当前位置:文档之家› Fluent 关于辐射与自然对流模拟

Fluent 关于辐射与自然对流模拟

Fluent 关于辐射与自然对流模拟
Fluent 关于辐射与自然对流模拟

圆管自然对流计算和模拟

水平管和竖直管自然对流计算汇总 1.计算工况表 温度工况 计算结果 100℃150℃200℃250℃300℃ 传热系数h () 2 W m K ?水平管7.958 9.115 10.045 10.803 11.527 竖直管 4.715 5.369 5.899 6.335 6.754 换热量φ W 水平管75.962 141.388 215.734 296.472 385.128 竖直管45.008 83.390 126.703 173.860 225.649 最大速度 max u m/s 水平管0.476 0.537 0.585 0.697 0.736 竖直管0.840 1.050 1.180 1.290 1.390 2.变化曲线图

圆管自然对流的计算和数值模拟 已知条件如图1所示:将一圆管分别水平放置和垂直放置在大空间中进行自 然对流换热,圆管外径38 D mm =,长度1000 L mm =,空气温度20 T C ∞ =,恒壁 温条件100,150,200,250,300 w T C =,求解自然对流换热系数和换热量以及对流换 热时的空气最大速度。 图1 一、数值计算 1.自然对流换热系数和换热量的计算 1)圆管水平放置计算 以壁温100 w T=℃为例,计算过程如下: 特征长度:0.038 D m =; 定性温度()() 21002060 m w t t t C ∞ =+=+=; 查空气物性:() 0.029W m K λ=?;-62 =20.110m ν?;Pr0.696 = 空气的体积膨胀系数:()()1 12731602731 v m t K α- =+=+= 格拉晓夫数Gr: 大空间自然对流的实验关联式为: ()Pr n Nu C Gr =(1-1)根据计算的格拉晓夫数Gr选择合适的常数C和n(表1): 表1 式(1-1)中的常数C和n 加热表面形流动情况示流态系数C和指数n Gr数适用范围 ()() 33 5 262 9.81/333100200.038 = 3.210 20.110 v w g t t D Gr α ν ∞ - -??-? ==? ? ()

对流换热计算式

关系式 返回到上一层以下汇总了工程中最常见的几类对流换热问题的对流换热计算关系式,适用边界条件,已定准则的适用范围,特征尺寸与定性温度的选取方法。 一、掠过平板的强迫对流换热 应注意区分层流和湍流两种流态 ( 一般忽略过渡流段 ) ,恒壁温与恒热流两种典型的边界条件,以及局部 Nu 数和平均 Nu 数。 沿平板强迫对流换热准则数关联式汇总 注意:定性温度为边界层的平均温度,即。 二、管内强迫对流换热 (1) 流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。计算管内流动和换热时,速度必须取为截面平均速度。 (2) 换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的 Pr 数大致等于 1 的时候,两个边界层的入口段才重合。理解并准确把握两种典型边界条件 ( 恒壁温与恒热流 ) 下流体截面平均温

度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。 (3) 准则数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。还需要特别指出,绝大多数管内对流换热计算式 5f 对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。下表汇总了不同流态和边界条件下管内强迫对流换热计算最常用的一些准则数关联式。 (4) 非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。 常热流 层流,充分发展段, 常壁温 层流,充分发展段, 充 - 充分发展段,气体, - 充分发展段,液体, ; 紊流,充分发展段,

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

对流换热与准则数

单相流体对流换热及准则关联式部分 返回一、基本概念 主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。 1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。试判断这种说法的正确性? 答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。 2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗? 答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。3、简述边界层理论的基本论点。 答:边界层厚度δ、δt与壁的尺寸l相比是极小值; 边界层内壁面速度梯度及温度梯度最大; 边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层; 流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域); 对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻。 4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

自然对流与强制对流及计算实例

自然对流与强制对流及计算实例 热设计是电子设备开发中必不可少的环节。本连载从热设计的基础——传热着手,介绍基本的热设计方法。前面介绍的热传导具有消除个体内温差的效果。上篇绍的热对流,则具有降低平均温度的效果。 下面就通过具体的计算来分别说明自然对流与强制对流的情况。 首先,自然对流的传热系数可以表述为公式(2)。 热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2) 很多文献中都记载了计算传热系数的公式,可以把流体的特性值带入公式中进行计算,可以适用于所有流体。但每次计算的时候,都必须代入五个特性值。因此,公式(3)事先代入了空气的特性值,简化了公式。 自然对流传热系数 h=2 .51C(⊿T/L)0.25(W/m2K) (3) 2.51是代入空气的特性值后求得的系数。如果是向水中散热,2.51需要换成水的特性值。 公式(3)出现了C、L、⊿T三个参数。C和L从表1中选择。例如,发热板竖立和横躺时,周围空气的流动各不相同。对流传热系数也会随之改变,系数C 就负责吸收这一差异。 代表长度L与C是成对定义的。计算代表长度的公式因物体形状而异,因此,在计算的时候,需要从表1中选择相似的形状。

需要注意的是,表示大小的L位于分母。这就表示物体越小,对流传热系数越大。 ⊿T是指公式(2)中的(表面温度-流体温度)。温差变大后,传热系数也会变大。物体与空气之间的温差越大,紧邻物体那部分空气的升温越大。因此,风速加快后,传热系数也会变大。 公式(3)叫做“半理论半实验公式”。第二篇中介绍的热传导公式能够通过求解微分方程的方式求出,但自然对流与气流有关,没有完全适用的理论公式。能建立理论公式的,只有产生的气流较简单的平板垂直放置的情况。因为在这种情况下,理论上的温度边界线的厚度可以计算出来。 但是,如果发热板水平放置,气流就会变得复杂,计算的难度也会增加。这种情况下,就要根据原始的理论公式,通过实验求出系数。也就是说,在公式(3)中,理论计算得出的数值0.25可以直接套用,C的值则要通过实验求出。 自然对流传热系数无法大幅改变

圆管自然对流计算和模拟

水平管和竖直管自然对流计算汇总1.计算工况表 温度工况 计算结果 100℃150℃200℃250℃300℃ 传热系数h W (m2K) 水平管7.9589.11510.04510.80311.527 竖直管 4.715 5.369 5.899 6.335 6.754 换热量水平管75.962141.388215.734296.472385.128 W竖直管 45.00883.390126.703173.860225.649最大速度u max 水平管 0.4760.5370.5850.6970.736 m/s竖直管0.840 1.050 1.180 1.290 1.390 2.变化曲线图

加热表面形 流动情况示 流态 系数 C 和指数 Gr 数适用范围 圆管自然对流的计算和数值模拟 已知条件如图 1所示:将一圆管分别水平放置和垂直放置在大空间中进行自 然对流换热,圆管外径D = 38mm ,长度L =1000mm ,空气温度T = 20o C ,恒壁 温条件T w =100,150,200,250,300o C ,求解自然对流换热系数和换热量以及对流换 热时的空气最大速度。 一、数值计算 1. 自然对流换热系数和换热量的计算 1) 圆管水平放置计算 以壁温 T w = 100℃为例,计算过程如下: 特征长度: D = 0.038m ; 定性温度t m =(t w +t ) 2=(100+20) 2=60o C ; 查空气物性: = 0.029W (m K );=20.110-6 m 2 s ;Pr = 0.696 空气的体积膨胀系数: v =1 (t m +273) =1 (60+273)=1333K - 1 大空间自然对流的实验关联式为: Nu = C (Gr Pr )n (1-1) 根据计算的格拉晓夫数Gr 选择合适的常数C 和n (表 1): 表 1 式(1-1)中的常数C 和 n 格拉晓夫数Gr : Gr = g (t -t )D 3 9.8 1/333 (100-20) 0.038 3 2 = (20.1 10-6 )2 = 3.2 105 图1

相关主题
相关文档 最新文档