当前位置:文档之家› 浅谈旧沥青混合料的再生利用

浅谈旧沥青混合料的再生利用

浅谈旧沥青混合料的再生利用
浅谈旧沥青混合料的再生利用

浅谈旧沥青混合料的再生利用

摘要:从我国目前的现状来看,公路的本建设越来越完善,大量的公路已经逐步进入到维修养护和改造升级的阶段.在养护和改造阶段将会产生大量的旧沥青混合料.本文就是结合目前国内外对旧沥青混合料再生技术的研究现状,论述了旧料再生的意义和常用的再生技术.

关键字:旧沥青混合料;再生;

1 引言

对旧沥青混合料的再生利用就是将得到旧料进行破碎筛分,通过添加新沥青和再生剂并适当添加新集料以改善级配,在重新拌合后得到满足使用要求的再生沥青混合料.在生产沥青混合料时所使用的沥青和石料这些原材料都是不可再生的资源.道路石油沥青是是石油工业产品之一,随着石油资源的减少而减少.特别是近几年来,国际油价在不断升高也导致沥青的出场价格在飞涨.这是影响公路建设和养护的一个重要因素.石料的过度开采势必会造成植被的破坏和水土流失。沥青、石料这些宝贵的不可再生资源是组成路面材料的主要部分,当沥青路面在经过几年的车辆荷载作用和环境作用之后,其本身的路用性能可能达不到继续使用的要求,但是旧沥青混合料中的就沥青和旧集料依然具有很高的利用价值。按照我国公路10年大中修周期来看,每年的养护和维修路面将会产生大量的废旧沥青混合料。同时我国还有大量的城市道路也需要维修和养护。这些就沥青混合料的闲置会占用大量的土地资源,同时也会造成环境污染和土质的破坏。将这一部分旧沥青混合料进行再生利用,可以大量减少对能源资源的消耗,较少对土地的占用。

2国内外再生技术研究现状

2.1 国外应用概况

美国是最早研究旧沥青混合料再生技术的国家,到上世纪八、九十年代美国的再生沥青混合料的使用量占到了沥青混合料的整个需求量的50%以上。美国交通运输委员会于1981年出版了《路面废料再生指南》。

日本由于自身地理条件的限制,自然资源相对比较匮乏,所以一直身份重视旧沥青混合料的再生利用。从现在的再生技术使用状况来看,日本的路面废旧料的再利用率不达到了70%。

法国现在也高度重视就沥青混合料的再生技术,已经在部分高速公路的养护和维修中推广再生技术。在欧洲其他国家,如德国、芬兰等都开始大规模推广旧料再生技术。根据欧洲沥青路面协会统计得到的数据显示各成员国的就沥青混合料利用率达到了100%。

沥青混凝土再生剂

目次(征求意见稿)2020年 前言 ................................................................. 错误!未定义书签。 1 范围 (2) 2 规范性引用文件 (2) 3 术语和定义 (2) 4 要求 (3) 5 试验方法 (3) 6 检验规则 (4) 7 包装、运输和贮存 (5)

沥青混凝土再生剂 1 范围 本标准规定了沥青混凝土再生剂的术语和定义、要求、试验方法、检验规则、包装、运输和贮存等。 本标准适用于市政道路及各等级公路沥青路面厂拌热再生和就地热再生时,为改善再生沥青混合料路用性能而掺用的再生剂。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 JTG E20 公路工程沥青及沥青混合料试验规程 JTG F40 公路沥青路面施工技术规范 3 术语和定义 3.1再生剂Rejuvenator 掺加到再生沥青混凝土中用于恢复老化沥青性能的添加剂,通常用以提高沥青混合料的水稳定性、疲劳性能和低温开裂性能。 3.2再生剂掺量Rejuvenator dosage 再生剂占老化沥青(不含再生剂)的质量百分率,以百分比(%)计。 3.3基准沥青Reference asphalt 性能指标符合JTG F40要求的70号(A)基质沥青。 3.4老化沥青Aged asphalt 依照本标准规定的试验条件由基准沥青制备得到的受检沥青。 3.5再生沥青Rejuvenated asphalt 老化沥青与一定比例再生剂均匀混合后的沥青。 3.6再生沥青针入度比Penetration ratio of rejuvenated asphalt

建筑项目五_沥青混合料_习题

项目五沥青混合料习题 一、填空题 1.在马歇尔试验中,反映材料强度的指标是,反映混合料变形能力的指标是。 2.沥青混合料的配合比设计的内容①其方法有与;②,其方法是。 3.测定沥青混合料高温稳定性的方法有①,② ,③,其中试验方法最符合混合料在路中的受力状态,而目前工地上广泛采用的是试验方法。 4.沥青混合料按矿料最大粒径分为、、 、。 5..沥青混合料技术性质有、、、 。 6.沥青混合料的组成结构有、、三个类型。 7.沥青与矿料间的吸附作用有与。 8.沥青混合料的强度主要取决于与。 9.沥青混合料粘聚力的影响因素有、、 、 。 10.根据沥青与矿料相互作用原理,沥青用量要适量,使混合料中形成足够多的 沥青,尽量减少沥青。 11.我国现行沥青混凝土技术指标是按方法检配,其技术指标包括、、、、。 12.沥青混合料中,沥青与矿料发生吸附作用,形成扩散结构膜称为沥青,可改善沥青原有的性质。

13.提高沥青粘结力的主要组分是、。 14.测定沥青温度稳定性的主要指标是与。 15.沥青混合料若用的是石油沥青,为提高其粘结力则应优先选用矿料。 16沥青混合料的,,,统称其技术性质。 17沥青混合料(骨架一空隙结构)的强度主要是由矿料间的决定。 18.按拌和铺筑温度分类,沥青混合料可分,,三种。 19.沥青混合料的技术性质包括四个方面,即,, ,。 20. 沥青混合料的组成结构有、、。 二、判断题 1.沥青混合料的温度稳定性,随用油量的增加而提高。( ) 2.沥青混合料加入的矿粉应是酸性矿粉为好。( ) 3.在沥青混合料中加入矿粉的目的是提高混合料的密实度和增大矿料的比表面积。( ) 4.沥青混合料的耐久性是用密实度来表征的,密实度愈大耐久性也越好。( ) 5.沥青与矿料产生物理吸附后,其热稳定性要比产生化学吸附的水稳性差。( ) 6.沥青用量在足够包裹矿料表面前提下。膜越薄越好。( ) 7.沥青混合料空隙率愈小,愈密实,路用性能愈好。( ) 8.在水的作用下,沥青与矿料表面的化学吸附是不可逆的。( ) 9.选用道路沥青材料时。寒冷地区宜选用针人度越大,延度越大的沥青,较热地区宜选用针入度较小,软化点高的沥青。( ) 10.在相同沥青用量情况下,矿料表面积愈大,形成的沥青膜愈薄,结构沥青所占比例愈小,沥青混合料的粘结力愈低。( ) 11.马歇尔稳定度试验时的温度愈高,则稳定度愈大,流值愈小。( ) 12.道路石油沥青,用酸性矿料比碱性矿料要好。( )

沥青混合料及其力学性能分析

沥青混合料及其力学性能分析 摘要:目前我国高等级公路主要采用沥青路面结构形式,沥青混合料性能的好 坏直接影响到公路的服务功能和使用年限。现代重载交通要求沥青混合料具有优 良的高温稳定性和其它性能;为提高沥青混合料的性能、实现混合料性能的优化,近年来先后出现了大量的新材料和新理论。本文首先对沥青混合料的级配构成原 理进行了分析,其次对其力学性能做出了分析。 关键词:沥青混合料力学性能级配构成 1引言 随着生产力的发展,现代道路工程的特点反映出愈来愈鲜明的功能化。为了 满足日趋复杂、高效的现代化生产过程和日益上涨的生活水平所提出的各种功能 要求,道路工程的使命愈来愈艰难。从这个意义上看,现代道路工程面临着一场 革命作为道路工程中广泛使用的一种复合材料,沥青混合料是由沥青、矿粉、集料、等多种具有不同力学特性、不同几何形状尺寸的材料所构成的具有多相结构 的非各向同性材料。本文主要对沥青混合料及其力学性能进行了研究,希望能够 为沥青混合料的技术发展提供帮助。 2新型沥青混合料的级配构成原理分析 2.1沥青玛蹄脂碎石混合料(SMA) 沥青玛蹄脂碎石(简称SMA)是一种由沥青、矿粉及纤维稳定剂组成的沥青 玛蹄脂混合料填充于间断级配的矿料骨架中所形成的沥青混合料。其4.75mm以 上的集料含量在70%-80%左右,同时小于0.075mm的填料含量通常达到10%,而0.6-4.75mm的颗粒通常仅有10%左右,而AC-I型混合料的0.6-4.75mm的颗粒通 常达30%。因此SMA混合料是典型的由填料填充在粗集料形成的骨架空隙中形成的骨架密实结构。 2.2多碎石沥青混凝土(SAC) 多碎石沥青混凝土(SAC;)是由我国沙庆林院士于1988年提出的一种沥青 混凝土结构形式。其定义为;4.75mm以上的碎石含量占主要部分的密实级配沥 青混凝土。 SAC是在总结我国传统的工型和II型沥青混凝土的有缺点的基础上提出的。 我国传统的工型沥青混凝土空隙率为设计3-6%,因此耐久性好、透水性小,但表面构造深度较小;同时由于细集料试用较多,粗集料悬浮于沥青和细集料所组成 的密实体系中,因此混合料的稳定性随温度的增加下降明显,从而易出现车辙等 病害。 2.3大粒径沥青混凝土(LSAM) 根据以有的研究成果,LSAM的的典型特点是颗粒尺寸大、粗集料含量高、粗集料接触程度高和主骨架稳定性高。LSAM中粗集料的排列特征和级配对混合料 的体积特征有着较大的影响,甚至起着决定性的作用,也即粗集料间必须充分形 成石一石接触的骨架特征。对于LSAM的骨架特征有两个重要指标;骨架稳定度 和骨架接触度。 2.4SuperPAVE沥青混合料 SuperPAVE推荐的级配采用了0.45次方级配图,此级配图是以Fuller最大密 实度理论(n=0.45)为基础,即此图的对角线即为最大密实度线,级配曲线越靠 近对角线,混合料的密实度越大。为便于级配的选择和创新,SuperPAVE摒弃了 传统的对各个筛孔的通过率都严格控制的方法,而改为仅对关键筛孔(如公称最

【2017年整理】改性沥青混合料面层施工技术

改性沥青混合料面层施工技术本文简要介绍了改性沥青混合料和改性沥青SMA混合料(通称改性沥青混合料)面层的施工工艺,主要包括生产和运输、摊铺、碾压、接缝、开放交通等内容。 一、生产和运输 (一)生产 改性沥青混合料的生产除遵照普通沥青混合料生产要求外,尚应注意以下几点: 1.改性沥青混合料混合料生产温度应根据改性沥青品种、黏度、气候条件、铺装层的厚度确定,改性沥青混合料的正常生产温度根据实践经验并参照表1K41104 2选择。通常宜较普通沥青混合料的生产温度提高10~20℃。当采用表1K411042以外的聚合物或天然沥青改性沥青时,生产温度由试验确定。 改性沥青混合料的正常生产温度范围(℃) 表I

2.改性沥青混合料宜采用间歇式拌合设备生产,这种设备除尘系统完整,能达到环保要求;给料仓数量较多,能满足配合比设计配料要求;且具有添加纤维等外掺料的装置。 3.改性沥青混合料拌合时间根据具体情况经试拌确定,以沥青均匀包裹骨料为度。间歇式拌合机每盘的生产周期不宜少于45s(其中干拌时间不少于5~lOs)。改性沥青混合料的拌合时间应适当延长。 4.间歇式拌台机宜备有保温性能好的成品储料仓.贮存过程中混合料温降不得大于10℃,且具有沥青滴漏功能。改性沥青混合料的贮存时间不宜超过24h;改性沥青SMA 混合料只限当天使用;OGFC混合料宜随拌随用。 5.添加纤维的沥青混合料,纤维必须在混合料中充分分散,拌合均匀。拌合机应配备同步添加投料装置,松散的絮状纤维可在喷入沥青的同时或稍后采用风送装置喷入拌合锅,拌合时间宜延长5s以上。颗粒纤维可在粗骨料投入的同时自动加入,经5---lOs的干拌后,再投入矿粉。 6.使用改性沥青时应随时检查沥青泵、管道、计量器是否受堵,堵塞时应及时清洗。 (二)运输

沥青混合料目标配合比设计(SMA-13).

沥青SMA 混合料配合比设计(SMA-13) 一、基本情况 杭浦高速公路,拟采用改性沥青SMA-13作为面层。 原材料产地如下: 二、设计依据 1.《公路沥青路面施工技术规范》(JTG F40-2004) 2.《公路工程集料试验规程》(JTG E42-2005) 3.《公路工程沥青及沥青混合料试验规程》(JTJ052-2000) 4.《高速公路沥青路面规范化施工与质量管理指导意见》 5.《杭浦高速公路道路养护工程招标文件》 三、设计过程 1、原材料 本次室内目标配合比设计所用集料产地为湖州西园坞(辉绿岩)和闲林(石灰岩),沥青采用韩国SK 生产的SBS-改性沥青,外加剂为木质素纤维,密度为0.6g/cm 3表1 集料及沥青密度试验结果 ,掺量比例为沥青混合料总质量的0.3%,试验所用原材料均由委托方提供。各档集料、矿粉及SBS 改性沥青的密度试验结果见表1。

各档集料及矿粉的筛分结果见表2。 表2 各种矿料的筛分结果 2、混合料级配 根据委托要求,SMA-13型沥青混合料工程设计级配范围见表3。 表3 SMA-13沥青混合料工程设计级配范围 3、矿料配合比设计计算 根据各档集料的筛分结果,结合混合料级配要求,首先调试选出粗、中、细三个级配,根据工程经验确定三个级配的初始油石比为6.2%,然后用初始油石比成型试件。表4为三种级配的设计组成结果,表5为初试级配的体积分析结果。 表4 三种级配的设计组成结果 )的质量百分率(%) 1.18 0.6 0.3 0.15 0.075

表5 初试级配的沥青混合料性能指标分析结果 根据各组级配体积指标结果分析,结合以往工程经验选择级配3为设计级配,级配曲线见图1所示。 0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 13.2 16 1.000 1.500 2.000 2.500 3.000 筛孔尺寸(mm) 图1 SMA-13设计级配曲线图 4、马歇尔稳定度试验 按设计的矿料比例配料,采用三种油石比,进行马歇尔稳定度试验,试验结果见表6,设计级配合成毛体积相对密度2.705,级配合成表观相对密度2.751。根据以下数据并确定最佳油石比为6.2%。

热再生AC-16沥青混合料目标配合比设计

热再生AC-16沥青混合料 目 标 配 合 比 设 计 报 告

热再生AC-16沥青混合料目标配合比设计 一、设计及试验依据 1、JTJ052 《公路工程沥青及沥青混合料试验规程》 2、JT GE42 《公路工程集料试验规程》 3、JT GF40 《公路沥青路面施工技术规范》 二、材料规格及产地 1、1# 仓(11_14mm筛)碎石安庆李冲石料厂 2、2# 仓(6_11mm筛)碎石安庆李冲石料厂 3、3# 仓(3-6mm筛)碎石安庆李冲石料厂 4、4# 仓(0-3mm筛)石粉安庆李冲石料厂 5、沥青(AH-70)中国石化公司 6、粗铣刨料老路面铣刨料 7、细铣刨料老路面铣刨料 三、原材料的基本性能 集料的基本性能测试值

集料密度测定值 沥青三大指标及密度测定值 表-3 四、AC-20混合料组成设计及马歇尔试验 1、沥青混合料级配要求 AC-16沥青混合料级配要求 表-4 2、依据规范(JT GF40-2004)得设计要求、根据各档集料筛分试验结果、按照AC-20级配控制范围、进行矿质混合料组成设计。

AC-16沥青混合料组配 表-5 经组配确定矿料配合比为 1#:2#:3#:4#:粗铣刨料:细铣刨料 = 25:15:9:21:15:15 合成级配符合规范要求、级配曲线如下: AC-16矿料级配图

3、依据矿料配合比按油石比4.5%制备马歇尔制件,并进行了马歇尔试验,试验结果如下: 马歇尔试验结果表表-6 五、室内配合比设计结论 根据集料及老路面铣刨料对厂拌热再生AC-20型沥青混合料进行目标配合比设计、得出如下结论: 矿料配合比及油石比表-7 最佳油石比及密度、空隙率表-8 据马歇尔试验结果整理确定热再生AC-16型沥青混凝土最佳油石比为4.7%。当施工现场原材料发生变化时、必须重新进行相应的试验验证。

SMA13改性沥青混合料目标配合比设计报告

XXX路 SMA-13改性沥青混合料目标配合比设计报告

XXXX路 SMA-13改性沥青混合料目标配合比 设计报告 注意事项: 1.本报告未加盖检测单位报告专用章、缺页、添页或涂改均无效;无相关人员及签发人签字无效;未经检测单位许可复印无效; 2.对检测报告有异议者,请于收到报告之日起十五日向检测单位提出; 3.试验检测按国家标准、行业标准和企业标准执行,无标准的按双方协议执行。

XXXX检测中心设计报告

1.0 概述 受XXXX委托,XXXX检测中心承担了XXXX路工程上面层SMA-13型沥青混合料的目标配合比设计工作。本次改性沥青混合料SMA-13的目标配合比设计方法依据《公路沥青路面施工技术规》(JTG F40—2004)进行设计。 2.0 设计依据 上面层SMA-13改性沥青混合料目标配合比设计依据以下标准规、规程: 1、《公路沥青路面施工技术规》(JTG F40-2004); 2、《公路工程集料试验规程》(JTG E42-2005); 3、《公路工程沥青及沥青混合料试验规程》(JTG E20-2011); 3.0 原材料试验 本次试验所用集料、矿粉、沥青均为委托方送样,各原材料规格及产地如下: 1、沥青:XXX产SBS改性沥青; 2、集料:XXX产玄武岩(碎石1:9.5~13.2mm、碎石2:4.75~9.5mm) 3、细集料:XXX产石灰岩(碎石4:0-2.36mm) 4、矿粉:XXX矿粉厂; 5、木质素纤维:XXX(用量为混合料总质量的0.35%)。 4、抗剥落剂:XXX(用量为沥青质量的0.35%) 沥青、矿粉、粗集料、细集料、纤维试验结果如表3.0-1至表3.0-5。

沥青混合料冷再生施工工法

乳化沥青处理沥青混合料厂拌冷再生施工工法 安徽开源路桥有限责任公司 1、前言 近年来,我国公路建设迅速发展,随着通车里程的逐年递增,许多高等级公路已进入大面积改造维护期,而路面的大修、重建等常规改造维修方法,耗用大量砂石及沥青等限量资源,占用大量的资金,已逐渐影响到我国高等级公路的建设进程及现代化公路交通网的规划与完善。 沥青属于高分子聚合物范畴,具有溶解、沉淀等热力学可逆过程的性质,而且研究表明,由于旧沥青已经受过氧化作用,性能趋于稳定,再生利用后不会迅速变质,再生路面不易硬化而出现裂缝,能够保持持久的柔韧性,使用寿命长。这决定了旧沥青混合料是一种可再生利用的材料资源。 因此,进行沥青混合料的再生,蕴含巨大的经济效益,顺应交通事业可持续发展的战略举措,同时更有利于保护生态环境。 安徽开源路桥有限责任公司在合徐高速公路南段沥青混凝土路面的养护施工中,采用了沥青混合料的冷再生技术,在该项施工中,我公司在华南理工大学的研究和指导下,已掌握该施工工法,具备了成功经验,并取得了良好效果。 2、工法特点 沥青混合料冷再生施工工法具备以下特点: 1、对原路面铣刨的沥青混合料,可全部回收利用,既降低了公路维修成本,又不至于对环境造成污染; 2、用改性乳化沥青和水泥作为再生剂,对废旧沥青混合料的再生,无需加热,施工简便,易于控制; 3、对原有拌和设备的改造简单,不需要太大的投入; 4、施工工艺易于控制,能够保证工程质量; 5、对路面的维修周期大大降低,确保车辆的通行; 6、大大改善了施工条件,延长了可施工季节。 3、适用范围

本施工工法目前可适用于沥青混合料经再生后,用于高速公路的中下面层、基层或低一级的沥青混凝土路面的面层。 4、工艺原理 乳化沥青处理沥青混合料冷再生工法原理是用铣刨后的废旧沥青混合料,按照一定的级配,用改性乳化沥青作为再生剂,重新拌和,再使用到路面的基层或面层中,对铣刨后的旧沥青混合料进行再生利用。 5、施工工艺流程及操作要点 本工法主要阐述沥青混合料冷再生后用于高速公路基层的施工工艺。

道路废旧沥青混合料再利用试验研究

道路废旧沥青混合料再利用试验研究 近年来,我国的公路施工工程越来越多,在进行施工的时,施工中使用沥青混凝土路面来进行的工程也在逐渐增多。公路的建设工程不但是满足人们日常出行的重要保证,同时也是我国经济建设的重要保障。在进行公路施工的时候,有很多的施工技术得到了应用,在进行施工的时候,人们越来越多的选择了沥青混凝土的施工技术,沥青混凝土的施工具有操作简单的特点。沥青混凝土的路面使用年限是非常短的,这样就导致了每年都会出现很多的废弃的沥青混凝土路面,这些旧的沥青混凝土路面可以实现回收和利用,是一件非常有意义的事。通过在实验室内的实验可以将旧路材料中的沥青分离出来,通过新的设计方法可以得到再生沥青混凝土,再生的沥青混凝土在高温中的稳定性,低温中的抗裂性以及在水中的稳定性都是非常好的,这就证明了对旧路面进行分离沥青的试验是非常可行的。 标签:路面废料;再生沥青;配合比设计 高速公路的建设是对人们的出行的重要保证,同时高速公路也是我国经济发展的一个保障。在现在,施工的公路工程越来越多,在选择施工路面时,沥青混凝土路面使用的越来越多,同时沥青混凝土路面的施工技术也在随着时间的推移,发展的越来越好。但是使用;沥青混凝土路面还是有一定的弊端的,沥青混凝土的路面使用的时间较短,通常在使用十年以后就要进行大的维修,这样就导致了每年都会出现很多的沥青混凝土路面的废料,这些废料是一个非常严峻的问题,所以对于废料的处理工作就特别的重要,可以重新利用这些废料得到再使用的沥青是解决这一问题的最有效的方法。 1 废旧沥青混合料热再生实验研究 1.1 旧料的破碎筛分以及旧沥青的抽提与指标测定 将路面的旧料通过实验得到可以使用的沥青是非常环保的事,同时对于施工的企业来说也是一件可以节省施工成本的事。将道路上的旧料用破碎筛分机进行材料的破碎和筛分。然后将破碎以后的旧料进行分类,将它们按规格的不同进行分类。将分好类的旧料分别放在不同的桶或者是容器中,在桶内加入工业用的甲基氯仿,将旧料浸泡在桶内几个小时以后,用一个铁棍对桶内的旧料进行搅拌,这个过程可以使沥青溶解在甲基氯仿的溶液中,然后将融合了沥青的甲基氯仿溶液放在离心分离机中进行沥青的分离工作,然后要对分离出的沥青进行针入度、软化点以及延度的试验,看分离出来的沥青是否是符合标准的。新分离出的沥青在进行试验的时候,可以用燃烧的方法来进行,这样可以测定再生骨料中的沥青含量。通过试验可以得出,新沥青的针入度是低于规定的数值的,旧的沥青在试验以后可以得出,沥青的延度是非常低的,但是它的软化度是在正常的规定数值以内的,这就说明了沥青的老化程度是非常严重的,通过试验的数据可以得出,通过旧料分离得出的沥青是需要提高稳定性的,旧的的沥青在使用的时候,遇到夏季出现高温的情况是非常容易导致车辙的情况,为了提高抗车辙的能力,就一

AC-13沥青混合料目标配合比设计说明.

沥青混合料目标配合比设计说明 (AC-13 一.设计依据 1.《公路工程沥青路面施工技术规范》(JTG-F40-2004; 2.《公路工程沥青及沥青混合料试验规程》(JTJ-052-2000; 3.《公路工程集料试验规程》(JTGE42-2005; 4.郑开建管办相关技术文件。 二.原材料 1.沥青。采用中海36-1沥青公司生产的AH-70重交沥青,其质量技术指标见表1。 沥青的技术指标 表1 试验项目单位技术要求试验结果 针入度(25℃, 0. 1mm 60~80 70 100g,5s 延度(5cm/min, cm ≥100150 15℃

延度(5cm/min, cm ≥2050.8 10℃ 软化点(环球法℃>46 48 密度(15℃g/cm3实测 1.010 溶解度sb(三氯 %>99.-- 乙烯 RTFOT后残留物质量损失%≤±0.80.05 针入度比P(25℃%≥6170 软化点增值(环球 ℃—-- 法 延度(10℃, cm ≥611.4 5cm/min 2.集料。采用河南禹州碎石厂生产的碎石,其中分为四档:1#料(10~16mm、2#料(4.75~13.2mm、3#料(2.36~4.75mm、4#料(<2.36mm,其质量技术指标见表2、表3。粗集料质量指标 表2 试验项目单位标准试验结果 视密度1#料g/cm3≥2.60 2.755

2#料g/cm3≥2.60 2.796 3#料g/cm3≥2.60 2.722 石料压碎值%≤2617.2 细长扁平颗粒 1#料%<15 7.8 含量 2#料%<15 8.0 对沥青的粘附 ≥5级5级 性 水洗法 1#料%≤10.2 <0.075mm含 量 2#料%≤10.6 3#料%≤10.8 细集料质量指标 表3 试验项目单位标准试验结果视密度g/cm3≥2.60 2.710

沥青混合料厂拌冷再生技术的应用

第二批节能减排示范项目推广材料之十一——沥青混合料厂拌冷再生技术在昌九高速公路技术改造项目中的应用 项目实施单位江西赣粤高速公路股份有限公司综合点评 目前,传统的基于“强基薄面”设计理念的半刚性基层沥青路面是我国高速公路路面的主要结构形式,这种路面虽然减少了初期投资,但是由此也带来了早期损坏严重的弊端。因此,随着使用年限的增加,全国有越来越多的高速公路面临大修或改建工程,一方面需要大量的新基层和面层材料,另一方面还有因翻新而废弃的渣料需要环保处理,公路运营养护面临重大技术难题。 江西赣粤高速公路股份有限公司经营管理江西省的高速公路达558公里,且均系国家及省内高速公路网络的重要组成部分。该公司结合昌九高速公路技术改造项目,使用经过自主改造的国产水泥稳定拌合设备,利用厂拌冷再生技术实现了对原半刚性基层的柔性化转换,将厂拌冷再生层作为高速公路的上基层,实践了“长寿命沥青路面”的设计理念,经过2年多的特重交通考验证明,不但使用效果良好,而且还表现出优异的环保性能。 厂拌冷再生沥青混合料与传统的热拌沥青碎石(ATB-25)混合料相比,在不影响路面使用性能的前提下,可节省50%以上加热能源,减少的C02排放量也大于50%。昌九高速公路利用厂拌冷再生技术进行技改的路段90公里,与热拌沥青碎石(ATB-25)混合料相比可节省沥青7845吨、柴油418.4万升、电59.622万度,CO2排放减少4707吨。此外,还减少了路面翻修过程中废弃渣料的排放,取得了明显的节能减排效果。公司在厂拌冷再生上基层技术方面积累了丰富的经验,形成了一套行之有效的工法,可操作性强,经济效益和社会效益明显,具有广泛的推广应用前景。 “沥青混合料厂拌冷再生技术在昌九高速公路技术改造项目中的应用”推广材料 ——交通部节能减排专家工作组 一、概况 昌九高速公路是江西省首条高速公路,是国家干线公路网规划福银(福州至银川)高速公路在江西境内的重要组成部分,双向4车道,设计行车速度100km/h,全长约133.4km。一期1993年建成通车,二期1994年通车,三期1996年建成通车。实施技改时,已运营10~13年。 尽管养护成本在逐年增加(1998年为1252万,2004年已达7700万),但是随着经济发展,交通量增大(见表1),路面损坏却日益严重、性能每况愈下,主要病害是网裂水损害和车辙。现有的以挖补、罩面为主的养护方式,费用高且治标不治本,已难见成效。这一方面说明昌九高速公路原路面结构已满足不了日益增长的交通需求;另一方面,从使用年限看,昌九高速公路原路面结构也已接近使用寿命,急需改建。 表1 昌九高速公路交通量调查 年份 一期 (蛟桥至十里铺) 二期 (南端连接线) 三期 (北端连接线)自然车辆 (辆/日) 累计轴载 次数(次) 自然车辆 (辆/日) 累计轴载 次数(次) 自然车辆 (辆/日) 累计轴载 次数(次)

改性沥青混合料

改性沥青混合料 改性沥青是在沥青中掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料某一方面的性能得以改善的沥青结合料。 沥青作为现代公路路面的主要材料之一,具有很广泛的使用用途,随着社会发展对路面的要求不断提升,普通沥青由于其自身性能的局限性在使用上受到一定的限制,改性沥青正是为了满足这些需要而诞生。改性沥青混合料相比普通沥青混合料具有较高的抗流动性,良好的路面柔性和弹性,较高的耐磨耗能力和更长使用寿命。 改性沥青的分类 根据改性沥青添加的改性材料不同可以分为以下几类:一是橡胶及热塑性弹性体改性沥青,包括:天然橡胶改性沥青、SBS改性沥青(使用最广)、丁苯橡胶改性沥青、氯丁橡胶改性沥青、顺丁橡胶改性沥青、丁基橡胶改性沥青、废橡胶和再生橡胶改性沥青、其他橡胶类改性沥青等。二是塑料与合成树脂类改性沥青,包括:聚乙烯改性沥青、乙烯-乙酸乙烯聚合物改性沥青、聚苯乙烯改性沥青、环氧树脂改性沥青、α-烯烃类无规聚合物改性沥青等。三是共混型高分子聚合物改性沥青,即用两种或两种以上聚合物同时加入到沥青中对沥青进行改性。这里所说的两种以上的聚合物可以是两种单独的高分子聚合物,也可以是事先经过共混形成高分子互穿网络的所谓高分子合金。 改性沥青的用途 改性沥青的用途和普通沥青用途相似,主要是公路路面和防水工程上。在公路路面工程中,由于现代公路发生许多变化:交通流量和行驶频度急剧增长,货运车的轴重不断增加,普遍实行分车道单向行驶,要求进一步提高路面抗流动性,即高温下抗车辙的能力;提高柔性和弹性,即低温下抗开裂的能力;提高耐磨耗能力和延长使用寿命。现代建筑物普遍采用大跨度预应力屋面板,要求屋面防水材料适应大位移,更耐受严酷的高低温气候条件,耐久性更好,有自粘性,方便施工,减少维修工作量。使用环境发生的这些变化对石油沥青的性能提出了严峻

废旧塑料与沥青混合料改性剂

目录 第一章绪论 (1) 1.1概述 (1) 1.1.1废旧塑料 (2) 1.1.1.1废旧塑料的种类 (2) 1.1.1.2废旧塑料的回收再生 (2) 1.1.2改性沥青混合料的研究、应用现状 (3) 1.1.2.1单纯的沥青改性研究、应用现状 (4) 1.1.2.2外掺改性剂改性沥青混合料的研究、应用现状 (4) 1.2问题的提出 (6) 1.3研究的主要内容和方法 (7) 1.3.1研究的主要内容 (7) 1.3.2研究的方法: (7) 第一章绪论 1.1概述 随着国民经济的增长,我国的交通运输事业也在蓬勃发展,截止目前为止高速公路的里程数达到了世界第二6.5万公里。其中沥青路面以其连续性好、平整舒适、噪音低、便于养护等优点在高速公路中得到了广泛应用。但是近些年来,随着道路交通量的不断增大,特别是重型车辆的增多和高压轮胎的使用、交通流的渠化及恶劣的气候条件,沥青路面出现了各种病害,路面往往达不到设计年限就要进行翻修。因此对于如何有效增强沥青路面抗病害能力、提高沥青路面服务寿命和水平、降低沥青路面大修的养护成本,公路研究者进行了大量的研究,研究主要集中于对沥青混合料的改性上,取得了一些重大进展。另外一方面,据国家统计数据所示, 我国2004 年塑料制品年产量达到1 846. 61 万t, 且仍以每年接近10% 的速度递增, 每年产生大量的废塑料难以得到有效处理,以前通常采用填埋或焚烧方法处

理,不仅造成了二次污染又造成了资源浪费。本文总结了国内外改性沥青混合料的研究情况,提出了利用废旧塑料改善沥青混合料路用性能的研究主题,希望以此方法来有效利用废旧塑料和提高沥青混合料路用性能,实现保护生态环境和创造经济效益的目的。 1.1.1废旧塑料 塑料是一种具有塑性行为的材料,一般是以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,并在一定的温度和压力下可塑制成型的材料。塑料具有质轻、化学性稳定、耐冲击、耐磨、绝缘性好等优异性能,使其在生活和生产中得到广泛应用,但同时也存在它自身的缺点例如耐热性差、热膨胀率大、尺寸稳定性差、耐低温性差、易老化,而且所产生的废旧塑料在自然环境中难以分解,焚烧又易产生有毒气体,污染环境,因此有必要对废旧塑料进行有效地回收利用。 1.1.1.1废旧塑料的种类 为了对废旧塑料进行合理有效地回收再生,需要分清废旧塑料的种类。按照原塑料制品的受热加工状态可将废旧塑料分为热塑性塑料和热固性塑料两大类。 热塑性塑料加热到一定温度可软化甚至流动(特别是加压时易流动),可塑制加工成一定的形状,冷却后变硬,再加热可软化。这种塑料中所包含的高分子聚合物属于线型或支链型分子结构。常见的热塑性塑料有:聚乙烯(PE )、聚氯乙烯(PVC)、聚丙烯(PP )、聚苯乙烯(PS )、丙烯腈-丁二烯-苯乙烯(ABS)、聚四氟乙烯(PTEF)。 热固性塑料受热或其他条件下能固化或具有不溶(熔)特性的塑料。热固性塑料第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三度的网状结构,不仅不能再熔触,在溶剂中也不能溶解。常见的热固性塑料有:酚醛塑料、聚氨酯塑料、环氧塑料、不饱和聚酯塑料、邻苯二甲酸二丙烯酯(DAP)树脂等。 1.1.1.2废旧塑料的回收再生 对于废旧塑料的回收利用,目前国内外采用的方法大致可以分为两大类:物理再生技术

废旧沥青混合料的再生利用.

废旧沥青混合料的再生利用 目前,旧料再生已经成为世界性的一个热门课题,从其对沥青旧料的回收再利用,从而达到节约资源、减少环境污染公害、增强公共经济效益的目的。 届时,世界各国广泛地通过沥青路面再生利用研究和试验,在其拌制工艺以及与之配套的各种挖掘、铣刨、破碎、拌和等机具的研制方面,已经形成了一套完整、成熟的沥青路面旧料再生利用技术。 随着沥青路面旧料的成倍急剧增加,加以政府提供相应强大的旧料再生利用研究环境与平台,促使我国在再生的沥青混合料生产技术上也有了突飞猛进的发展,沥青旧料再生技术已然达到了一定成熟阶段。 通过有关资料分析及表明,多数国家采用厂拌热再生方法进行路面沥青旧料的回收利用,设备类型主要有双滚筒式沥青再生搅拌设备和与间歇式沥青混合料搅拌设备相配套的旧料再生设备。 由于我国目前应用最为广泛的是间歇式沥青混合料搅拌设备,日后在中国起主导作用的旧料再生设备应是与间歇式沥青混合料搅拌设备相配套的并设滚筒式旧料再生设备,此方法对原材料要求较低,且能够保障生产出品质较优的合格再生混合料,适合我国目前国情的发展,现就其设备工艺及应用方法浅析如下: 1、间歇式沥青混合料旧料再生搅拌设备工艺流程 间歇式沥青混合料旧料再生搅拌设备是在间歇式沥青混合料搅拌设备的基础上增配了路面沥青旧料破碎、筛分、预热、计量、再生剂添加等设备,为了避免在预热时,旧料中沥青老化变质,用于对旧料加热的预热筒、加热器与生产新集料的沥青混合料的设备有所不同,在加长其燃烧室的同时,旧料的预热滚筒也采用特殊设计,保证加入的沥青旧料经过热烟气进行加热,而隔绝明火直接加热或灼烧旧料。通过温度的严格控制,即保证沥青旧料升高的温度,又能避免加热过程中沥青老化的现象。 预热到一定温度的沥青旧料和再生剂经过准确计量后先投放入搅拌器内进行先期拌和,均匀后再放入加热的新集料进行拌和到一定时间,最后加入新沥青。这种方法可使再生剂、旧料中沥青和新沥青在混合料中均匀分布融合,使旧料中沥青充分再生,恢复原有性能,确保再生沥青混合料的品质。 2、路面沥青旧料的回收利用应注意的问题 2.1 对沥青路面材料的分析 路面沥青旧料的回收利用首先必须要对旧沥青路面进行研究分析,深入了解原路面使用沥青的性能及老化后质量变化情况。 应对采集回来的沥青路面材料分不同年代进行破碎,分开堆放,对破碎好的沥青旧料进行抽提和蒸馏试验,把沥青从沥青旧料中分离出来进行试验,并与新沥青进行性能、成分对比,以确定旧料中沥青的再生方法。通过调和使旧料中的沥青

浅析沥青混合料的技术性能和标准

2011年第8期(总第210期) 黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI No.8,2011(Sum No.210) 浅析沥青混合料的技术性能和标准 攸立准 (衡水公路工程总公司) 摘 要:在工程实践中,会出现各项性能要求之间的矛盾情况,有时会顾此失彼,因此在设计和施工过程中要因地制宜,抓住主要矛盾,深入细致地对各项性能指标的影响因素按照工艺施工阶段进行质量控制。下面简要对沥青混合料的技术性质和标准进行阐述。关键词:沥青混合料;技术性质;标准;要求中图分类号:U416.217 文献标识码:C 文章编号:1008-3383(2011)08-0069-01 收稿日期:2011-04-28 1高温稳定性 1.1车辙的形成机理及影响因素 (1)失稳型车辙 这类车辙是由于沥青路面结构层在车轮荷载作用下,内部材料流动,产生横向位移而发生,通称集中在轮迹处。 (2)结构型车辙 这类车辙是由于路面结构在交通荷载作用下产生整体 永久变形而形成, 主要是由于路基变形传递到面层而产生。(3)磨耗型车辙 由于沥青路面结构顶层的材料在车轮磨耗和自然环境匀 速下持续不断的损失而形成。分析以上原因, 影响沥青路面车辙的因素主要有集料、结合料、混合料类型、荷载、环境等。此 外,压实方法会直接影响混合料的内部结构,从而产生车辙。1.2混合料稳定性的评价方法 影响沥青混合料高温稳定性的主要因素有沥青的用量、沥青的粘度、矿料的级配、矿料的尺寸、形状等。提高路面的高温稳定性,可采用提高沥青混合料的粘结力和内摩擦阻力的方法,增加粗骨料含量可以提高沥青混合料的内摩阻力。适当提高沥青材料的粘度,控制沥青与矿料比值,严格控制 沥青用量,均能改善沥青混合料的粘结力。这样可以增强沥 青混合料的高温稳定性。 1.3沥青路面车辙的防治措施 对于失稳型车辙,可以通过以下方法减缓:确保沥青混合料中含有较高的经过破碎的集料;集料中要含有足够的矿粉;大尺寸集料要具有较好的表面纹理和粗糙度;集料级配中要含有足够的粗颗粒;沥青结合料要有足够的粘度;集料颗粒表面的沥青膜要具有足够厚度,确保沥青与集料间的粘聚力。 对于结构型车辙通过以下方法可以减缓:确保基层设计满足工程实践要求;基层材料满足规范要求,含有较多经破碎的颗粒;混合料内含有足够的矿粉;基底应充分的压实,工后不产生附加压密;路基压实后应满足规范要求;磨耗型车辙可通过交通管制、改善混合料级配来防治。2低温抗裂性 沥青混合料随着温度的降低,变形能力下降。路面由于低温而收缩以及行车荷载的作用,在薄弱部位产生裂缝,从而影响道路的正常使用。因此,要求沥青混合料具有一定的低温抗裂性。 沥青混合料的低温裂缝是由混合料的低温脆化、低温缩裂和温度疲劳引起的。混合料的低温脆化是指其在低温条 件下, 变形能力降低;低温缩裂通常是由于材料本身的抗拉强度不足而造成的;对于温度疲劳,因温度循环而引起疲劳破坏。 沥青路面低温开裂受多种因素制约,就沥青材料选择和 沥青混合料设计而言,应注意以下几点:注意沥青的油源,在 严寒地区采用针入度较大, 粘度较低的沥青,但同时也应满足夏季的要求;选用温度敏感性小的沥青有利于减少沥青路面的温度裂缝;采用吸水率低的集料,粗集料的吸水率应小于2%;采用100%轧制碎石集料拌制沥青混合料;控制沥青用量在马歇尔最佳用量0.5%范围内对裂缝影响小,但同时也应保证高温稳定性;采用应力松弛性能好的聚合物改性沥 青;掺加纤维, 使用改性沥青。3耐久性 3.1沥青路面的水稳定性 经常会看到,路面在水损害后会出现松散、剥离、坑洞等病害,严重影响路面的使用。沥青路面的耐久性主要依靠沥青与集料之间的粘附程度,水和矿料的作用破坏了沥青与集料之间的粘附性,是影响沥青路面耐久性的主要因素之一。而影响沥青与集料间粘结力的因素包括沥青与集料表面的界面张力、沥青与集料的化学组成、沥青粘性、集料的表面构造、集料的空隙率、集料的清洁度及集料的含水量、集料与沥青拌和的温度。 3.2沥青路面的耐老化性 另一个影响沥青混合料耐久性的是热老化。沥青材料在拌和、摊铺、碾压过程中以及沥青路面的使用过程中都存在老化问题。老化过程可分为施工中的短期老化和道路使用中的长期老化。 (1)沥青短期老化 沥青短期老化可分为三个阶段。 ①运输和储存过程的老化。沥青从炼油厂到拌和厂的热态运输一般在170?左右,进入储油罐,温度有所降低。 调查资料表明,这一过程中沥青老化非常小 。②拌和过程的热老化。加热拌和过程中,沥青是在薄膜 状态下受到加热,比运输过程中的老化条件严酷的多。沥青混合料拌和后,沥青针入度降低到拌和前沥青针入度的 80% 85%。因此,拌和过程引起的沥青老化是严重的,是沥青短期老化的最主要阶段。 ③施工期的老化。沥青混合料运到施工现场摊铺、碾压完毕,降温至自然温度,这一过程中裹覆石料的沥青薄膜仍处于高温状态。沥青混合料在摊铺、碾压和降温期间,沥青热老化进一步发展。 (2)长期老化 混合料中的沥青长期老化是一个漫长而复杂的过程,具有如下特点。 ①沥青路面在使用早期针入度急剧变小,随后变化缓慢,大体发生在 1 4年之间。②沥青老化主要发生在路表与大气接触部分,在深度0.5cm 左右的沥青针入度降低幅度相当大。 ③沥青混合料的空隙率是影响沥青老化的主要原因。④当路面中的针入度减小到35 50之间时,路面容易产生开裂,针入度小于25时路面容易产生龟裂。4抗滑性 用于高等级公路沥青路面的沥青混合料,其表面应具有一定的抗滑性,才能保证汽车高速行驶的安全性。 沥青混合料路面的抗滑性与矿质集料为表面性质、混合料的级配组成以及沥青用量等因素有关。为提高路面抗滑性,配料时应特别注意矿料的耐磨光性,应选择硬质有棱角 的矿料。沥青用量对抗滑性影响也非常敏感, 沥青用量超过最佳用量的0.5%, 即可使抗滑系数明显降低。另外,含蜡量对沥青混合料行滑性有明显影响,我国 《公路工程沥青及沥青混合料试验规程》(JTJ052-93)的《重交通量道路路用石油沥青技术要求》提出,含蜡量应不大于3%,在沥青来源有困难时对下面层路面可放宽至4% 5%。 · 96·

Ac10沥青混凝土目标配合比

沥青混凝土(AC-10)目标配合比设计说明 一、概述 1、依据 (1)《公路工程沥青路面施工技术规范》(JTG F40-2004) (2)《公路工程沥青及沥青混合料试验规程》(JTJ052—2000) (3)《公路工程集料试验规程》(JTG E42—2005) 2、粗集料:碎石经试验其表观相对密度、吸水率、针片状含量、<0.075颗粒含量、磨耗值各项指标均符合规范要求。 3、细集料:粗石粉、石屑,经试验其各项指标均符合规范要求。 4、矿粉:经检验其表观密度、亲水系数等各项指标均符合规范要求。 5、沥青,沥青为齐鲁石化70#道路石油沥青。经检验其针入度、延度、软化点、沥青与粗集料的粘附性等各项指标均规范要求。 二、目标配合比设计 1、级配设计:对碎石、粗石粉、石屑、矿粉分别进行了筛分,最终确定各矿料掺配比例为:5-10mm碎石:粗石粉:石屑:矿粉=30:25:40:5 2、最佳油石比的确定 参照试验规程沥青参考用量,结合实际经验,按油石比0.5%变化,制作五组试件,即油石比分别为5.0%、5.5%、6.0%、6.5%、6.10%,每组试件四至五块,冷却12个小时后,测其密度、饱和度、空隙率等指标,然后经马歇尔试验测的稳定度、流值结果汇总下表: 沥青混合料试验结果汇总表

根据以上各项试验结果及计算结果,分别绘制饱和度、矿料间隙率、空隙率、密度、与油石比的关系曲线,最后确定最佳沥青用量为5.75%。 三、室内配合比结论 根据上述试验,实验室建议的沥青目标配合比为: 矿料级配:5-10mm碎石:粗石粉:石屑:矿粉=30:25:40:5 最佳油石比:6.10%,最佳沥青用量5.75%。 本次目标配合比设计可作为工地生产配合比设计依据。

AC-13C细粒式改性沥青混凝土

xx高速公路第XX合同段 AC-13C细粒式改性沥青混凝土上面层施工方案 一、工程概况 我项目经理部所承建的xx高速公路路面第四合同段,全线共长20km,起讫桩号K88+200~K108+200。主要路面结构设计为:4cm厚AC-13C细粒式改性沥青混凝土+粘层油+8cm厚AC-20C中粒式沥青混凝土中面层+粘层油+12cm厚ATB-30沥青稳定碎石下面层+封层+透层+水泥稳定碎石基层。我标段负责K88+200-K108+200的施工。 二、施工准备 1、在经检测并经监理工程师签认合格后的喷洒过粘层油的中面层顶进行AC-13C细粒式改性沥青混凝土上面层施工作业。 2、AC-13C目标配合比 AC-13C细粒式改性沥青混凝土目标配合比设计详见:AC-13C细粒式改性沥青混凝土目标配合比设计。 3、QLB-4000型沥青拌和楼AC-13C生产配合比 AC-13C细粒式改性沥青混凝土QLB-4000型拌和生产配合比设计详见:AC-13C细粒式改性沥青混凝土生产配合比设计。

4、按规范要求对进场材料进行抽样检测,所采用原材料满足规范要求,原材料检验详见:原材料进场检验报告。 5、由试验人员在拌和站检测AC-13C细粒式改性沥青混凝土配合比、油石比以及毛体积密度,确认配和比符合设计。 三、施工工艺 1、施工现场准备: 1)、铺筑前清除粘层上的SBS浮石子和杂物等,对局部污染较严重的地方进行冲洗,重新喷洒粘层油。 2)、在与沥青面层相接触的结构物面上均匀地刷涂一层乳化沥青,以保证与结构物的相互粘接。 3)、根据施工计划前后桩号多放样10~20m,利于数据采集和剩余料的铺筑。根据设计图正线铺筑面边框线即:离中线1.5m,13m。位置10m整桩号进行放点或有构造物相互连接地段进行复核,采用全站仪逐桩逐点进行放样。中面层采用平衡梁方式。 2、施工方案: 1)沥青混合料的拌和: ①沥青采用导热油加热,沥青温度稳定,具有一定的流动性,使沥青混合料拌和均匀,出厂温度符合要求,保证沥青能源源不断地从沥青罐输送到拌和机内。 ②集料铲运方向与流动方向垂直,保证铲运材料均匀,避免集料离析。 ③每天开工前检测原材料的含水量,以便调节冷料进料速度,

AC-20沥青混合料目标配合比设计说明

AC-20沥青混合料目标配合比设计说明 该配合比是根据原材料的性能及混合料的技术要求进行计算,并经试验室试配、调整后确定,满足设计和施工要求。配合比设计中沥青采用韩国SK株式会生产的SK牌AH-70道路石油沥青,现将试验成果报告如下: 一、试验内容 1、原材料试验 对平度市黑羊山碎石场提供的石灰岩集料和大沽河砂进行筛分试验及表观密度、毛体积密度和吸水率等试验;对莱西望城谭格庄石粉加工厂的矿粉进行了亲水系数、筛分和表观相对密度试验;对韩国SK株式会生产的SK牌AH-70道路石油沥青进行了针入度、延度及软化点三大指标试验. 2、AC-20型沥青混合料组成设计试验 在规范要求AC-20型级配范围基础上,对设计级配曲线进行优化设计,通过马歇尔试验,确定最佳沥青用量。并对AC-20型沥青混凝土混合料目标配合比水稳定性检验。 二、试验说明 1、本次试验严格按照交通部颁发的《公路沥青路面施工技术规范》(JTG F40-2004)、《公路工程沥青及沥青混合料试验规程》(JTJ052-2000)和《公路集料试验规程》(JTJ E42-2005); 2、在沥青混合料时间的成型过程中,沥青加热温度为158℃、矿料加热温度为180℃,沥青混合料拌和温度为160℃、击实温度为145℃。 3、沥青混合料最大相对密度采用真空法实测,沥青混合料马歇尔试件

毛体积密度采用表干法测定。 三、计算说明 1、合成矿料的有效相对密度γse γse=(100-P b)/(100/γt-P b/γb) 式中:γse——合成矿料的有效相对密度;本次试验矿料有效相对密度根 据真空法实测最大相对密度进行反算。 P b——试验采用的沥青用量(占混合料总量的百分数),%; γt——试验沥青用量条件下实测得到的最大相对密度,无量纲; γb——沥青的相对密度(25℃/25℃),无量纲。 2、矿料全体的合成毛体积相对密度r sb r sb=100/(P1/γ1+P2/γ2+…+P n/γn) 式中:P1、P2、…、P n——各种矿料成分的配合比,其和为100; γ1、γ2、…、γn——各种矿料相应的毛体积相对密度,矿粉以 表观相对密度代替。 3、试件的最大理论相对密度γt 本次试验该指标采用了理论密度仪实测。 4、矿料间隙率(VMA)(%) VMA=(1-γf / γsb×p s)×100 式中:γf——试件的毛体积相对密度,无量纲; p s——各种矿料占沥青混合料总质量的百分率之和,即 P S=100-P b,%; 5、试件的空隙率VV(%) VV=(1-r f /γt)×100 式中:γt——沥青混合料的最大理论相对密度,无量纲。 6、沥青饱和度VFA(%) VFA={(VMA-VV)/VMA}×100 7、集料吸收沥青含量P ba(%)

相关主题
文本预览
相关文档 最新文档