当前位置:文档之家› 单分散纳米钛酸钡晶体的微波水热合成与表征_推荐一个研究型综合实验

单分散纳米钛酸钡晶体的微波水热合成与表征_推荐一个研究型综合实验

单分散纳米钛酸钡晶体的微波水热合成与表征_推荐一个研究型综合实验
单分散纳米钛酸钡晶体的微波水热合成与表征_推荐一个研究型综合实验

制备纳米钛酸钡粉体

化学共沉淀法 ——制备纳米钛酸钡粉体 目录 (1) 成绩考评表 (2) 中文摘要 (3) 英文摘要 (4) 1前言 (5) 1 .1制备方法介绍 (6) 1.2所制备的材料介绍 (9) 1.3本实验主要研究内容 (12) 2.实验实施阶段 2.1方案介绍 (13) 2.2方案具体实施 (15) 3实验结果分析与讨论 (17) 参考文献 (22)

综合实验感想 (23) 3Ba TiO 纳米粉体的制备 摘要 以4TiCl 为钛源,2BaCl 为钡源,采用草酸共沉淀法制备batio3粉体, 研究了前驱体的煅烧温度对产物的影响,实验结果表明当煅烧温度控制在800度以上时,可制的纯度高结晶好的batio3超细粉体。 关键词:钛酸钡,草酸共沉淀,前驱体,温度

English abstract Thought of 4TiCl for titanium source 2BaCl for barium source, using oxalate coprecipitation preparation of batio3 powders, studied the precursor of the influence of calcining temperature on the product, the experimental results show that when the calcination temperature control over 800 degrees, can be made of high purity crystal good batio3 ultrafine powders. Key words: barium titanate, oxalate coprecipitation, precursor , temperature

钛酸钡制法汇总

电子陶瓷材料纳米钛酸钡制备工艺的研究进展 1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制 粉体粒度、形造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO 3 貌的研究一直是国内外关注的焦点。 钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法 在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法 将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm 左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法 柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

固相烧结法制备钛酸钡陶瓷材料

固相烧结法制备BaTiO3 (BTO陶瓷材料 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一在此温度以下,1460C以上结晶出来的钛酸钡属于非铁电的六 方晶系6/mmn直是国内外关注的焦点之一。 1材料结构 钛酸钡是一致 性熔融化合物,其 熔点为1618C。点 群。此时,六方晶 系是稳定的。在 1460~130C之间钛 酸钡转变为立方钙

钛矿型结构。在此结构中Ti4+(钛离子)居于02-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130C 时,钛酸钡发生顺电-铁电相变。在130~5C的温区内,钛酸钡为四方晶系4mn点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。 当温度下降到5C以下,在5~-90C温区内,钛酸钡晶体 转变成正交晶系mm庶群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。为了方便起见, 通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的 好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看, 相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。

钛酸钡纳米颗粒聚集球的形成机理

[Article] https://www.doczj.com/doc/0711862535.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2011,27(12),2927-2932 December Received:July 20,2011;Revised:September 21,2011;Published on Web:October 10,2011.? Corresponding author.Email:jiangxp64@https://www.doczj.com/doc/0711862535.html,,zhq_0425@https://www.doczj.com/doc/0711862535.html,;Tel:+86-798-8499237. The project was supported by the National Natural Science Foundation of China (91022027,51062005,50862005).国家自然科学基金(91022027,51062005,50862005)资助项目 ?Editorial office of Acta Physico-Chimica Sinica 钛酸钡纳米颗粒聚集球的形成机理 展红全 江向平 * 李小红罗志云陈超李月明 (景德镇陶瓷学院材料科学与工程学院,江西省先进陶瓷材料重点实验室,江西景德镇333403) 摘要: 采用水热法合成了具有新颖结构的钛酸钡纳米颗粒聚集球.X 射线衍射(XRD)结果显示该聚集球为立 方相,随着时间的延长其结晶性增强.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和电子衍射(ED)谱研究了该纳米颗粒聚集球的生长特点.结果表明该聚集球是由5-8nm 的纳米颗粒定向连接生长而成,整个聚集球对外显示类单晶的现象.聚集球的大小约为60nm,随着时间的延长有长大的趋势.X 射线能谱(EDX)分析结果和Johnson-Mehl-Avrami (JMA)方程动力学模拟结果表明,在颗粒球形成初始阶段主要是Ba 2+离子的扩散成核作用占主导地位.这种“扩散成核-定向生长”的形成过程揭示了钛酸钡纳米颗粒聚集球的生长机理.关键词: 钛酸钡;JMA 方程;水热法;扩散机理;定向生长 中图分类号: O643.12 Formation Mechanism of Barium Titanate Nanoparticle Aggregations ZHAN Hong-Quan JIANG Xiang-Ping *LI Xiao-Hong LUO Zhi-Yun CHEN Chao LI Yue-Ming (Jiangxi Key Laboratory of Advanced Ceramic Materials,Department of Material Science and Engineering, Jingdezhen Ceramic Institute,Jingdezhen 333403,Jiangxi Province,P .R.China )Abstract:A novel nanoparticle aggregation structure of barium titanate was obtained by the hydrothermal method.Powder X-ray diffraction (XRD)revealed that the aggregates crystallized in the cubic phase.The crystallization of the products became more significant with reaction progress.The growth characteristics of the aggregates was further confirmed by scanning electron microscopy (SEM),transmission electron microscopy (TEM),high resolution transmission electron microscopy (HRTEM),and electron diffraction (ED)spectroscopy.The aggregation was composed of many 5-8nm nanoparticles by orientation attachment and we found that the ED patterns indicated a single-crystal property for the aggregates.The size of the aggregates was about 60nm and they grew as the reaction continued.From the results of energy dispersive X-ray (EDX)spectroscopy analysis and kinetics modeling using the Johnson-Mehl-Avrami (JMA)equation,the diffusion nucleation of Ba 2+ion was found to be dominant during the early stages of aggregation formation.The growth process of “diffusion nucleation -orientation attachment ”revealed the formation mechanism of barium titanate nanoparticle aggregations.Key Words:Barium titanate; JMA equation; Hydrothermal method; Diffusion mechanism; Orientation attachment doi:10.3866/PKU.WHXB20112927 2927

MLCC用纳米钛酸钡项目可行性研究报告

MLCC用纳米钛酸钡项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (18) 2.1项目提出背景 (18) 2.2本次建设项目发起缘由 (20) 2.3项目建设必要性分析 (20) 2.3.1促进我国MLCC用纳米钛酸钡产业快速发展的需要 (21) 2.3.2加快当地高新技术产业发展的重要举措 (21) 2.3.3满足我国的工业发展需求的需要 (22) 2.3.4符合现行产业政策及清洁生产要求 (22) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (22) 2.3.6增加就业带动相关产业链发展的需要 (23) 2.3.7促进项目建设地经济发展进程的的需要 (23) 2.4项目可行性分析 (24) 2.4.1政策可行性 (24) 2.4.2市场可行性 (24) 2.4.3技术可行性 (24) 2.4.4管理可行性 (25) 2.4.5财务可行性 (25) 2.5MLCC用纳米钛酸钡项目发展概况 (25) 2.5.1已进行的调查研究项目及其成果 (26) 2.5.2试验试制工作情况 (26) 2.5.3厂址初勘和初步测量工作情况 (26)

钛酸钡的制备工艺以及制备方法

1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀 BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

纳米晶钛酸钡陶瓷的制备、微结构及性能的研究

论文题目:纳米晶钛酸钡陶瓷的制备、微结构及性能的研究 作者简介:邓湘云,女,1964年11月出生,2003年9月师从于清华大学李龙土教授,于2007年1月获博士学位。 中文摘要 自从1943年钛酸钡作为最具有代表性的钙钛矿结构的铁电材料被发现以来,一直是电子陶瓷元器件的基础材料。当高于居里温度120o C时,钛酸钡晶体结构为立方顺电相; 低于居里温度时钛酸钡有三个结构相变点; 在大约10o C到130o C之间为四方相结构; 低于10o C为正交相结构, 当温度进一步下降到大约-80o C表现为三方相结构。 近几年来随着电子及微电子工业的飞速发展,多层陶瓷电容器的微型化和大容量化要求降低陶瓷介质层的厚度,这就要求介质层中的陶瓷晶粒降到亚微米级甚至纳米级, 因此制备小粒径的钛酸钡陶瓷引起了人们广泛的兴趣。然而高致密的陶瓷都要通过高温烧结才能致密化,而致密化过程和晶粒生长过程常常同时产生,特别在烧结后期晶粒生长非常迅速,其结果是材料实现致密化后晶粒也长大了。因此目前最大的研究障碍就是制备出致密的纳米晶陶瓷,并在此基础上研究晶粒尺寸对钛酸钡陶瓷的微结构和性能的影响,即纳米尺寸效应。 钛酸钡陶瓷尺寸效应研究始于1950年;研究的核心内容主要围绕晶粒尺寸对于介电性能,相变和显微结构的影响。研究表明随着晶粒尺寸的减小,居里温度向低温移动; 晶粒尺寸从10μm减至1μm时,室温介电常数增大,当钛酸钡陶瓷的平均晶粒尺寸接近1μm 时,介电常数特别大; 当陶瓷的晶粒尺寸小于500nm之后,相对介电常数迅速下降。 Zhao Zhe等研究表明50nm钛酸钡陶瓷1kHz时室温介电常数为1100,四方相→立方相的温度为117o C; Buscaglia等采用拉曼光谱在80-700K温度区间内对50nm钛酸钡陶瓷的相结构研究,证实了在50nm钛酸钡陶瓷中依然存在和大晶粒钛酸钡陶瓷相同的相变行为,即随着温度的降低,经历由立方→四方→正交→三方的相转变,并且存在多相共存的特点; 并且证实30nm钛酸钡陶瓷100Hz时70o C介电常数为1650,四方相→立方相的温度为106o C; 他们还研究了30nm钛酸钡陶瓷中铁电畴的分布,并观察到一畴多粒现象。 尺寸效应研究中有关钛酸钡陶瓷保持铁电性临界尺寸的内容尤其受到关注, 因为当晶粒尺寸减小到临界尺寸时,铁电性将消失。1954年首次报导了铁电性消失的现象;1985年Arl证实钛酸钡陶瓷保持铁电性的临界尺寸为280nm; M. H. Frey等用热压(压力为8GPa)的方法制备出70nm相对密度98%的钛酸钡陶瓷,并认为临界尺寸为70nm; Zhao zhe等采用SPS制备出50nm相对密度97%的钛酸钡陶瓷,并实验证明50nm钛酸钡陶瓷依然保持铁电性;2006年M. T. Buscaglia等报导了SPS方法制备的钛酸钡陶瓷,平均晶粒为30nm,相对密度为97%,并认为钛酸钡陶瓷维持铁

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法 摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。 关键词:钛酸钡;粉体;制备方法; 1.引言 钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直 是各国科学家的研究重点。钛酸钡的应用越来越广泛。目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。 2.钛酸钡粉体的制备工艺 2.1固相研磨-低温煅烧法 传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅 烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧 温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。 朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃ 2.2水热法合成 水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的 自生压力下, 原始混合物进行反应的一种合成方法。由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反 应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长 基元, 进行成核结晶生成粉体或纳米晶[2]。 水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。而且粉体无须煅烧, 可以直接用于加工成型, 这就可以避免在煅烧过程中晶粒的 团聚、长大和容易混入杂质等缺点[2]。 2.3 溶胶凝胶法 钛酸钡( BaTiO3 ) 在当今科技领域里占有重要地位, 它是电子陶瓷领域应用最广泛的材料之一。钛酸钡是钛酸盐系电子陶瓷的主要原料, 是一种具有高介电常数和低介电损耗的铁电材料,被广泛应用于制作热敏电阻器( PTCR) 、多层陶瓷电容器(MLCC) 、电光器件和DRAM 器件。现代技术要求BaTiO3 粉料具有高纯、

纳米晶钛酸钡陶瓷铁电性能和介电性能的温度依赖性

硅酸盐学报 · 432 ·2013年 DOI:10.7521/j.issn.0454–5648.2013.04.02 纳米晶钛酸钡陶瓷铁电性能和介电性能的温度依赖性 刘佳1,杨仁波1,邓湘云1,2,谭忠文1,李德军1,王晓慧3,李龙土3 (1. 天津师范大学物理与电子信息学院,天津 300387;2. 热带岛屿资源先进材料教育部重点实验室,硅锆钛 资源综合开发与利用海南省重点实验室,海南大学材料与化工学院,海口 570228;3. 清华大学材料 科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京 100084) 摘要:研究50nm BaTiO3陶瓷的铁电性能、介电性能的温度依赖性,其介温谱和介电损耗谱具有明显的弥散相变特征,当频率为1kHz时计算得到弥散指数γ为1.60。不同温度下的介电常数–电场强度(ε–E)曲线显示,介电异常发生在110~120℃的温度范围内,110℃时的介电可调性为20.2%,介电损耗小于0.02。压电位移曲线计算得到50nm BaTiO3陶瓷的压电系数d33为45pm/V。 关键词:纳米晶钛酸钡陶瓷;铁电性;弥散相变;压电系数 中图分类号:TN305 文献标志码:A 文章编号:0454–5648(2013)04–0432–05 网络出版时间:2013–03–02 9:39 网络出版地址:https://www.doczj.com/doc/0711862535.html,/kcms/detail/11.2310.TQ.20130302.0939.001.html Temperature Dependence on the Dielectric and Ferroelectric Properties of Nanocrystalline BaTiO3 Ceramics LIU Jia1,YANG Renbo1,DENG Xiangyun1,2,TAN Zhongwen1,LI Dejun1,WANG Xiaohui3,LI Longtu3 (1. College of Physics and Electronic Information, Tianjin Normal University, Tianjin 300387, China; 2. Key Lab of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan Provincial Key Laboratory of Research on Utilization of Si–Zr–Ti Resources, Materials and Chemical Engineering Institute, Hainan University, Haikou 570228, China; 3. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China) Abstract: The temperature dependence on the dielectric and ferroelectric properties of dense BaTiO3 ceramic with the nanocrystalli-nes of 50nm was investigated. The relationship between the dielectric constant and loss tangent with respect to temperature effect was analyzed, and a significant diffuse phase transition was observed. The dispersion parameter was calculated to be 1.60 at 1kHz. The dielectric constant–electric field (ε–E) loops at different temperatures showed that the permittivity anomalies occurred in a tempera-ture range of 110–120. The dielectric constant tunability was 20.2% at 110 ℃, and the dielectric loss tangent was < ℃0.02. Moreover, the positive piezoelectric coefficient d33 of 45pm/V was determined from the slope of the loops. Key words: nanocrystalline barium titanate ceramic; ferroelectricity; diffuse phase transition; piezoelectric coefficient 1 Introduction Barium titanate (BaTiO3) with a perovskite structure has been widely used as a ferroelectric material for mul-tilayer ceramics capacitors, embedded capacitance in printed circuit boards, thermal imaging, actuators, piezo-electric transducers and ferroelectric memories, due to its high dielectric constant and low losses.[1–2] Some studies revealed that the grain size of BaTiO3 has an effect on the dielectric properties.[3–4] It is thus important to investigate the properties of BaTiO3 with respect to the effect of the grain size in order to find the possible limit of ferroelec-tricity and elucidate the dielectric property of the ferro-electrics components as well. Recently, Zhao, et al.[5] synthesized BaTiO3 ceramic with the grain size in the range from 50 to 1200nm by a spark plasma sintering 收稿日期:2012–06–08。修订日期:2012–07–20。 基金项目:国家“863”计划(2012AA03A610);国家“973”计划(2002- CB613301);国家自然科学基金(50872093)资助项目。 第一作者:刘佳(1987—),女,硕士研究生。 通信作者:邓湘云(1964—),女,博士,教授。Received date:2012–06–08. Revised date: 2012–07–20. First author: LIU Jia (1987–), female, Master candidate. E-mail: liujia0066@https://www.doczj.com/doc/0711862535.html, Correspondent author: DENG Xiangyun (1964–), female, Ph.D., Professor. E-mail: xiangyundtj@https://www.doczj.com/doc/0711862535.html, 第41卷第4期2013年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 4 April,2013

纳米钛酸钡的研究

纳米钛酸钡的研究 摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。本文介绍了钛酸钡结构、性能、用途及制备方法。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 关键词:钛酸钡,结构,性能,制备方法,粉体 1. 引言 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。 2. 钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

微波水热合成钛酸钡纳米粉体_陈杰

第42卷第11期人工晶体学报 Vol.42No.112013年11月 JOURNAL OF SYNTHETIC CRYSTALS November ,2013 微波水热合成钛酸钡纳米粉体 陈 杰,闫 峰,罗昆鹏 (西安科技大学材料科学与工程学院,西安710054) 摘要:采用微波水热法低温合成了立方相钛酸钡纳米粉体。通过正交实验法及线性回归,研究了反应温度、反应时间及分散剂用量等因素对颗粒比表面积的影响规律及回归函数, 并通过XRD 、TEM 、XRF 等对粉体进行了表征。研究结果表明,在反应温度70?、反应时间10min 、分散剂与钛的物质的量比为1?20的条件下制得粒径约50 100nm 、呈球状的分散性良好的立方相钛酸钡纳米粉体。反应温度、反应时间及分散剂用量对粒度均有不同程度的影响, 其中反应温度影响最为显著。关键词:微波水热法;钛酸钡纳米粉体;正交实验法;线性回归中图分类号:TM282 文献标识码:A 文章编号:1000- 985X (2013)11-2359-05Synthesis of BaTiO 3Nano-powder by Microwave Hydrothermal Method CHEN Jie ,YAN Feng ,LUO Kun-peng (School of Materials Science and Engineering ,Xi'a n University of Science and Technology ,Xi'a n 710054,China ) (Received 12May 2013,accepted 13September 2013) Abstract :Cubic phase barium titanate nano-powders were synthesized under low temperature by microwave-hydrothermal method.The influence law of factors such as reaction temperature ,reaction time ,and the dispersant dosage on the specific surface area of particles and regression function were studied by the orthogonal experiment method and linear regression.The crystallized products were characterized by powder X-ray diffraction (XRD ),transmission electron microscopy (TEM ),X-ray fluorescence (XRF ).The experimental results showed that the spherical and well-dispersed cubic phase barium titanate nano-powders which particle size is about 50-100nm could be prepared under the conditions that the reaction temperature is 70?,and the reaction time is 10min ,and mole ratio of dispersant and titanium is 1?20.Reaction temperature ,reaction time ,and the dosage of dispersant have different effect on the specific surface area of particles.Among these factors ,the significant factors is reaction temperature. Key words :microwave hydrothermal method ;BaTiO 3nano-powder ;orthogonal experiment method ;linear regression 收稿日期:2013-05-12;修订日期:2013-09-13基金项目:国家自然科学基金(51072162)作者简介:陈 杰(1967-),女,陕西省人,教授,博士。E- mail :chenjie363@163.com 1引言 钛酸钡(BaTiO 3)是一种强介电材料、压电材料和铁电材料,广泛应用于电容器、PTC 组件、压电换能器等电子元器件的制造,是一种用途广泛的重要电子陶瓷材料。近年来,随着电子元器件的微型化、小型化、薄

高压烧结纳米钛酸钡陶瓷的结构和铁电性

硅酸盐学报 · 748 ·2008年 高压烧结纳米钛酸钡陶瓷的结构和铁电性 肖长江1,2,靳常青2,王晓慧3 (1. 河南工业大学材料科学与工程学院,郑州 450007;2. 中国科学院物理研究所,北京 100080; 3. 清华大学材料科学与工程系,新型陶瓷和精细工艺国家重点实验室,北京 100084) 摘要:在压力为6GPa和温度为1000℃的条件下烧结得到了钛酸钡(BaTiO3)陶瓷,其晶体的平均尺寸约为30nm,相对密度大于96%。在–190~200℃,用Raman光谱确定晶体的结构,用介电转变峰表征晶体的铁电性。结果表明:随温度升高,在30nm BaTiO3陶瓷中,发生从三方相→正交相→四方相→三方相的连续相变;在室温,晶体的正交相和四方相共存。当频率为1kHz时,在120℃附近有1个宽的介电转变峰,介电常数为1920。铁电性分析表明:高压烧结得到的BaTiO3陶瓷的铁电性消失的临界尺寸小于30nm。 关键词:钛酸钡;纳米陶瓷;高压烧结;晶体结构;铁电性 中图分类号:TB34 文献标识码:A 文章编号:0456–5648(2008)06–0748–03 CRYSTAL STRUCTURE AND FERROELECTRICITY OF NANOCRYSTALLINE BARIUM TITANATE CERAMICS FABRICATED BY THE HIGH PRESSURE SINTERING XIAO Changjiang1,2,JIN Changqing2,WANG Xiaohui3 (1. Department of Material Science and Engineering, Henan University of Technology, Zhenzhou 450007; 2. China Institute of Physics, Chinese Academy of Science, Beijing 100080; 3. State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, China) Abstract: Barium titanate (BaTiO3) ceramics were sintered at 6GPa and 1000℃. The average grain size of the crystalline was about 30nm and the relative density was more than 96%. The crystal structure was investigated by Raman scattering at temperatures ran- ging from –190℃ to 200℃and the ferroelectricity was characterized by the dielectric transition peak. With increasing temperature, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal and tetragonal to cubic were also observed in 30nm BaTiO3 ceramics. The coexistence of ferroelectric tetragonal and orthorhombic phases was found at room tem-perature. At about 120℃, there existed a broad dielectric peak and the relative dielectric constant was 1920. The existence of ferro-electricity indicated that the critical grain size of the disappearance of ferroelectricity in nano-crystalline BaTiO3 ceramics fabricated by the pressure sintering is below 30nm. Key words: barium titanate; nano-crystalline ceramics; high pressure sintering; crystal structure; ferroelectricity BaTiO3是典型的具有ABO3型钙钛矿晶体结构的铁电体,室温时具有高介电常数和低的介电损耗,被广泛应用于电子工业中。对于粗晶BaTiO3,在Curie温度(θC=130℃)以上为立方相(Pm3m)。随着温度的降低,发生从立方相→四方相(P4mm)→正交相(Amm2)→三方相(R3m)的连续相变,它们的相变温度分别约为130,5,–90℃。在BaTiO3晶体结构中,高温立方相为顺电相,其余3个相都为铁电相。晶粒尺寸对BaTiO3的晶体结构和铁电性有很大影响,随着晶粒尺寸的减小,在BaTiO3陶瓷中出现多相共存和铁电性的消失。[1–3] 常规烧结法无法得到纳米陶瓷,所以对纳米BaTiO3陶瓷的研究较少。高压能够显著增加使陶瓷致密的驱动力。在高压烧结中,由于成核势垒的降低使成核速率增加;扩散能力的降低使生长速率减小。[4–5] 实验中用高压法烧结纳米BaTiO3陶瓷,得到了致密、晶粒大小约为30nm的BaTiO3陶瓷,对陶瓷的晶体结构和铁电性能进行研究。 收稿日期:2007–08–10。修改稿收到日期:2008–01–29。基金项目:国家“973”计划(2002CB613301)资助项目。 第一作者:肖长江(1969—),男,博士,副教授。Received date:2007–08–10. Approved date: 2008–01–29. First author: XIAO Changjiang (1969–), male, Doctor, associate professor. E-mail: cjxiao@https://www.doczj.com/doc/0711862535.html, 第36卷第6期2008年6月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 6 J u n e,2008

相关主题
文本预览
相关文档 最新文档