会产生很大的开模力,所以合模液压缸必须产生足够的合模力,确保对闭合后的模具的锁紧,否则注塑时模具会产生缝隙使塑料制品产生溢边,出现废品。 2)模具的开、合模速度可调当动模离静模距离较远时,即开合模具为空程时为了提高生产效率,要求动模快速运动;合模时要求动模慢速运动,以免冲击力太大撞坏模具,并减少合模时的振动和噪声。因此,一般开、合模的速度按慢

一快一慢运动的规律变化。 3)注射座整体进退要求注射座移动液压缸应有足够的推力,确保注塑时注射嘴和模具浇口能紧密接触,防止注射时有熔融的塑料从缝隙中溢出。 4)注射压力和注射速度可调注塑机为了适应不同塑料品种、制品形状及模具浇注系统的工艺要求,注射时的压力与速度在一定的范围内可调。 5)保压及压力可调当熔融塑料依次经过机筒、注射嘴、模具浇口和模具型腔完成注射后,需要对注射在模具中的塑料保压一段时间,以保证塑料紧贴模腔而获得精确的形状,另外在制品冷却凝固而收缩过程中,熔化塑料可不断充入模腔,防止产生充料不足的废品。保压的压力也要求根据不同情况可以调整。 6)制品顶出速度要平稳顶出速度平稳,以保证成品制品不受损坏。

冲压模具设计装配图

1—下模座2、15—销钉3凹模4套5 导柱 6 导套 7 上模座 8卸料板9橡胶10凸模固定板 11—垫板12—卸料螺钉13—凸模14 —模柄 16、17螺钉图2.0.1 冲裁模典型结构与模具总体设计尺寸关系图

复合模的基本结构 1—凸模;2—凹模;3—上模固定板; 4、16—垫板;5—上模座;6—模柄; 7—推杆; 8—推块; 9—推销; 10—推件块;11、18—活动档料销; 12—固定挡料销13—卸料板 14—凸凹模;15—下模固定板; 17—下模座;19—弹簧 1-下模座;2、5-销钉;3-凹模;4-凸模 1-凹模;2-凸模;3-定位钉;4-压料板;5-靠板6-上模座;7-顶杆;8-弹簧;图3.4.2 L形件弯曲模 9、11-螺钉;10-可调定位板

1.冲裁间隙过大时,断面将出现二次光亮带。(×) 2.冲裁件的塑性差,则断面上毛面和塌角的比例大。(×) 3.形状复杂的冲裁件,适于用凸、凹模分开加工。(×) 4.对配作加工的凸、凹模,其零件图无需标注尺寸和公差,只说明配作间隙值。(×) 5.整修时材料的变形过程与冲裁完全相同。(×) 6.利用结构废料冲制冲件,也是合理排样的一种方法。(∨) 7.采用斜刃冲裁或阶梯冲裁,不仅可以降低冲裁力,而且也能减少冲裁功。(×) 8.冲裁厚板或表面质量及精度要求不高的零件时,为了降低冲裁力,一般采用加热冲裁的方法进行。(∨)9.冲裁力是由冲压力、卸料力、推料力及顶料力四部分组成。(×) 10.模具的压力中心就是冲压件的重心。(×) 11.冲裁规则形状的冲件时,模具的压力中心就是冲裁件的几何中心。(×) 12.在压力机的一次行程中完成两道或两道以上冲孔(或落料)的冲模称为复合模。× 13.凡是有凸凹模的模具就是复合模。(×) 14.在冲模中,直接对毛坯和板料进行冲压加工的零件称为工作零件。(×) 15.导向零件就是保证凸、凹模间隙的部件。(×) 16.侧压装置用于条料宽度公差较大的送料时。(×) 17.侧压装置因其侧压力都较小,因此在生产实践中只用于板厚在0.3mm以下的薄板冲压。× 18.对配作的凸、凹模,其工作图无需标注尺寸及公差,只需说明配作间隙值。(×) 19.采用斜刃冲裁时,为了保证工件平整,冲孔时凸模应作成平刃,而将凹模作成斜刃。× 20.采用斜刃冲裁时,为了保证工件平整,落料时凸模应作成平刃,而将凹模作成斜刃。× 21.凸模较大时,一般需要加垫板,凸模较小时,一般不需要加垫板。(×) 22.在级进模中,落料或切断工步一般安排在最后工位上。(∨) 23.在与送料方向垂直的方向上限位,保证条料沿正确方向送进称为送料定距。(×) 24.模具紧固件在选用时,螺钉最好选用外六角的,它紧固牢靠,螺钉头不外露。(×) 25.整修时材料的变形过程与冲裁完全相同。(×) 26.精密冲裁时,材料以塑性变形形式分离因此无断裂层。(∨) 27.在级进模中,根据零件的成形规律对排样的要求,需要弯曲、拉深、翻边等成形工序的冲压件,位于成形过程变形部位上的孔,应安排在成形工位之前冲出。(×) 28.压力机的闭合高度是指模具工作行程终了时,上模座的上平面至下模座的下平面之间的距离。× 1 、自由弯曲终了时,凸、凹模对弯曲件进行了校正。(× ) 2 、从应力状态来看,窄板弯曲时的应力状态是平面的,而宽板弯曲时的应力状态则是立体的。(∨) 3 、窄板弯曲时的应变状态是平面的,而宽板弯曲时的应变状态则是立体的。(× ) 4 、板料的弯曲半径与其厚度的比值称为最小弯曲半径。(× ) 5 、弯曲件两直边之间的夹角称为弯曲中心角。(× ) 6 、对于宽板弯曲,由于宽度方向没有变形,因而变形区厚度的减薄必然导致长度的增加。 r/t 愈大,增大量愈× 7 、弯曲时,板料的最外层纤维濒于拉裂时的弯曲半径称为相对弯曲半径。(× ) 8 、冲压弯曲件时,弯曲半径越小,则外层纤维的拉伸越大。(∨) 9 、减少弯曲凸、凹模之间的间隙,增大弯曲力,可减少弯曲圆角处的塑性变形。(× ) 10 、采用压边装置或在模具上安装定位销,可解决毛坯在弯曲中的偏移问题。(∨) 11 、塑性变形时,金属变形区内的径向应力在板料表面处达到最大值。(∨) 12 、经冷作硬化的弯曲件,其允许变形程度较大。(× ) 13 、在弯曲变形区内,内缘金属的应力状态因受压而缩短,外缘金属受拉而伸长。(∨) 14 、弯曲件的回弹主要是因为弯曲变形程度很大所致。(× ) 15 、一般来说,弯曲件愈复杂,一次弯曲成形角的数量愈多,则弯曲时各部分相互牵制作用愈大,则回弹就大。(× ) 16 、减小回弹的有效措施是采用校正弯曲代替自由弯曲。(× ) 17 、弯曲件的展开长度,就是弯曲件直边部分长度与弯曲部分的中性层长度之和。(∨) 18 、当弯曲件的弯曲线与板料的纤维方向平行时,可具有较小的最小弯曲半径,相反,弯曲件的弯曲线与 板料的纤维方向垂直时,其最小弯曲半径可大些。(× ) 19 、在弯曲 r/t 较小的弯曲件时,若工件有两个相互垂直的弯曲线,排样时可以不考虑纤维方向。(× )

液压系统设计方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向

克塑料注射机液压系统设计计算 完整版

―240克塑料注射机液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时因螺杆外装有电加热器,而将料融化成黏液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔中,经一定时间的保压冷却后,开模将成型的塑料制品顶出,使完成了一个动作循环。 现以240克塑料注射机为例,进行液压系统设计计算。 塑料注射器的工作循环为: 合模→注射→保压→冷却→开模→顶出 ∣→螺杆预塑进料其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间比较长,直到开模前这段时间都是锁模阶段。 1.240克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 (1)合模运动要平稳,两篇模具闭合时不应有冲击; (2)当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; (3)预塑进料时,螺杆转动,料被推倒螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必须有一定的后退阻力; (4)为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 240克塑料注射机液压系统设计参数如下: 螺杆直径 38mm 螺杆行程: 200mm 最大注射压力 143MPa 螺杆驱动功率 5KW 螺杆转速 61r/min 注射座行程 240mm 注射座最大推力 26kN 最大合模力(锁模力)910kN 开模力 44kN 动模板最大行程 350mm 快速闭模速度0.1m/s 慢速闭模速度

起重机液压系统设计

液压系统设计项目 汽车起重机液压系统设计 项目目标:1能够理解单向阀的类型、结构工作原理。 2、理解单向阀的用途 3、能进行锁紧回路的油路分析 4、应用液压仿真软件模拟运行动作 实训步骤:1、采用仿真软件机床液压系统原理图 2、手动控制模拟吊车液压系统工作状态 3、分析动作液压回路的工作情况,如;压力、流量等。 项目要求: 在吊装机液压系统中,要求执行元件在停止运动时不受外界影响而发生漂移或窜动,也就是要求液压缸或活塞杆能可靠地停留在行程的任意位置上。应选用何种液压元件来实现这一功能呢?在实际应用中常用单向阀或液控单向阀来实现这个动作要求 项目分析: 通过学习,我们知道液压传动系统中执行机构(液压缸或活塞杆)的运动是依靠换向阀来控制的,而换向阀的阀芯和阀体间总是存在着间隙,这就造成了换向阀内部的泄漏。若要求执行机构在停止运动时不受外界的影响,仅依靠换向阀是不能保证的,这时就要利用单向阀来控制液压油的流动,从而可靠地使控制执行元件能停在某处而不受外界影响。 该任务中,吊装机液压系统对执行机构的来回运动过程中停止位置要求较高,其本质就是对执行机构进行锁紧,使之不动,这种起锁紧作用的回路称为锁紧回路。图所示便是采用液控单向阀的锁紧回路。换向阀左位工作时,压力油经左液控单向阀进入液压缸左腔,同时将右液控单向阀打开,使液压缸右腔油液能流回油箱,液压缸活塞向右运动;反之,当换向阀右位工作时,压力油进入液压缸右腔并将左液控单向阀立即关闭,活塞停止运动。为了保证中位锁紧可靠换向阀宜采用H型或Y型。由于液控单向阀的密封性能很好,从而能使执行元件长期

锁紧。这种锁紧回路主要用于汽车起重机的支腿油路和矿山机械中液压支架的油路。 液压系统图 图1为汽车液压吊车支腿液压系统原理图 图2为汽车液压吊车起重液压系统原理图

冲压模具设计实例讲解

第二节冲压工艺与模具设计实例 一、摩托车侧盖前支承冲压工艺设计 二、微型汽车水泵叶轮冲压工艺与模具设计 一、摩托车侧盖前支承冲压工艺设计 图12-1所示为摩托车侧盖前支承零件示意图,材料Q215钢,厚度1.5mm,年生产量5万件,要求编制该冲压工艺方案。 ⒈零件及其冲压工艺性分析 mm的凸包定位且焊接组合在车架的电气元件支架上,腰圆孔用于摩托车侧盖前支承零件是以2个9.5 侧盖的装配,故腰圆孔位置是该零件需要保证的重点。另外,该零件属隐蔽件,被侧盖完全遮蔽,外观上要求不高,只需平整。

图12-1侧盖前支承零件示意图 该零件端部四角为尖角,若采用落料工艺,则工艺性较差,根据该零件的装配使用情况,为了改善落料的工艺性,故将四角修改为圆角,取圆角半径为2mm。此外零件的“腿”较长,若能有效地利用过弯曲和校正弯曲来控制回弹,则可以得到形状和尺寸比较准确的零件。 腰圆孔边至弯曲半径R中心的距离为2.5mm。大于材料厚度(1.5mm),从而腰圆孔位于变形区之外,弯曲时不会引起孔变形,故该孔可在弯曲前冲出。

⒉确定工艺方案 首先根据零件形状确定冲压工序类型和选择工序顺序。冲压该零件需要的基本工序有剪切(或落料)、冲腰圆孔、一次弯曲、二次弯曲和冲凸包。其中弯曲决定了零件的总体形状和尺寸,因此选择合理的弯曲方法十分重要。 (1) 弯曲变形的方法及比较该零件弯曲变形的方法可采用如图12-2所示中的任何一种。 第一种方法(图12-2a)为一次成形,其优点是用一副模具成形,可以提高生产率,减少所需设备和操作人员。缺点是毛坯的整个面积几乎都参与激烈的变形,零件表面擦伤严重,且擦伤面积大,零件形状与尺寸都不精确,弯曲处变薄严重,这些缺陷将随零件“腿”长的增加和“腿”长的减小而愈加明显。 第二种方法(图12-2b)是先用一副模具弯曲端部两角,然后在另一副模具上弯曲中间两角。这显然比第一种方法弯曲变形的激烈程度缓和的多,但回弹现象难以控制,且增加了模具、设备和操作人员。 第三种方法(图12-2c)是先在一副模具上弯曲端部两角并使中间两角预弯45°,然后在另一副模具上弯曲成形,这样由于能够实现过弯曲和校正弯曲来控制回弹,故零件的形状和尺寸精确度高。此外,由于成形过程中材料受凸、凹模圆角的阻力较小,零件的表面质量较好。这种弯曲变形方法对于精度要求高或长“脚”短“脚”弯曲件的成形特别有利。

挖掘机液压系统设计

目录 绪论 --------------------------- 3 1.1 现代液压技术的发展状况------------ 4 1.2 液压传动的研究对象-------------- 4 1.3 液压传动的组成---------------- 4 1.4 液压传动的优缺点----------------- 5 液压传动的主要优点------------- 5 液压传动的主要缺点------------ 5 1.5 液压技术的发展应用-------------- 6 、液压传动在各类机械中的应用- 6 、液压传动技术的发展概况--------- 7 第1章挖掘机的液压系统 ------------------ 8挖掘机的工作循环及对液压系统的要求 ----------------------------------------------------- 8 WY —100 挖掘机液压系统的工作原理------------- 9 第3 章液压系统的设计 ------------------ 12明确设计要求进行工况分析------------------ 12 确定液压系统的主要参数------- 13 液压缸的载荷组成计算-------- 13 液压马达的负载------------- 15 计算液压缸的主要结构尺寸和液压马达的排 -------------------------------------- 15 液压缸的设计计算------------ 15 液压马达的设计计算------------- 16 液压泵的确定与所需功率的计算-- 17 液压泵的确定--------------- 17 选择液压泵的规格------------ 18 阀类元件的选择------------------- 18 选择依据------------------ 18 选择阀类元件应注意的问题---- 18

SX-ZY-250型塑料注射成型机液压系统设计

优秀设计 题目:SX-ZY-250型塑料注射成型机液压系统 目录 1 绪论 (1) 2 主要技术参数 (2) 3 工况分析 (4) 3.1 和模油缸缸负载………………………………………………………… 3.1.2 空行程油缸推力………………………………………………… 3.2 注射座整体移动油缸负载……………………………………………… 3.3 注射液压缸负载………………………………………………………… 3.4 顶出油缸负载…………………………………………………………… 3.5 初算驱动油缸所需的功率……………………………………………… 4 油缸工作压力和流量的确定……………………………………………………… 4.1 油缸工作压力的确定………………………………………………………… 4.2 油缸几何尺寸的确定………………………………………………………… 4.2.1 根据和模油缸最大推力确定和模油缸内径………………………… 4.2.2 根据注射座最大推力确定注射座移动油缸内径…………………… 4.2.3 根据注射油缸最大推力确定注射油缸内径………………………… 4.2.4 根据顶出油缸最大推力确定顶出油缸内径………………………… 4.3 根据确定的油缸直径标准值,计算实际使用的油缸工作压力,绘制整个动作循 环图………………………………………………………………………… 4.4 油缸所需流量的确定………………………………………………………… 4.5 油缸功率图的绘制…………………………………………………………… 5 液压系统方案和工作原理图的拟定…………………………………………………

起重机液压系统设计

摘要 QY40型汽车起重机液压系统的设计是该型起重机设计过程中最关键的一步。本文根据液压系统的技术指标对该系统进行整体方案设计,对其功能和工作原理进行分析,初步确定了系统各回路的基本结构及主要元件,按照所给机构性能参数和液压性能参数进行元件的选择计算,通过对系统性能的验算和发热校核,以满足该起重机所要达到的要求。 本文还针对当前汽车起重机所采用的一项先进技术——电液比例控制技术,从原理、控制部件、回路控制、控制措施以及对汽车起重机的影响等进行专题研究。由此对电液比例控制技术在汽车起重机中的运用给以充分的肯定,对汽车起重机的发展前景有了很大的希望。 关键字: 汽车起重机液压系统高效节能性能参数电液比例

Abstract Model QY40 automobile crane hydraulic pressure systematic design this type hoist the most key one of the design process.This text analyses , demand to carry on the scheme to work out on this performance systematic in hydraulic pressure. Prove to its function and operation principle Have confirmed the basic structure of system every return circuit and main component tentatively According to giving the organization performance parameters and choice of carrying on the component of performance parameter of hydraulic pressure to calculate Through to the checking computations and generating heat to check of systematic function, in order to respond to the request that this hoist should reach This text, still to an advanced technology that the automobile crane adopts at present —Control technology of proportion of the electric liquid .Carry on the case study from principle , controlling part , return circuit controlling , control measure and impact on automobile crane ,etc. Therefore give the abundant affirmation to the application of the proportion of the electric liquid in the automobile crane of control technology The development prospect has very great hopes. key words:Crane truck Hydraulic pressure system Energy-efficient Performance parameter Proportion of the electric liquid

相关主题
文本预览
相关文档 最新文档