当前位置:文档之家› 铝改性硅溶胶胶粒结构随pH值的变化

铝改性硅溶胶胶粒结构随pH值的变化

铝改性硅溶胶胶粒结构随pH值的变化
铝改性硅溶胶胶粒结构随pH值的变化

铝合金体系强度计算

铝合金模板体系强度计算 一.楼面模板的强度计算: 楼面模板形式如图所示,计算时两端按简支考虑,其计算跨度C取1.2米. A..荷载计算: 按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值. 1.铝模板自重标准值: 230N/m2 2.150mm厚新浇混凝土自重标准值: 24000×0.15=3600 N/m2 3.钢筋自重标准值: 1100×0.15=165 N/m2 4.施工活载标准值: 2500 N/m2 5.跨中集中荷载: 2500 N 均布线荷载设计值为: q1=0.9×[1.2×(230+3600+165)+1.4×2500] ×0.4=3308 N/m 模板自重线荷载设计值: q2=0.9×0.4×1.2×230=92 N/m 跨中集中荷载设计值: P=0.9×1.4×2500 =3150 N B. 强度验算: 施工荷载为均布线荷载: M1=q1l2/8=3308×1.22/8=596 Nm 施工荷载为集中荷载: M2=q1l2/8+Pl/4=92×1.22/8+3150×1.2/4=962 Nm 由于M2>M1,故采用M2验算强度. 通过Solidworks软件求得: I XX=833964.23 mm4, e x=58.92 mm

W XX=I XX/e x=833964.23/58.92=14154.2 mm3 则: σ=M2/W XX=962000/14154.2=68 MPa<[σ]=180 MPa 强度满足要求. C. 挠度计算: 验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为: q=0.4×(230+3600+165)=1590 N/m=1.59 N/mm 实际挠度值为: f=5ql4/(384EI XX)=5×1.59×12004/(384×1.83×105×833964.23) =0.35 mm<400/300=1.3 mm 挠度满足要求. D. 面板厚度验算 面板小方格按四面固定计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.055, 最大挠度系数: K f=0.0014 取1mm宽的板条为计算单元,荷载为: q=0.9×[1.2×(230+3600+165)+1.4×2500] =6775.2 N/m2 =0.06775 N/mm2 M X= K MX ql Y2=0.055×0.06775×3702=524 Nmm W X=ab2/6=1×52/6=4.17 mm3 则: σ=M X/W X=524/4.17=125.7 MPa<[σ]=180 MPa 强度满足要求. E. 面板挠度计算: f max=K f ql Y4/B0

硅溶胶制备与应用

硅溶胶制备与应用 材料学院化工一班李彦辉20090583 内容摘要: 硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学硅溶胶制备硅溶胶应用高分子 正文:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液。1915年美国人首先用电渗析法制备出SiO2质量分数为2.4%的硅溶胶,硅溶胶得以大规模生产和应用,是在年美国人发明利用离子交换法生产硅溶胶以后。目前硅溶胶已被广泛应用于纤维、织物、纸张、橡胶、涂料、油漆、陶瓷、耐火涂料、地板蜡等行业中。另外其在半导体硅晶片的抛光、水处理、矿物浮选和啤酒、葡萄酒酿造等工艺中也有应用。 自1996年以来,随着电子工业迅速发展,作为硅晶片抛光液的原料———硅溶胶的产量快速增加。瑞士公司在2001年第1季度将它位于Martin的硅溶胶厂的生产能力提高了1倍,达到1.4万t/a。同期,日本Fuso Chemial公司也将它位于东京的硅溶胶厂的生产能力由原来的0.7万t/a提高到2.5万t/a. 从20世纪90年代开始,有机硅溶胶的研究和应用也得到较大发展。有机硅溶胶可应用于非水性体系,如用于制造磁性胶体和记录介质,高技术陶瓷化合物和催化剂载体需要有机硅溶胶特殊用途的改性产品研制也得到快速发展,如日本日产化学工业株式会社提出的用于墨水容纳层和喷墨记录介质的念珠状硅溶胶的制备方法。另外该公司申请的中国专利提供了一种含细长形非晶体胶体SiO2粒子的稳定硅溶胶的制备方法。铝改性硅溶胶的研究也取得了进展,这种硅溶胶的最大特点是体系呈中性时很稳定,而采用碱金属氢氧化物作稳定剂的硅溶胶,在体系呈中性时很快就凝胶 我国硅溶胶的研制和生产始于20世纪50年代,南京大学配位化学研究所、天津化工研究院、兰州化学工业公司化工研究院、青岛海洋化工厂、大连油漆厂、广州人民化工厂等都从事硅溶胶产品的研制和生产,但品种和产量与国外都有很大差距。 2002年11月4~8日,全国无机硅化合物技术与市场信息交流大会在广西桂林市召开,大会认为硅溶胶、层硅、聚硅、气相法白炭黑等将是行业发展的新热点。 【一】硅溶胶制备方法 1.1渗析法 渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该法缺点是渗析所需时间太长,不适于工业化生产。 1.2硅溶解法 采用无机或有机碱作催化剂,以单质硅与纯水反应来制备硅溶胶的方法称硅溶解法。Joseph等在1950年申请的专利中,利用可溶性有机碱作催化剂,使水和硅粉反应来制备 硅溶胶。其中的有机碱ph值(20~25摄氏度时)为6~12,含1~8个碳原子的脂肪胺或脂环胺,硅粉粒径为80~320目。硅粉在使用前应预活化,除去硅粉表面形成的惰性膜。活化时先用质量分数为48%的氢氟酸洗涤,然后依次用纯水、醇、醚冲洗,最后在氮气保护下干燥。活化后的硅粉与水在胺催化作用下,于20~100温度下反应,可制备粒径8~15mm的硅

断热铝型材的强度计算

技术单J25-0113附页 断热铝型材的强度计算 铝门窗幕墙委员会专家组专家龙文志 一、前言 建筑节能是世界性的潮流,也是中国持续发展的需要。铝材与隔热塑料复合的断热建筑铝型材(以下简称断热铝材)的传热系统比普通建筑铝型材(以下简称普通铝材)低,是一种符合节能潮流的节能建材,当它用于建筑幕墙和铝合金外窗之时,除了要考虑其保温隔热性能之外,还要充分考虑到其结构的安全性和可靠性。从力学角度看:普通铝材是各相同性材料的弯曲梁,断热铝材是两种不同材料复合而成的组合梁,两者的力学分析不完全相同,有鉴于此,本文试图对断热铝材的强度计算进行探讨。 二、组合梁的力争分析 两种材料复合而成的短形组合梁(图一a)弯曲时,如果铝材与塑料接合处联结牢固,不发生相对滑动和分离,铝材和塑料将一起变形,按照材料力学弯曲理论的平面假设,应变将沿截面高度连续线性变化(图一b),当两种材料的弹性模量相同时,同一截面的弯曲正应力沿高度呈连续分布(图一c),当两种材

三、整体梁的强度计算 当组合梁作为整体梁进行强度计算时,为方便起见,工程上采用“当量截面法”,这种方法是在不改变各种材料截面形心位置的前提下,将一种材料的面积扩大(或缩小)n倍,化作为完全为另一种材料截面的整体梁,这个截面积为当量截面。如图二a隔热型材组合截面中,将铝材的面积扩大n倍,化作为单一塑料截面的整体梁,为了保持铝材原截面形心位置不变,必须将铝材的宽度对称地扩大n倍,如图二b所示。这里n是两种材料弹性模量之比: 即:n= E 铝/ E 塑 上式中的J Y 为当量截面对中性轴的惯性矩。但是这样计算所得的应力只反映代换后的那种材料的梁内应力,对于被代换材料那部分截面上的应力还需将其扩大(或缩小)n倍。详细推导见:John N. Cernia《Strength of Materials》2dedition,Holt,Rinehart and Winston,1977。 例一: [知]:铝材宽b 1=60mm,厚t 1 =10mm, 塑料宽b 2 =20mm,梁高H=100mm,

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理上课讲义

甲基三甲氧基硅烷改性工业硅溶胶的工艺 及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理 【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。 1引言 工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾, 会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表

面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。 2实验 2.1试剂 甲基三甲氧基硅烷(MTMS):WMTMS>98%, 沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯, 2.2测试 pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂) 。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,

铝合金模板计算书(版本2)

铝合金模板 开启---- 建筑低碳环保新时代 陕西天利成建筑科技有限公司 2016年10月

第一章铝合金模板及支撑体系计算书 一、铝合金模板计算书编制、设计计算依据 GB50009-2012 建筑结构载荷规范 GB50010-2010 混凝土结构设计规范 GB50017-2003 钢结构设计规范 GB50666-2011 混凝土结构工程施工规范 GB50429-2007 铝合金结构设计规范 JGJ59-2011 建筑施工安全检查标准 JGJ81-2002 建筑钢结构焊接技术规程 JGJ162-2008 建筑施工模板安全技术规范 JGJ130-2011 建筑施工扣件式钢管脚手架安全技术规范 关于印发《建设工程高大模板支撑系统施工安全监督管理导则》建质[2009]254号文;

二、铝合金模板体系简介 2.1、标准模板单元体系 2.2、楼面处铝合金模板固定体系

2.3、墙、柱处铝合金模板固定体系 对拉螺杆为T18的高强螺杆,背楞上下间距从下往上200mm、600mm、650mm、650mm、550,对拉螺杆水平最大间距800mm。

三、铝合金模板标准单元 铝合金模板体系类似于组合钢模板体系,都是由标准单元组合拼装而成。利于工厂标准化设计、制作。 铝合金模板标准单元均为铝合金挤压型材,根据模板宽度分为100mm~400mm 不等的标准型材。实际设计制作时楼面板的通用标准规格为400mm×1100mm,墙、柱模板的标准规格为400mm×2600mm(标准长度根据建筑岑高的差异,略有不同)。 下图为铝合金模板的标准单元示意图 标准墙、柱模板标准楼面板

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理 【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。 1引言 工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾, 会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。 2实验 2.1试剂 甲基三甲氧基硅烷(MTMS):WMTMS>98%, 沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯, 2.2测试 pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂) 。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,冷却后采用KBr压片法对其进行FTIR分析(布鲁克光谱仪器有限公司TENSOR27)。 2.3改性方法 称取一定质量的硅溶胶于500ml烧杯中,用盐酸调节pH值,然后放入水浴中加热并恒力搅拌,同时按所需的比例称取有机硅氧烷,缓慢加入硅溶胶烧杯中,反应一段时间后获得有机硅溶胶。后文中将经过MTMS改性后的硅溶胶称为有机硅溶胶。

铝合金模板体系强度计算

铝合金模板体系强度计算

————————————————————————————————作者: ————————————————————————————————日期: ?

铝合金模板体系强度计算 一.楼面模板的强度计算: 楼面模板形式如图所示,计算时两端按简支考虑,其计算跨度C取1.2米. A..荷载计算: 按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值. 1.铝模板自重标准值: 230N/m2 2.150mm厚新浇混凝土自重标准值: 24000×0.15=3600 N/m2 3.钢筋自重标准值: 1100×0.15=165N/m2 4.施工活载标准值: 2500 N/m2 5.跨中集中荷载:2500N 均布线荷载设计值为: q1=0.9×[1.2×(230+3600+165)+1.4×2500]×0.4=3308 N/m 模板自重线荷载设计值: q2=0.9×0.4×1.2×230=92 N/m 跨中集中荷载设计值:P=0.9×1.4×2500=3150 N B. 强度验算: 施工荷载为均布线荷载: M1=q1l2/8=3308×1.22/8=596 Nm 施工荷载为集中荷载: M2=q1l2/8+Pl/4=92×1.22/8+3150×1.2/4=962 Nm

由于M2>M1,故采用M2验算强度. 通过Solidworks软件求得: IXX=833964.23 mm4, ex=58.92 mm WXX=I XX/ex=833964.23/58.92=14154.2 mm3 则: σ=M2/W XX=962000/14154.2=68 MPa<[σ]=180 MPa 强度满足要求. C. 挠度计算: 验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为: q=0.4×(230+3600+165)=1590 N/m=1.59 N/mm 实际挠度值为: f=5ql4/(384EIXX)=5×1.59×12004/(384×1.83×105×833964.23) =0.35 mm<400/300=1.3 mm 挠度满足要求. D. 面板厚度验算 面板小方格按四面固定计算,由于LY/LX=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.055, 最大挠度系数: K f=0.0014 取1mm宽的板条为计算单元,荷载为: q=0.9×[1.2×(230+3600+165)+1.4×2500] =6775.2 N/m2 =0.06775 N/mm2 MX= K MX qlY2=0.055×0.06775×3702=524Nmm WX=ab2/6=1×52/6=4.17 mm3

铝合金窗结构设计计算书

铝合金窗结构设计计算书基本参数: 上海地区门窗所在位置标高=20.000(m) Ⅰ.设计依据 《建筑外窗抗风压性能分级及检测方法》 GB/T 7106-2002 《建筑外窗气密性能分级及检测方法》 GB/T 7107-2002 《建筑外窗水密性能分级及检测方法》 GB/T 7108-2002 《建筑外窗保温性能分级及检测方法》 GB/T 8484-2002 《建筑外窗空气声隔声性能分级及检测方法》 GB/T 8485-2002 《建筑外窗采光性能分级及检测方法》 GB/T 11976-2002 《建筑结构荷载规范》 GB 50009-2001(2006年版) 《铝合金门》 GB/T 8478-2003 《铝合金窗》 GB/T 8479-2003 《建筑玻璃应用技术规程》 JGJ 113-2003 《玻璃幕墙工程技术规范》 JGJ 102-2003 《建筑结构静力计算手册 (第二版) 》 《BKCADPM集成系统(BKCADPM2007版)》 Ⅱ.参考资料 窗的性能分级表 主要依据: 《铝合金窗》GB/T 8479-2003 《建筑外窗保温性能分级及检测方法》GB/T 8484-2002 窗的主要性能 窗的性能应根据建筑物所在地区的地理、气候和周围环境以及建筑物的高度、体型、重要性等选定。 1 抗风压性能 分级指标值P3按表7规定。 表 7 抗风压性能分级 单位为千帕 在各分级指标值中,窗主要受力构件相对挠度单层、夹层玻璃挠度≤L/120,中空玻璃挠度≤L/180。其绝对值不应超过15mm,取其较小值。 2 水密能性 分级指标值△P按表8规定。 表8 水密性能分级 3气密性能 分级指标值q1,q2按表9规定。 分级指标值K按表10规定。 表10 保温性能分级 分级指标值R W按表11规定。 表11 空气声隔声性能分级 单位为分贝 6 分级指标值T r按表12规定。

断桥隔热铝型材的强度计算方法.

断桥隔热铝型材的强度计算方法 文章来源:中国幕墙工程网整理日期:2008-09-12 11:23:02 断桥隔热铝型材是一种符合节能潮流的节能建材,当它用于建筑幕墙和铝合金外窗时,除了要考虑其保温断热性能之外,还要充分考虑到其结构的安全性和可靠性。因此断桥隔热铝材用于建筑幕墙和铝门窗的结构件时,应进行强度、刚度设计计算,由于断桥隔热铝型材是由两种不同材料组合成的型材,怎么样去科学、准确地校核其强度和刚度,是一个比较复杂的问题,目前有关的国内规范并没有明确的计算方法。审图时,有的审图单位要求只取室内侧(隔热条以内)铝型材作为受力单元;而有的则同意隔热条两侧铝型材都可以作为受力单元进行计算。究竟那种意见更合理呢?大家知道,要计算构件的强度和刚度,必定要计算其截面特性,其中,主要是惯性矩及抵抗矩。本文就从计算断桥隔热铝型材截面的惯性矩及抵抗矩入手,按照材料力学中组合梁的计算原理以及JG/T 175-2005《建筑用隔热铝合金型材穿条式》附录B提供的计算截面惯性矩的公式,给出两种计算不同材料组合的型材截面的惯性矩、抵抗矩方法,并对其进行分析、对比, 为工程实际设计时提供参考。 一、两种计算组合型材截面惯性矩、抵抗矩的方法 方法一:按照材料力学中组合梁结构进行计算,将其中一种材料转化为另一种材料,一般将隔热条等效为铝条,变成统一的铝截面,求出等效截面的惯性矩、 抵抗矩。 1、计算原则 ①、断桥隔热铝型材截面的一部分是隔热条,在结合良好的加工条件下,可 以认为隔热条与铝型材在变形前后保持平截面,应变ε线性分布。 ②、两种材料弹性模量不同,所以在相同应变ε时,应力相差n倍,n为 弹性模量之比: n=E1/E2 式中 E1:铝型材的弹性模量 E2:隔热条的弹性模量 ③、可以将复合截面按弹性模量比转化为单一材料的等效截面,计算出应力、 挠度,隔热条部分的应力还须转化为原材料的应力。 2、求出等效铝截面 将复合截面转化为单一的铝截面,基本原则是将隔热条截面厚度缩小为原来的1/n。因为厚度的缩小对截面的特性如面积A,惯性矩I,截面抵抗矩W的影响是线性变化的,恰好与弹性模量E的变化相补偿。即te=t2/n/

铝合金模板计算书 版本

铝合金模板 目录 设计大纲 编制依据 材料性能 设计和计算 . 楼面模板结构计算 A.楼面板计算 B.楼面龙骨计算 C.楼面支撑立杆计算 D.转角连接计算 E.龙骨拉杆计算 . 墙模板结构计算 A.墙板计算 B.铁威令计算

C.穿墙拉杆计算 设计大纲 楼面模板的主要组成构件有楼面板,楼面龙骨,楼面支撑,转角及龙骨拉杆。由于竖向受力,这些原件均需经过强度和挠度的验算。 墙身模板的主要组成原件有墙板,穿墙丝杆,铁威令,踢脚挡板,垫脚板。由于承受水平方向混凝土的压力负载,这些构件均需经过强度和挠度的验算。 编制依据 本工程设计图纸 公司质量、环境和职业健康安全一体化管理文件 省厅及地方关于模板支撑架相关文件要求 《建筑施工手册》(第五版) 《建筑施工简易计算》(江正荣等编着) 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ 130-2011) 《铝合金模板系统应用技术标准》 《建设工程施工现场管理规定》 《建设工程安全生产管理条例》(国务院第393号令) 《建筑工程预防坍塌事故若干规定》(建设部建质[2003]82号) 《建筑施工安全检查评分标准》(JGJ59-2011) 《建设工程施工安全技术操作规程》 《建筑施工模板安全技术规范》(JGJ 162-2008) 铝挤压型材

标准等级:6061 T6 弹性系数, E 68900 N/mm2 屈服强度, F y 200 N/mm2 允许弯曲应力 F y) 160 N/mm2 铝平板 标准等级:6061 T6 弹性系数, E 68900 N/mm2 屈服强度, F y 135 N/mm2 允许弯曲应力 F y) 95 N/mm2 低碳钢威令 标准等级:43A 到BS 4360 及铁-1987 弹性系数, E 206000 N/mm2 屈服强度, F y 250 N/mm2 允许轴向拉伸应力 F y) 165 N/mm 允许弯曲应力 F y) 150 N/mm 设计及计算 ·荷载: 模板自重(25KG/m2)= 25×10×10-3 = KN/m2 施工荷载 KN/m2 钢筋混凝土重度 25 .1KN/m3 ·单件模板允许的挠度不超过跨径的1/250。 4.1楼面模板结构计算

A0135、超高纯硅溶胶生产技术

A0135、超高纯硅溶胶生产技术 1.单质硅水解与水玻璃滴加法制备硅溶胶的研究 2.新型节能精密铸造粘接剂——ZF-801型快干硅溶胶 3.纳米硅溶胶在水性木器涂料中的应用 4.硅溶胶陶瓷型焙烧工艺研究 5.硅溶胶在镁合金阳极氧化反应中的成膜作用 6.二氧化硅种子在硅溶胶粒径增长中的行为研究 7.纳米杂化有机硅溶胶在金属防腐中的应用 8.酸性硅溶胶的制备、性质及其稳定性研究进展 9.以TEOS为前驱体的硅溶胶可纺性及其玻璃纤维的制备研究 10.CMP专用大粒径硅溶胶研磨料生长及控制机理 11.硅溶胶复配彩喷纸涂层的研究 12.以硅溶胶为粘结剂的硅基陶瓷型制备工艺研究 13.硅溶胶补强PDMS—PA复合膜的性能 14.硅溶胶的制备与应用 15.硅溶胶熔模铸造工艺的一些改进措施 16.一种新型快干增强硅溶胶的试验 17.硅溶胶对硫酸庆大霉素的吸附和缓释 18.硅溶胶制备纳米二氧化硅的工艺研究 19.精铸硅溶胶型壳质量的控制 20.Sol-Gel法二氧化硅溶胶的制备及性能影响研究 21.耐碱性超高纯硅溶胶 22.苏州纳迪首创国内超高纯硅溶胶生产技术 23.硅溶胶的应用 24.苏州纳迪首创国内超高纯硅溶胶 25.酸性硅溶胶制备和用途 26.硅溶胶浸渍处理对Si3N4结合SiC窑具材举抗氧化性的影响 27.蚕丝蛋白与硅溶胶复合材料的研究 28.铝合金表面硅溶胶防火涂层的研制 29.改性硅溶胶在棉织物超拒水整理中的应用研究 30.硅溶胶结合Al2O3-SiC-C浇注料的抗侵蚀性能 31.新型杂多酸[Bu4N][Ni(pph3)2]PW11O39硅溶胶修饰电极电化学性质及电催化研究 32.亚纳米SiO2对硅溶胶型壳硬化时间的影响 33.硅溶胶凝胶工艺成型钛酸铝-莫来石复相陶瓷的研究 34.有机硅-硅溶胶杂化材料在砂浆中的应用研究 35.ICP-AES测定硅溶胶中Na元素的分析方法研究 36.硅溶胶-膨润土法澄清大蒜多糖提取液的研究 37.高纯硅溶胶成分标准物质稳定性研究 38.巯基硅溶胶对改性亚麻籽油紫外光固化反应活性的影响 39.室温自交联丙烯酸乳液与硅溶胶共混研究 40.亚纳米SiO2对硅溶胶壳型硬化时间的影响 41.高硅溶胶含量复合乳液的研究 42.硼改性微粒硅溶胶的超滤浓缩及稳定性

有关断热铝型材的强度计算

技术单文件编号共8页 第1页 有关断热铝型材的强度计算 断热铝型材是一种符合节能潮流的节能建材,当它用于建筑幕墙和铝合金外窗之时,除了要考虑其保温隔热性能之外,还要充分考虑到其结构的安全性和可靠性。 因此建议断热铝材用于建筑幕墙和铝门窗的结构件时,应进行强度设计计算,铝材应计算弯曲最大拉应力,隔热塑料应计算最大弯曲拉应力和最大弯曲剪应力。铝材和隔热塑料的分离面还应计算最大拉应力和最大剪应力。 断热铝型材从力学角度看:是两种不同材料复合而成的组合梁,有关复合梁的计算详见下列步骤:(摘自技术单J25-9832) 1.确定中性轴的位置: 中性轴到组合框截面底边的距离为Y=(EsAsYs+EaAaYa)/(EaAa+EsAs) Ys——钢内框形心到组合框截面底边的距离; Ya——钢外框形心到组合框截面底边的距离; Es——钢材的弹性模量,210000N/mm2;Ea——铝材的弹性模量,70000N/mm2; Aa——铝框的截面面积;As——钢框的截面面积。 2.钢框、铝框关于中性轴的惯性距: Is=I O s+As(Ys-Y)2 Ia=I O a+Aa(Ya-Y)2 I O s——钢框对自身形心轴的惯性矩;I O a——铝框对自身形心轴的惯性矩。 3.挠度计算(简支梁): f=5qL4/384(EaIa+EsIs) q——简支梁的均布荷载标准值; L——简支梁的跨度。 4.强度计算(简支梁) 钢框强度校核MEsYs/r(EsIs+EaIa)+NEs/(EaAa+EsAs)≤fs 铝框强度校核MEaYa/r(EsIs+EaIa)+NEa/(EaAa+EsAs)≤fa M——简支梁的弯矩设计值;N——竖框所受的拉力设计值; r——塑性发展系数,取;Ya——铝框外边缘到中性轴的距离; Ys——钢框外边缘到中性轴的距离;fa、fs——分别为铝材和钢材的强度设计值。 的取值方法见附页。 5.在进行断热条强度计算时,f 断热条 上述公式的等效参数计算已编制到《远大标准化软件》其“计算等效参数”部分。 为使每位设计员更全面掌握断热铝型材的强度计算原则,本技术单特将铝门窗幕墙委员会专家组专家龙文志撰写的“断热铝型材的强度计算”一文(详见附页---共7页)附其后,供大家参考使用。 发送: 转送:各公司设计部、技术部 存档:研究所 编制校对审核批准

硅溶胶的应用研究

第23卷总第46期 2002年12月西北民族学院学报(自然科学版)JournalofNorthwestMinoritiesUniversity(NaturalScience)V01.23.No.4Dec.,2002 硅溶胶的应用研究 乌兰 (西北民族学院化学系,甘肃兰州730030) [摘要]硅溶胶是二氧化硅胶体粒子在水中均匀扩散形成的胶体溶液,是一种用途广泛的新型化工原料.随着制造技术的进步和对胶体二氧化硅粒子表面性质的深入研究,硅溶胶在科研及各工业领域的应用范围日益扩大. [关键词]硅溶胶;应用;进展 [中图分类号]0613.7[文献标识码]A[文章编号]1009—2102(2002)04—0019—02 矿驴矿护、护_。护扩矿扩矿矿驴矿扩扩驴扩扩_8驴矿扩矿矿矿扩驴扩矿矿扩q。妒扩扩扩矿护矿矿矿q尹 硅溶胶是二氧化硅胶体粒子在水中均匀扩散形成的胶体溶液,是一种用途广泛的新型化工原料.自英国人首先应用于工业方面以来,随着其制造技术的进步和对胶体二氧化硅粒子表面性质的深入研究,硅溶胶在科研及各工业领域的应用范围目益扩大.特别是近几年来无机高分子建筑涂料的兴起,更为硅溶胶的大量应用开辟了广阔的市场. 1硅溶胶的特点硅溶胶在科研及各工业领域的广泛应用与它的特点有着密切关系.从硅溶胶的性质出发可发现以下特点:[1| 1)无需固化剂,自身可牢固地附着在固体表面并形成坚固的膜,同时成膜温度很低. 2)附着在固体表面的二氧化硅粒子可增大摩擦系数. 3)通过干燥或烧结可形成固态凝胶,因而具有一定的耐久性.‘ 4)既可形成具有表面积大及均匀细孑L的凝胶,又可均匀分散粉料,增加悬浮体的稳定性. 5>通过SiOH基和吸附水可提高润湿性和防止带电的性能. 6)可浸入充填到多空性物质中,使表面平滑. 7)通过均匀混合微粒,可使有机树脂进行机械、光学及电性能方面的改性增强. 8)溶胶系液状能进行均相反应.以硅溶胶代替二氧化硅作原料进行反应,可提高反应速度. 2硅溶胶的应用 由于硅溶胶的上述特点,硅溶胶已被广泛应用于精密铸造、纺织、造纸、材料、涂料、抗静电剂、催化剂等方面. 2.1铸造业【21陶瓷薄壳型(熔模)精密铸造法,就是由于使用了硅溶胶才蓬勃发展起来的.用硅溶胶代替硅酸酯可降低成本,改善操作条件.用小粒子直径硅溶胶制造的薄壳强度大、光洁度好,可大大提高铸件质量和尺寸的精密度.在作为C02型涂模剂中添加硅溶胶,可提高展性,增加砂型强度. 2.2纺织工业…硅溶胶用于纺织工业后,显示了难得的经济效果.硅溶胶与油剂并用,对羊毛进行喷雾或浸渍处理,改善了羊毛的可纺性,减少了断头,防止了飞花,提高了成品率.如果在经纱上浆中使用硅溶胶,则 [收稿日期]2002—10—30 [作者简介]乌兰(1973一)。女(蒙古族),内蒙古兴安盟人,讲师,从事高分子产品的合成及应用研究. .一19—  万方数据

铝合金门窗计算书

铝合金门窗设计计算书 设计: 校对: 审核: 批准: 二〇一六年三月

目录 1 计算引用的规范、标准及资料 (1) 1.1 门窗及相关设计规范: (1) 1.2 建筑设计规范: (1) 1.3 铝材规范: (2) 1.4 玻璃规范: (2) 1.5 钢材规范: (2) 1.6 胶类及密封材料规范: (3) 1.7 门窗及五金件规范: (3) 1.8 相关物理性能等级测试方法: (4) 1.9 《建筑结构静力计算手册》(第二版) (5) 1.10 土建图纸: (5) 2 基本参数 (5) 2.1 门窗所在地区 (5) 2.2 地面粗糙度分类等级 (5) 2.3 抗震设防 (5) 3 门窗承受荷载计算 (6) 3.1 计算依据 (6) 3.2 计算杆件时的风荷载标准值 (7)

3.3 计算玻璃时的风荷载标准值 (7) 3.4 垂直于门窗平面的分布水平地震作用标准值 (7) 3.5 作用效应组合 (8) 4 门窗竖中梃计算 (8) 4.1 竖中梃受荷单元分析 (8) 4.2 选用竖中梃型材的截面特性 (11) 4.3 竖中梃的抗弯强度计算 (11) 4.4 竖中梃的挠度计算 (12) 4.5 竖中梃的抗剪计算 (12) 5 玻璃板块的选用与校核 (13) 5.1 玻璃板块荷载计算: (13) 5.2 玻璃的强度计算: (14) 5.3 玻璃最大挠度校核: (15) 6 附录常用材料的力学及其它物理性能 (17)

门窗设计计算书 1计算引用的规范、标准及资料 1.1门窗及相关设计规范: 《铝合金结构设计规范》GB50429-2007 《玻璃幕墙工程技术规范》JGJ102-2003 《建筑玻璃应用技术规程》JGJ113-2009 《建筑幕墙》GB/T21086-2007 《金属与石材幕墙工程技术规范》JGJ133-2001 《铝合金门窗工程技术规范》JGJ214-2010 《铝合金门窗》GB/T8478-2008 《未增塑聚乙烯(PVC-U)塑料窗》JGT/140-2005 《塑料门窗工程技术规程》JGJ103-2008 1.2建筑设计规范: 《地震震级的规定》GB/T17740-1999 《钢结构防火涂料》GB14907-2002 《钢结构设计规范》GB50017-2003 《高层建筑混凝土结构技术规程》JGJ3-2002 《高层民用建筑设计防火规范》GB50045-95(2005年版) 《高处作业吊蓝》GB19155-2003 《工程抗震术语标准》JGJ/T97-2010 《混凝土结构后锚固技术规程》JGJ145-2004 《混凝土结构设计规范》GB50010-2010 《混凝土用膨胀型、扩孔型建筑锚栓》JG160-2004 《建筑表面用有机硅防水剂》JC/T902-2002 《建筑材料放射性核素限量》GB6566-2010 《建筑防火封堵应用技术规程》CECS154:2003 《建筑钢结构焊接技术规程》JGJ81-2002 《建筑工程抗震设防分类标准》GB50223-2008 《建筑工程预应力施工规程》CECS180:2005 《建筑结构荷载规范》GB50009-2001(2006年版、局部修订) 《建筑结构可靠度设计统一标准》GB50068-2001 《建筑抗震设计规范》GB50011-2010 《建筑设计防火规范》GB50016-2006 《建筑物防雷设计规范》GB50057-2010 《冷弯薄壁型钢结构技术规范》GB50018-2002 《民用建筑设计通则》GB50352-2005

铝合金计算书版本.doc

铝合金模板开启 ---- 受力计算书 建筑低碳环保新时代陕西天利成建筑科技有限公司 2016 年 10 月

第一章铝合金模板及支撑体系计算书 一、铝合金模板计算书编制、设计计算依据 GB50009-2012建筑结构载荷规范 GB50010-2010混凝土结构设计规范 GB50017-2003钢结构设计规范 GB50666-2011混凝土结构工程施工规范 GB50429-2007铝合金结构设计规范 JGJ59-2011建筑施工安全检查标准 JGJ81-2002建筑钢结构焊接技术规程 JGJ162-2008建筑施工模板安全技术规范 JGJ130-2011建筑施工扣件式钢管脚手架安全技术规范 关于印发《建设工程高大模板支撑系统施工安全监督管理导则》建质[2009]254 号文;

二、铝合金模板体系简介 2.1 、标准模板单元体系 2.2 、楼面处铝合金模板固定体系

2.3 、墙、柱处铝合金模板固定体系 对拉螺杆为 T18 的高强螺杆,背楞上下间距从下往上200mm、600mm、 650mm、650mm、550,对拉螺杆水平最大间距800mm。

三、铝合金模板标准单元 铝合金模板体系类似于组合钢模板体系,都是由标准单元组合拼装而成。利于工厂标准化设计、制作。 铝合金模板标准单元均为铝合金挤压型材,根据模板宽度分为100mm~400mm不等的标准型材。实际设计制作时楼面板的通用标准规格为400mm× 1100mm,墙、柱模板的标准规格为400mm×2600mm(标准长度根据建筑岑高的差异,略有不同) 。 下图为铝合金模板的标准单元示意图 标准墙、柱模板标准楼面板

铝合金计算书

检测窗设计计算书 基本参数: 青岛地区门窗所在位置标高=28.000(m) Ⅰ.设计依据 《铝合金结构设计规范》 GB50429-2007 《建筑外门窗气密、水密、抗风压性能分级及检测方法》 GB/T 7106-2008 《铝合金门窗工程设计、施工及验收规范》 DBJ15-30-2002 《建筑外门窗保温性能分级及检测方法》 GB/T 8484-2008 《建筑门窗空气声隔声性能分级及检测方法》 GB/T 8485-2008 《建筑外窗采光性能分级及检测方法》 GB/T 11976-2008 《建筑结构荷载规范》 GB50009-2001(2006年版) 《铝合金门窗》 GB/T 8478-2008 《建筑玻璃应用技术规程》 JGJ 113-2003 《玻璃幕墙工程技术规范》 JGJ 102-2003 《建筑结构静力计算手册 (第二版) 》 Ⅱ.参考资料 窗的性能分级表 主要依据: 《铝合金门窗》 GB/T 8478-2008 《建筑外门窗保温性能分级及检测方法》GB/T 8484-2008 窗的主要性能 窗的性能应根据建筑物所在地区的地理、气候和周围环境以及建筑物的高度、体型、重要性等选定。 1 抗风压性能 外门窗的抗风压性能分级及指标值P3应符合表8的规定。 表 8 外门窗抗风压性能分级 外门窗在各性能分级指标值风压作用下,主要受力杆件相对(面法线)挠度应符合表9的规定;风压作用后,门窗不应出现使用功能障碍和损坏。

表 9 门窗主要受力杆件相对面法线挠度要求 2 水密能性 外门窗的水密性能分级及指标值应符合表10的规定。 表10 外门窗水密性能分级 单位为帕 门窗的气密性能分级及指标绝对值应符合表11的规定。 注:门窗的气密性能即单位开启缝长或单位面积空气渗透量可分为正压和负压下测量的正值和负值。 门窗试件在标准状态下,压力差为10Pa时的单位开启缝长空气渗透量1和单位面积空气渗透量q2不应超过表11中各分级相应的指标值。

铝合金模板计算书版本

铝合金模板 目录 1.0设计大纲 2.0 编制依据 3.0 材料性能 4.0 设计和计算 4.1. 楼面模板结构计算 A.楼面板计算 B.楼面龙骨计算 C.楼面支撑立杆计算 D.转角连接计算 E.龙骨拉杆计算 4.2. 墙模板结构计算 A.墙板计算 B.铁威令计算

C.穿墙拉杆计算 1.0 设计大纲 楼面模板的主要组成构件有楼面板,楼面龙骨,楼面支撑,转角及龙骨拉杆。由于竖向受力,这些原件均需经过强度和挠度的验算。 墙身模板的主要组成原件有墙板,穿墙丝杆,铁威令,踢脚挡板,垫脚板。由于承受水平方向混凝土的压力负载,这些构件均需经过强度和挠度的验算。 2.0 编制依据 本工程设计图纸 公司质量、环境和职业健康安全一体化管理文件 省厅及地方关于模板支撑架相关文件要求 《建筑施工手册》(第五版) 《建筑施工简易计算》(江正荣?等编着) 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ 130-2011) 《铝合金模板系统应用技术标准》 《建设工程施工现场管理规定》 《建设工程安全生产管理条例》(国务院第393号令) 《建筑工程预防坍塌事故若干规定》(建设部建质[2003]82号) 《建筑施工安全检查评分标准》(JGJ59-2011) 《建设工程施工安全技术操作规程》 《建筑施工模板安全技术规范》(JGJ 162-2008) 铝挤压型材

标准等级:6061 T6 弹性系数, E 68900 N/mm2 屈服强度, F y 200 N/mm2 允许弯曲应力 (0.8 F y) 160 N/mm2 铝平板 标准等级:6061 T6 弹性系数, E 68900 N/mm2 屈服强度, F y 135 N/mm2 允许弯曲应力 (0.7 F y) 95 N/mm2 低碳钢威令 标准等级:43A 到BS 4360 及铁-1987 弹性系数, E 206000 N/mm2 屈服强度, F y 250 N/mm2 允许轴向拉伸应力(0.66 F y) 165 N/mm 允许弯曲应力(0.6 F y) 150 N/mm 4.0 设计及计算 ·荷载: 模板自重(25KG/m2)= 25×10×10-3 = 0.25 KN/m2 施工荷载 2.5 KN/m2 钢筋混凝土重度 25 .1KN/m3 ·单件模板允许的挠度不超过跨径的1/250。 4.1楼面模板结构计算

铝合金计算书版本

铝合金模板 陕西天利成建筑科技有限公司2016年10月

第一章铝合金模板及支撑体系计算书一、铝合金模板计算书编制、设计计算依据 GB50009-2012 建筑结构载荷规范 GB50010-2010 混凝土结构设计规范 GB50017-2003 钢结构设计规范 GB50666-2011 混凝土结构工程施工规范

二、铝合金模板体系简介 2.1、标准模板单元体系 2.2、楼面处铝合金模板固定体系

2.3、墙、柱处铝合金模板固定体系 对拉螺杆为T18的高强螺杆,背楞上下间距从下往上200mm、600mm、650mm、650mm、550,对拉螺杆水平最大间距800mm。

三、铝合金模板标准单元 铝合金模板体系类似于组合钢模板体系,都是由标准单元组合拼装而成。利于工厂标准化设计、制作。 铝合金模板标准单元均为铝合金挤压型材,根据模板宽度分为100mm~400mm 不等的标准型材。实际设计制作时楼面板的通用标准规格为400mm×1100mm,墙、柱模板的标准规格为400mm×2600mm(标准长度根据建筑岑高的差异,略有不同)。 下图为铝合金模板的标准单元示意图 标准墙、柱模板标准楼面板

四、铝合金模板体系材料说明 4.1、“天利成”铝合金模板材质成分应符合GB/T3190-2008《变形铝及铝合金化学成分》中6061的要求: 牌号 化学成分(质量分数)/% Si Fe Cu Mn Mg Cr Zn Ti 其他 Al 单个合计 6061 0.40~0.8 0.7 0.15~0.4 0.15 0.8~1.2 0.04~0.35 0.25 0.15 0.05 0.15 余量 4.2、“天利成”铝合金模板材质力学性能应符合GB5237.1-2008《铝合金建筑 型材》中6061-T6的要求 牌号状态抗拉强度(N/mm2) 规定非比例延伸强度 (R p0.2)/(N/mm2) 断后伸长率/% 6061 T6 ≧265 ≧245 ≧8 4.3、“天利成”铝合金模板设计计算应符合GB50249-2008《铝合金结构设计 规范》中6061-T6的要求 牌号状态抗拉强度(N/mm2) 弹性模量(N/mm2) 6061 T6 ≧200 7×104 4.4、“天利成”铝合金模板系统标准模板宽度规格有400mm、350mm、300mm、 250mm、200mm、150mm、100mm等标准规格,模板带边框高度均为65mm,模板面板 高度4mm。 主要型材截面参数如下表所示: 模板宽度(mm)截面积A (mm2) X轴截面 惯性矩I x(mm4) 截面最小 抵抗矩W x(mm3) 截面简图 400 2544.2 1031495.2 20406.9 350 2344.2 997563.6 20159.4 300 2144.2 957351.9 19852.5

相关主题
文本预览
相关文档 最新文档