当前位置:文档之家› 第六节 变压器的零序电流保护

第六节 变压器的零序电流保护

第六节  变压器的零序电流保护
第六节  变压器的零序电流保护

二、变电所多台变压器的零序电流保护

每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。电流继电器起动后,常开触点闭合,起动时间继电器KT1。时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。。若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。

零序电流保护的整定计算:

动作电流:

(1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以

(2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。

设零序电压元件的动作电压为U dz.0,则

U dz.0=3I0X0.T

零序电流元件的动作电流为

动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。根据经验,零序电压继电器的动作电压一般为5V。当电压互感器的变比为nTV时,电压继电器的一次动作电压为

U dz.0=5n TV

变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。即

灵敏度校验:按保证远后备灵敏度满足要求进行校验

返回

第二节微机保护的硬件框图简介

微机保护硬件示意框图如下图所示。

一、电压形成回路

微机保护要从被保护的电力线路或设备的电流互感器、电压互感器或其他变换器上取得信息,但这些互感器的二次数值、输入范围对典型的微机电路却不适用,故需要降低和变换。在微机保护中通常要求输入信号为±5V或±10V的电压信号,具体决定于所用的模数转换器。电压变换常采用小型中间变压器。

电流变换有两种方式,一种是采用小型中间变流器,其二次侧并电阻以取得所需电压的方式,另一种是采用电抗变压器。这些中间变换器还起到屏蔽和隔离的作用,以提高保护的可靠性。

二、采样保持电路与模拟低通滤波器

1.采样保持器(S/H)

采样就是将连续变化的模拟量通过采样器加以离散化。其过程如下图所示。

2.模拟低通滤波器(ALF)

按照奈奎斯特(Nyquist)采样定理:“如果被采样信号频率(或信号中要保留的最高次谐波频率)为?0,则采样频率?s(每秒钟采样次数)必须大于2?0,否则,由采样值就不可能拟合还原成原来的曲线。”

对微机保护系统来说,在故障初瞬,电压、电流中可能含有相当高的频率分量,在采样前用一个低通模拟滤波器(ALF)将高频分量滤掉,这样就可以降低?s ,以防混叠。

微机保护是一个实时系统,数据采集系统以采样频率不断地向CPU输入数据,CPU必须要来得及在两个相邻采样间隔时间T s内处理完对每一组采样值所必须作的各种操作和运算,否则CPU将跟不上实时节拍而无法工作。而采样频率过低将不能真实地反映被采样信号的情况。

三、多路转换开关(MUX)

多路转换开关又称多路转换器。在实际的数据采集系统中,被模数转换的模拟量可能是几路或十几路,利用多路开关MUX轮流切换各被测量与A/D转换电路的通路,达到分时转换的目的。

在微机保护中,各个通道的模拟电压是在同一瞬间采样并保持记忆的,在保持期间各路被采样的模拟电压依次取出并进行模数转换,但微机所得到的仍可认为是同一时刻的信息,这样按保护算法由微机计算得出正确结果。

四、模数转换器(A/D)

模数转换器A/D是数据采集系统的核心,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机进行处理、存储、控制和显示。

逐位比较(逐位逼近)型

积分型以及计数型

A/D转换器主要有

并行比较型

电压频率(即V/F)型等

就微机保护而言,选择A/D转换芯片时主要考虑两个指标:一是转换时间,二是数字输出的位数。

对于转换时间,由于各通道共用一个A/D,至少要求所有的通道轮流转换所需的时间总和小于采样间隔Ts。

微机保护对A/D转换芯片的位数要求较苛刻,因为保护在工作时输入电压和电流的动态范围很大。

返回

第三节微机保护的算法

一、数字滤波

数字滤波器不同于模拟滤波器,它不是一种纯硬件构成的滤波器,而是由软件编程去实现,改变算法或某些系数即可改变滤波性能,即滤波器的幅频特性和相频特性。

在微机保护中广泛使用的简单的数字滤波器,是一类用加减运算构成的线性滤波单元。 差分滤波

它们的基本形式 加法滤波 积分滤波等

以差分滤波为例做简单介绍。

差分滤波器输出信号的差分方程形式为

)()()(k n x n x n y --= (8—1)

式中,x (n )、y (n )分别是滤波器在采样时刻n (或n )的输入与输出;x (n -k )是n 时刻以前第k 个采样时刻的输入,k ≥1。

对式(8-1)进行Z变换,可得传递函数H (z)

)1)(()(k z z x z y --=

k

z z X z Y z H --==1)()

()( (8—2)

将 S

T j e

z ω=代入式(8-2)中,即得差分滤波器的幅频特性和相频特性分别为式(8-3)及

式(8-4)

2sin

2sin )cos 1()(22S

S S T j T k T k T k e H S ωωωω=+-= (8—3)

(8—4)

由式(8-3)可知,设需滤除谐波次数为m ,差分步长为k (k 次采样),则此时ω=m ω1=m ·2

?1,应使

)(S

T j e H ω=0。令 0sin

21=s

f kmf π

则有

ππ

l f kmf s

=1 )3,2,1,0(??????=l 01lm K N l kf f l m s ===;

k N m =0 (8—5) 当N (即?s 和?1)取值已定时,采用不同的l 和k 值,便可滤除m 次谐波。

二、正弦函数模型算法

1.半周积分算法

半周积分算法的依据是

m

m T m

T m U T

U t

U tdt U S π

ω

ωω

ω=

=

-

==?2

cos sin 20

20

(8—6)

即正弦函数半周积分与其幅值成正比。

式(8-6)的积分可以用梯形法则近似求出:

s

N N k k T u u u S ]21

21[2/1

210++≈∑-= (8—7)

式中

k u ——第K 次采样值; N ——一周期T 内的采样点数; k u ——k =0时的采样值;

2

N

u ——k =N /2时的采样值。

求出积分值S 后,应用式(8-6)可求得幅值。

2.导数算法

导数算法是利用正弦函数的导数为余弦函数这一特点求出采样值的幅值和相位的一种算法。

设 t U u m ωsin =

()θω-=t I i m sin 则

t

U u m ωωcos =' (8—8)

()θωω-='t I i m cos t U u m ωωsin 2-=''

()θωω--=''t I i m sin 2

很容易得出

或m 222

U )u (u =ω'+2

222)()m

U u u =''+'ωω( (8—9)

2

m

22"22m 2'2

I )i ()i I )i (i =ω

+ω'=ω+或( (8—10)

和 22

22

2222

2

i i u u I U z m m '+'+==ωω (8—11)

根据式(8-8),我们也可推导出

R I U i i i i u i u m m

=='-''''-''θcos 2

(8—12)

L X

I U i i i i u i u m m ==='-'''-'ωθωsin 2

(8—13)

式(8-9)~式(8-13)中,u 、i 对应t k 时为u k 、i k ,均为已知数,而对应t k-1和t k+1的u 、

i 为u k-1、u k +1、i k -1、i k +1,也为已知数,此时

s

k k k

T u u u 21

1-+-=' (8—14)

s

k k k

T i i i 211-+-=' (8—15) )2()(1)(111211-+-++-=---=''k k k s s k k s k k s k

u u u T T u u T u u T u (8—16)

)2()(1)(111211-+-++-=---=

''k k k s s k k s k k s k i i i T T i i T i i T i (8—17)

导数算法最大的优点是它的“数据窗”即算法所需要的相邻采样数据是三个,即计算速度快。导数算法的缺点是当采样频率较低时,计算误差较大。

3.两采样值积算法

两采样值积算法是利用2个采样值以推算出正弦曲线波形,即用采样值的乘积来计算电流、电压、阻抗的幅值和相角等电气参数的方法,属于正弦曲线拟合法。

这种算法的特点是计算的判定时间较短。 设有正弦电压、电流波形在任意二个连续采样时刻t k 、t k+1(=t k +s T

)进行采样,并设被采样电流滞后电压的相位角为θ,则t k 和t k +1时刻的采样值分别表示为式(8-18)和式(8-19)。

)sin(sin 11θωω-==k m k

m t I i t U u (8—18)

])(sin[)sin()

(sin sin 1212θωθωωω-+=-=+==++s k m k m s k m k m T t I t I i T t U t U u (8—19)

式中,T S 为两采样值的时间间隔,即T S =t k+1-t k 。 由式(8-18)和式(8-19),取两采样值乘积,则有

)]

2cos([cos 21

11θωθ--=k m m t I U i u (8—20) )]

22cos([cos 21

22θωωθ-+-=s k m m T t I U i u (8—21) )]

2cos()[cos(21

21θωωωθ-+--=s k s m m T t T I U i u (8—22) )]

2cos()[cos(21

12θωωωθ-+-+=s k s m m T t T I U i u (8—23)

式(8-20)和式(8-21)相加,得

)]

2cos(cos 2cos 2[21

2211θωωωθ-+-=+s k s m m T t T I U i u i u (8—24)

式(8-22)和(8-23)相加,得

)]

2cos(2cos cos 2[21

1221θωωθω-+-=+s k s m m T t T I U i u i u (8—25)

将式(8-25)乘以cos ωT S 再与式(8-24)相减,可消去ωt k 项,得

s

s

m m T T i u i u i u i u I U ωωθ212212211sin cos )(cos +-+=

(8—26) 同理,由式(8-22)与式(8-23)相减消去ωt k 项,得

s 1

221m m T sin i u i u sin I U ?-=

θ (8—27)

在式(8-26)中,如用同一电压的采样值相乘,或用同一电流的采样值相乘,则θ =0?,此时可得

s

2s 212

221

2

m

T sin T cos u u 2u u U ?ω-+= (8—28)

s

s

m

T T i i i i I ωω2212

2212sin cos 2-+=

(8—29) 由于T S 、sin ωT S 、cos ωT S 均为常数,只要送入时间间隔T S 的两次采样值,便可按式(8-28)和式(8-29)计算出U m 、I m 。

以式(8-29)去除式(8-26)和式(8-27)还可得测量阻抗中的电阻和电抗分量,即

s

s

m m T i i i i T i u i u i u i u I U R ωωθcos 2cos )(cos 21222112212211-++-+==

(8—30)

s s

m m T i i i i T i u i u I U X ωωθcos 2sin )(sin 2122211221-+-==

(8—31) 由式(8-28)和式(8-29)也可求出阻抗的模值

s

s

m

m T i i i i T u u u u I U z ωωcos 2cos 2122221212

221-+-+=

= (8—32)

由式(8-30)和式(8-31)还可求出U 、I 之间的相角差θ,

s s

T i u i u i u i u T i u i u arctg

ωωθcos )(sin )(122122111221+-+-= (8—33)

若取ωT S =900 ,则式(8-28)—式(8-33)可进一步化简,进而大大减少了计算机的运算时间。

4、三采样值积算法

三采样值积算法是利用三个连续的等时间间隔TS 的采样值中两两相乘,通过适当的组合消去ωt 项以求出u 、i 的幅值和其它电气参数。

设在t k +1 后再隔一个T S 为时刻t k +2 ,此时的u 、i 采样值为

)2(sin 3S k m T t U u +=ω (8—34) )T 2t sin(I i s k m 3θ-ω+ω= (8—35)

上式两采样值相乘,得

)]

42cos([cos 21

33θωωθ-+-=s k m m T t I U i u (8—36)

上式与式(8-20)相加,得

)]

22cos(2cos 2cos 2[21

3311θωωωθ-+-=+s k s m m T t T I U i u i u

显然,将式(8-37)和式(8-21)经适当组合以消去ωt k 项,得

s

s

m m T T i u i u i u I U ωωθ2223311sin 22cos 2cos -+=

若要ωT s =30o ,上式简化为

)(2cos 223311i u i u i u I U m m -+=θ

用I m 代替U m (或U m 代替I m ),并取θ=0o ,则有

)(2222321u u u U m -+= (8—40)

)(2222321i i i I

m

-+= (8—41)

由式(8-39)和式(8-41)可得

22

2321223311cos i i i i

u i u i u I U R m m -+-+==

θ (8—42)

由式(8-27)和式(8-41),并考虑到,得

2223211221sin i i i i

u i u I U X m m -+-==

θ (8—43)

由式(8-40)和式(8-41)得

2

2

2321222321i i i u u u I U z m m -+-+== (8—44)

由式(8-42)和式(8-43)得

(8—45)

三采样值积算法的数据窗是2T s 。从精确角度看,如果输入信号波形是纯正弦的,这种算法没有误差,因为算法的基础是考虑了采样值在正弦信号中的实际值。

三、傅里叶算法(傅氏算法)

1. 全周波傅里叶算法

根据傅里叶级数,我们将待分析的周期函数电流信号i(t)表示为 ()t

n sin I t n cos I I t i 11

n ns 11

n nc 0ω+ω+=∑∑∞

=∞=

可用和分别乘式(8-46)两边,然后在t 0到t 0+T 积分,得到

dt t n cos )t (i T 2I T

t t 1nc 00?+ω= (8—47) dt t n t i T I T

t t ns

?+=001sin )(2ω (8—48)

每工频周期T 采样N 次,对式(8-47)和式(8-48)用梯形法数值积分来代替,则得

N n

k

i N

I N

k k nc

π2cos 21

∑== (8—49)

N n

k

i N

I N

k k ns

π2sin 21

∑== (8—50)

式中k 、i k ——第k 采样及第k 个采样值

电流n 次谐波幅值(最大值)和相位(余弦函数的初相)分别为

2

2nc

ns nm I I I += (8—51)

(8—52)

写成复数形式有

ns nc n jI I I +=

对于基波分量,若每周采样12点(N =12),则式(8-49)和式(8-50)可简化为

12610842117511)(21

)(236i i i i i i i i i i I c +-+--++--=

(8—53)

)

(23

)(21)(61084211751931i i i i i i i i i i I s --++--++-= (8—54)

在微机保护的实际编程中,为尽量避免采用费时的乘法指令,在准确度容许的情况下,为了获得对采样结果分析计算的快速性,可用(1—1/8)近似代替上两式中的2/3,而后1/2和1/8采用较省时的移位指令来实现。

全周波傅里叶算法本身具有滤波作用,在计算基频分量时,能抑制恒定直流和消除各整数次谐波,但对衰减的直流分量将造成基频(或其它倍频)分量计算结果的误差。另外用近似数值计算代替积也会导致一定的误差。算法的数据窗为一个工频周期,属于长数据窗类型,响应时间较长。

2.半周波傅里叶算法

半周波傅里叶算法,其原理和全周波傅里叶算法相同,其计算公式为

N n

k i N I N k k ns π2sin 42/1

∑== (8—55) N n

k

i N

I N k k nc

π2cos 42

/1

∑== (8—56)

半周波傅里叶算法的数据窗为半个工频周期,响应时间较短,但该算法基频分量计算结果受衰减的直流分量和偶次谐波的影响较大,奇次谐波的滤波效果较好。为消除衰减的直流分量的影响,可采用各种补偿算法,如采用一阶差分法(即减法滤波器),将滤波后的采样值再代入半周波傅里叶算法的计算公式,将取得一定的补偿效果.

四、解微分方程算法

解微分方程算法是假定保护线路分布电容可以忽略,故障点到保护安装处的线路段可用一电阻和电感串联电路,即R -L 串联模型来表示,于是下述微分方程成立

dt di

L i R u 1

1+= (8—65)

式中R 1、L 1 分别为故障点至保护安装处线路段的正序电阻和电感,u 、i 分别为保护安装处的电压和电流。

1.差分法

为解得R 1和L l 必须有两个方程式。一种方法是取采样时刻t k-1和t k 的两个采样值,则有

11111---='+K K

K u i L i R (8—67) K K

K u i L i R ='+11 (8—68) 将

S

K K K

T i i i 22

1---=',

S

K K K

T i i i 21

1-+-='代入上两式并联立求解,将得到

)()()

(21112111-+--------=k k k k k k k k k k S i i i i i i u i u i T L (8—69) )()()

()(111211121-+---+--------=

k k k k k k k k k k k k i i i i i i i i u i i u R (8—70)

其中,T s 为采样间隔。

2.积分法

用分段积分法对式(8-65)在两段采样时刻t k-2至t k-1和t k-1至t k 分别进行积分,得到

?

?

?

------+=1

2

1

2

1

211K i K K K K K i i t t t t di

L idt R udt (8—71)

???---+=K

i K K

K K

K i i t t t t di L idt R udt 1

1

1

1 (8—72)

式中,i k 、i k-1、i k-2分别表示t k 、t k -1、t k-2时刻的电流采样瞬时值,将上两式中的分段积分用梯形法求解,则有

)()(2)(221121121-------++=+K K K K S K K S i i L i i T

R u u T (8—73)

)()(2)(211111----++=+K K K K S K K S i i L i i T

R u u T (8—74)

联立求解上两式,可求得R 1和L 1分别为

))(())(()

)(())((21212112111211+------------+--+++-++=

K K K K K K K K K K K K K K K K S i i i i i i i i i i u u i i u u T L (8—75)

))(())(()

)(())((21212111212111-------------+--+-+--+=

K K K K K K K K K K K K K K K K S i i i i i i i i i i u u i i u u T R (8—76)

解微分方程算法所依据的微分方程式(8-65)忽略了输电线分布电容,由此带来的误差只要用一个低通滤波器预先滤除电流和电压中的高频分量就可以基本消除。

返回

主变零序电压保护

中性点直接接地运行时的零序保护 变压器零序保护由零序电流保护组成,电流元件接到变压器中性点电流互感器的二次侧。为提高可靠性和满足选择性,变压器中性点均配置两段式零序电流保护,每段均设置两个延时。 零序保护I段的动作电流延时t1和t2与相邻元件单相接地保护I段相配合。一般取t1=0.5~1.Os,而取t2=t1+△t 为时限阶段。零序保护I段以t1延时动作于母线解列,以缩小故障影响范围;动作后仍不能消除故障,再以t2延时动作于发变组解列灭磁。设置I段的目的主要是对付母线及其附近的短路,因这类故障对电力系统影响特别严重,应尽快切除。零序保护Ⅱ段的动作电流及相应的延时t3和t4与相邻元件零序保护的后备段相配合,而t4=t3+△t。t3作用于母线解列,t4作用于解列灭磁。 为防止变压器与系统并列之前,在变压器高压侧发生单相接地而误跳母联断路器,零序保护动作于母线解列的出口回路应经主变高压侧断路器的辅助触点闭锁。 主变中性点不接地运行时的零序保护 22OKV及以上的大型变压器高压绕组均采用分级绝缘,绝缘水平偏低,例如220kV变压器中性点冲击耐压为400kV,l0 min;工频耐压为200kV。主变不接地运行时,单相接地故障引起的工频过电压将超过变压器中性点绝缘水平。如220kV主变最高工作电压为242kV,而其中性点不能长时间耐受242/√3=140kV的稳态电压,同时暂态电压值可能高达252kV(取暂态系数为1.8),超过了工频过电压允许值200kV,这时中性点避雷器可能会在暂态过电压下放电。避雷器按冲击过电压设计,热容量小,在工频过电压下放电后不能灭弧,将造成避雷器爆炸。另外在系统故障引起断路器非全相跳、合闸时,若发生失步也会使中性点与地之间最高电压超过中性点耐压允许值,甚至引起避雷器爆炸。对此,前述零序保护往往不能起到保护作用,故目前在变压器中性点装设了放电间隙作为过电压保护。但由于放电间隙是一种比较粗糙的保护,受外界环境状况变化的影响较大,并不可靠,且放电时间不能允许过长。因此又装设了专门的零序电流电压保护,其任务是及时切除变压器,防止间隙长时间放电,并作为放电间隙拒动的后备。 零序电压元件的输入取自相应的母线电压互感器的开口三角形,用于反应单相接地时的零序过电压,间隙零序电流元件的输入取自放电间隙对地连线的电流互感器,用于反应间隙放电电流。单相接地后,若放电间隙未动,则零序电压元件(3Uo)动作,经延时t(一般取t≤0.5s)动作于解列灭磁,切除变压器;若间隙零序电流元件(3Io)动作,则瞬时动作于解列灭磁。零序电压元件3U。的动作电压应低于变压器中性点绝缘耐压水平,但在电力系统中单相接地且不失去接地中性点的情况下,保护装置不应动作。定值需经过计算,一般电压互感器二次侧电压为150~180V(α=2~3)。间隙零序电流元件3I。的动作电流,根据放电电流的经验数据整定,一般一次动作电流取为100A。过电压继电器,用作变压器中性点过电压保护元件;过电流继电器用作变压器中性点过电流保护元件。

零序电流保护的整定计算-精选.

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。 最新文件仅供参考已改成word文本。方便更改

零序保护原理

零序保护原理 零序电流与零序保护定义是什么呢?通过下面这篇简短的文章我们了解一下。 什么是零序电流 在正常的三相三线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0。如果在三相三线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流,即零序电流)。三项电流的向量和不等于零,所产生的电流即为零序电流。 如何检测零序电流 当存在零序电流时,电流互感器二次线圈中就有一个感应电流,此电流加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,若大于动作电流,则使灵敏继电器动作,作用于执行元件跳闸。这里所接的互感器称为零序电流互感器。 图1 零序电流互感器 零序电流的危害 零序电流是由三相不平衡带来的,三相不平衡的危害非常多,下面列举两个三相不平衡的危害: 1、增加变压器损耗 假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下: Qa+Qb+Qc≥3√〔(Ia2 R)(Ib2 R)(Ic2 R)〕 由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。当存在零序电流时,三相负荷不平衡,增大变压器损耗。而当不平衡严重时,变压器损耗过大,会加速变压器的老化甚至烧毁。 2、增加高压线路的损耗 设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为: ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R)即高压线路上电能损耗增加12.5%。 零序保护 在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量(比如零序电流)构成保护接地短路的继电保护装置统称为零序保护。

第六节 变压器的零序电流保护

二、变电所多台变压器的零序电流保护

每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。电流继电器起动后,常开触点闭合,起动时间继电器KT1。时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。。若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。 零序电流保护的整定计算: 动作电流: (1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以 (2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。 设零序电压元件的动作电压为U dz.0,则 U dz.0=3I0X0.T 零序电流元件的动作电流为 动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。根据经验,零序电压继电器的动作电压一般为5V。当电压互感器的变比为nTV时,电压继电器的一次动作电压为 U dz.0=5n TV 变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。即 灵敏度校验:按保证远后备灵敏度满足要求进行校验 返回 第二节微机保护的硬件框图简介 微机保护硬件示意框图如下图所示。

段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取~。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验: 式中: X1——线路的单位阻抗,一般Ω/KM; Xsmax——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护

整定 计算 原则: 不超 出相 邻下 一元 件的 瞬时 速断 保护 范围。 所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取~; △t——时限级差,一般取; 灵敏度校验: 规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷电流整定。

式中: KⅢrel——可靠系数,一般 取~; Krel——电流继电器返回 系数,一般取~; Kss——电动机自起动系 数,一般取~; 动作时间按阶梯原则递推。灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥~ 作远后备使用时,Ksen≥ 注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端; 4、三段式电流保护整定计算实例 如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB线路的保护进行整定计算并校验其灵敏度。 解: (1)短路电流计算

变压器零序方向过流保护

零序方向过流保护小结 变压器高压侧(110kV及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。 一、变压器接地后备保护概述 变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。 对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。 对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。 综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。 二、零序方向过流保护逻辑 零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁, 所示。 图1 零序方向过流保护逻辑框图 零序电压闭锁元件的零序电压取自TV开口三角。 零序过流元件的零序电流可以自产,也可取自中性点零序TA。 零序方向元件的方向电压,可以取开口三角电压,也可以取自产,但方向电流必须取自产,而不能取中性点专用零序TA的电流。其原因在于,中性点零序电流对方向没有选择性。

主变零序保护的原则

主变零序保护的配置原则 110kV直接接地电力网中低压侧有电源的变压器,中性点可能直接接地运行,也可能不接地运行。对这类变压器,应当装设反应单相接地的零序电流保护,用以在中性点接地运行时切除故障;还应当装设专门的零序电流电压保护,用以在中性点不接地运行时切除故障。(高压侧为单电源,低压侧无电源的降压变压器,不宜装设专门的零序保护)保护方式对不同类型的变压器又有所不同,下面分别予以说明。 一、全绝缘的变压器。 当变压器低压侧有电源且中性点可能不接地运行时,还应增设零序过电压保护。 全绝缘变压器为什么还要装设零序过电压保护?根据《电力设备过电压保护设计技术规程》SDJ 7-79,对于直接接地系统的全绝缘变压器,内过电压计算一般为3(——最高运行相电压)。当电力网中失去接地中性点并且发生弧光接地时,过电压值可达到3.0,因此一般不会使变压器中性点绝缘受到损害;但在个别情况下,弧光接地过电压值可达到3.5,如持续时间过长,仍有损坏变压器的危险。由于一分钟工频耐压大于等于3.0,所以在3.5电压下仍允许一定时间,装设零序过电压保护经0.5s延时切除变压器,可以防止变压器遭受弧光接地过电压的损害。其次,在非直接接地电力网中,切除单相接地空载线路产生的操作过电压,可能达到4.0及以上。电力网中失去接地中性点且单相接地时,以0.5s延时迅速切除低压侧有电源的变压器,还可以在某些情况下避免电力设备遭受上述操作过电压的袭击。此外,当电力网中电容电流较大时,如不及时切除单相接地故障,有发展成相间短路的可能,因此,装设零序过电压保护也是需要的。 在电力网存在接地中性点且发生单相接地时,零序过电压保护不应动作。动作值应按这一条件整定。当接地系数≤3时,故障点零电压小于等于0.6,因此,一般可取动作电压为180V。当实际系统中<3时,也可取与实际值相对应的低于180V的整定值。 二、分级绝缘的变压器。对于中性点可能接地或不接地运行的变压器,中性点有两种接地方式:装设放电间隙和不装设放电间隙。这两种接地方式的变压器,其零序保护也有所不同。 1. 中性点装设放电间隙。放电间隙的选择条件是:在一定的值下,躲过单相接地暂态电压。一般≤3,此时,按躲过单相接地暂态电压整定的间隙值,能够保护变压器中性点绝缘免遭内过电压的损害,当电力网中失去接地中性点且单相接地时,间隙放电。 对于中性点装设放电间隙的变压器,要按本规范4.0.9条的规定装设零序电流保护,用于在中性点接地运行时切除故障。 此外,还应当装置零序电流电压保护,用于在间隙放电时及时切除变压器,并作为间隙的后备,当间隙拒动时用以切除变压器。 零序电流电压保护由电压和电流元件组成,当间隙放电时,电流元件动作;拒动放电时,电压元件动作。电流或电压元件动作后,经0.5s时限切除变压器。 零序电压元件的动作值的整定与本条第一款零序过电压保护相同。 零序电流元件按间隙放电最小电流整定,一般取一次动作电流为100A。 采用上述零序电流保护和零序电流电压保护时,首先切除中性点接地变压器,当电力网中失去接地中性点时,靠间隙放电保护变压器中性点绝缘,经0.5s延时再由零电流电压保护切除中性点不接地的变压器。采用这种保护方式,好处是比较简单,但当间隙拒动时,则靠零序电流电压保护变压器,在0.5s期间内,变压器要随内过电压,如系间歇电弧接地,一般过电压值可达3.0,个别情况下可达3.5,变压器有遭受损害的可能性。 2. 中性点不装设放电间隙。对于中性点不装设放电间隙的变压器,零序保护应首先切除中性点不接地变压器。此时,可能有两种不同的运行方式:一是任一组母线上至少有一台中性点接地变压器,二是一组母线上只有中性点不接地变压器。对这两种运行方式,保护方

低压侧零序电流保护

低压侧中性线零序电流保护使用商榷 低压接地故障保护的设置应能防止人身间接电击以及电气火灾、电气设备损坏、线路损坏等事故。低压侧中性点直接接地的变压器,低压侧单相接地短路应选择下列保护方式,保护装置应带时限动作于跳闸。 一、用高压侧的过电流保护: 高压侧过电流保护灵敏性符合要求时,对低压侧单相接地短路的保护作用。用于校验高压侧过电流保护灵敏性的低压侧短路电流,仅取变压器低压侧母线上的短路电流,也就仅能可靠地保护到变压器低压侧母线。距离变压器再远的低压侧,短路电流小至灵敏性不符合要求时,该处及以远线路处的接地故障就保护不到。高压侧的过电流保护,对低压侧接地短路的保护范围是有限的,并不能保护全低压系统。 二、低压侧中性线上的零序电流保护: 变压器低压侧中性线上所设置的零序电流保护的一次动作电流,应躲过正常运行时,变压器中性线上流过的最大不平衡电流。按国家标准 GB1094-1-5《电力变压器》规定:应不超过变压器额定电流的25%。变压器低压侧低压配电回路一般较多,变压器低压侧中性线上的零序电流保护的一次动作电流整定值大,灵敏度低保护范围小;整定电流值小,灵敏度

高保护范围大。零序保护的一次动作电流整定值大,如仅保护低压母线,则与高压侧的过电流保护重复;整定电流小,保护可深入到个别配电线路不长回路的末端,但也未必能保护到截面远距离回路末端,也不能保证保护全低压系统;不论整定电流大小,选择性很差。低压系统中,只要有一回路的接地故障,变压器零序保护动作,使该变压器全部低压系统停电,扩大了停电范围,各回路全部停电,故障发生在哪一回路,一时难以确定,故障点查找困难,排除故障时间长。从保护分工的角度要求,各保护应对其后的设备、线路起保护作用,保护上下级的整定值、动作时限达到协调配合,才能达到保护可靠、有选择、速动的要求。有一些地区,中性点直接接地的变压器,变压器中性点引出两条母线,一条母线同相母线一同设至变压器低压总断路器,在低压屏底部接地并分设N母线和PE母线;另一条母线在变压器下就近直接接地,这样使单相接地故障电流将通过两条母线回流至变压器中性点,套在变压器中性线上的零序电流互感器中,未流过全部故障电流,零序电流互感器测得的故障电流不准确,保护动作也不可靠。中性点直接接地的变压器中性点不应直接就近接地,应同相母线一同敷设至变压器低压屏底接地。 三、低压侧断路器的三相电流保护: 在变压器低压侧设有各级低压断路器,变压器低压侧的总断路器,一般均选用较先进的带智能控制器的框架式断路器,智能控制器有过载长延时、短路短延时、短路瞬时、接地故障保护功能。低压各配电出线回路还设有分回路断路器,大容量配电回路也会选用带智能控制器的框架式断路

变压器零序保护

变压器零序保护 变压器零序保护适用于110kV及以上电压等级的变压器。主变压器零序保护由零序电流、零序电压、间隙零序电流元件构成。根据变压器中性点接地方式的不同,设置不同的保护形式。 1.变压器中性点直接接地时的保护 变电站单台或并列运行的变压器中性点接地运行时,其接地保护一般采用零序电流保护,可从变压器中性点处零序电流互感器上取得零序电流。正常情况下,零序电流互感器中没有电流,当发生接地短路时,有零序电流通过,使零序保护动作。一般零序电流保护方式由两段构成。 2.中性点可接地也可不接地运行的变压器零序保护 为了限制短路电流并保证系统中零序电流的大小和分布不受系统运行方式变化的影响,变电站中通常只有部分变压器的中性点接地。变压器中性点不接地的运行方式有时根据需要也可以切换为中性点接地运行方式。 (1)全绝缘变压器。全绝缘变压器除了装设零序电流保护作为变压器中性点直接接地运行时的保护外,还应增设零序电压保护,作为变压器中性点不接地运行时的保护。 (2)中性点设有放电间隙的分级绝缘变压器。中性点设有放电间隙的分级绝缘变压器,除了装设零序电流保护作为变压器中性点直接接地运行的保护外,还应增设零序电流电压保护,作为变压器中性点不接地运行时的保护。 变压器中性点接地运行时,零序电流保护投入;变压器中性点如不接地运行,当电网发生单相接地故障且失去中性点时,中性点不接地的变压器中性点将出现零序电压,放电间隙击穿,间隙零序电流启动,跳开变压器,将事故切除,避免间隙放电时间过长。如果万一放电间隙拒动,则零序电压启动将变压器切除。 (3)中性点不设放电间隙的分级绝缘变压器。对中性点不设放电间隙的分级绝缘变压器,其中性点绝缘水平较低。为了防止中性点绝缘在工频过电压作用下损坏,当发生接地故障时,应采用零序电压保护先断开中性点不接地的变压器,后采用零序电流保护断开中性点接地的变压器。

三段式零序电流保护(精)

实习(实训报告 实习(实训名称:电力系统继电保护课程设计学院: 专业、班级: 指导教师: 报告人: 学号: 时间: 2017年 1月 5日 目录 1设计题 目 ...............................................................................................................................3 2分

析设计要求 (4) 2.1设计规定 (5) 2.2本线路保护 计 .......................................................................................................................6 2.3 系统等效电路图.............................................................................. . (7) 3三段式零序电流保护整定计 算 ............................................................................................8 3.1 三段式零序电流保护中的原则 ...........................................................................................9 3.2 M侧保护 1零序电流保护Ⅰ段整定 (10) 3.3 N侧保护 1零序电流保护Ⅰ段整 定 (11) 4 零序电流保护评 价 ..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13 4.2零序电流保护的优缺点………………………………………………………………… ..13 5 总 结 (1) 4 参考文 献 .......................................................................................................................................... 15 1设计题目 如图 1所示为双电源网络中,已知线路的阻抗km X /4. 01Ω=, km X /4. 10Ω=,两侧系统等值电源的参数:

主变压器中性点零序过流

、间隙过流和零序过压,是保护设备本身引出线上的接地短路故障的,一般是作为变压器高压侧110--220千伏系统接地故障的后备保护.零序电流保护,是变压器中性点接地运行时的零序保护;而零序电压保护是变压器中性点不接地运行时的零序保护;间隙过流则是用于变压器中性点经放电间隙接地的运行方式中. 零序过流保护,一次启动电流很小,一般在100安左右,时间约 0.2秒.零序过压保 护,按经验整定为二倍额定相电压115,为躲过单相接地的暂态过压,时间通常整定为0.1-- 0.2秒.变压器220KV侧中性点放电间隙的长度,一般为325毫米,击穿电压的有效值为 127.3千伏,当中性点的电压超过击穿电压时,间隙被击穿,零序电流通过中性点,保护时间整定为 0.2秒.在发生单相接地故障时,接在电流互感器上的单相接地电流继电器和零序电压继电器动作,启动时间继电器,时间继电器以整定的时限,通过信号继电器,发出信号和断开接地变压器各侧断路器 110kV线路接地故障时,电源侧为直接接地系统,对侧主变中性点不接地,此时,主变中性点会产生多高电压,主变间隙零序与对侧线路保护如何配合?望高人指点!!! 主变间隙零序与对侧线路保护不需配合,因不是同一系统。主变间隙零序电压一般整定180V, 0.5S. 主变间隙零序电压一般整定110KV系统150V, 0.5S.220KV系统180V,

0.5S. 中性点不接地的主变单相接地中性点理论上产生100V零序电压 中性点直接接地的主变单相接地中性点理论上产生300V零序电压 主变中性点电压在主变非接地时为300V左右,接地时为173左右,反映中性点非直接接地的间隙零序电压所以设定为180V,考虑到雷击过电压、操作过电压等情况,设定时间为 0.5S。 最近我也研究了变压器的间隙保护: 1.从零序序网图可以分析,尽管你提到的变压器中性点不接地,但它仍然处在一个接地系统中(其上级变压器110kV侧接地),所以当线路系统发生基地故障时,本变压器零序电压(PT开口三角电压)是100V。为了防止系统感应过电压、雷击过电压等的误动作,所以整定为150V(对于220kV变压器为 180V); 2.对于时间定值,我建议你与上一级线路的接地距离II段、零序过流II段等伸入变压器的线路保护段配合,这样可以防止当由于雷击等原因造成线路保护与间隙保护同时动作,即使线路重合成功,由于变压器间隙保护动作将变压器切除,重合闸已经没有意义了。 3.希望小兄弟咱能一起探讨,期待你的信息。 [16楼][继保工人累]于2010-9-22 16:17:07对文章回复如下: 不接地变中性点零序电压一次值应为接地点零序电压,约为110kV // 方向阻抗继电器的最大动作阻抗(幅值)的阻抗角,称为它的最大灵敏角φs 被保护线路发生相间短路时,短路电流与继电器安装处电压间的夹角等于线路的阻抗角ΦL,线路短路时,方向阻抗继电器测量阻抗的阻抗角φm,等于线路

变压器需要配备零序保护的三种情况

变压器需要配备零序保护的三种情况 零序保护分为零序电流保护和零序电压保护,通常会配以继电器或微机保护装置进行电路的保护。正常情况下,三根线的向量和为零,零序电流互感器无零序电流。当人体触电或者其他漏电情况下:三根线的向量和不为零,零序电流互感器有零序电流,一旦达到设定值,则保护动作跳闸。变压器需要配备零序保护的情况一般有三种: 1. 变压器高压侧中性点直接接地运行 对变压器高压侧中性点直接接地的自耦变压器和三绕组变压器采用零序过电流保护,取自变压器中性点的零序CT安装无方向零序保护,在主变两侧分别装上零序保护,了为满足选择性可增设零序方向元件。方向元件用各断路器侧CT的自产零序电流。主变中性点零序电流互感器的极性接线可以将中性点零序电流保护指向本侧母线或主变侧。采用断路器处的零序电流保护,和一般高中压侧方向指向各自的母线,但当中压侧不无源时,高压侧零序方向可指向主变。指向母线保护的范围以为断路器电流互感器安装处开始,需要与线路零序保护配合。指向主变变压器,需要主变压器另一侧出线的接地保护相配合。采用主变中性点处地零序电流保护,则保护范围比断路器处零序电流保护比要宽一些。小浪底目前运行的主变中性点零序电流保护无方向,这样的整定配合比较清晰方便,一是限制跳开母联断路器,二是限制跳开本侧开关。 2. 多台变压器同时运行,只需要1-2台接地运行 若不止一台变压器时,运行方式往往只允许1-2台接地运行,设计采用中性点零序电流继电器与经相邻变压器中性点零序电流继电器控制的零序电压继电器配合使用的变压器保护方案,保护回路设计先跳中性点不接地变压器,然后中性点跳直接接地的变压器,以防止不接地系统故障点的间歇性弧光过电压危及电气设备的安全。为避免全厂所有变压器全部被切的严重后果,保护时间应逐级配合,先断开母联或分断路器,再经零序电压元件跳开中心点不接地主变,最后经零序电流元件跳开中性点接地主变。 3. 变压器中点有可能接地运行 对中性点有可能直接接地运行,也有可能不接地运行的主变,因失去接地中性点引起的电压升高,应装设相应的保护装置。在直接接地时用零序电流保护。在中性点不接地时用零序电压保护或装设放电间隙保护,放到间隙保护起到过电压保护的作用,当放电间隙被击穿形成零序电流通路时,利用接在放电间隙回路的零序电流保护,切除该变压器。变压器采用放电间隙保护,放电间隙装于变压器中性点与地线之间、有棒形、球形、角形等多种形式,实际安装中可以棒形用得最多,零序电压保护动作电压按发生单相接地故障时保护安装处可能出现最大零序电压整定。

(完整版)主变零序保护的知识

主变零序保护的知识 1 概述 变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。本文就变压器的零序电流保护的一些特点进行介绍。 2 零序电流互感器安装位置对保护的影响 零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生, 本文不做讨论)。下面按故障点的不同展开如下分析(见图1): 由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。 3 变压器中性点电流互感器极性试验 一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

零序电流保护课程设计

零序电流保护课程设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

电力系统继电保护课程设计 指导教师: XXXX 兰州交通大学自动化与电气工程学院 2012 年7 月 7日

1 设计原始资料 具体题目 系统接线图如下图,发电机以发电机-变压器组方式接入系统,开机方式为两侧各开1台机,变压器T6 1台运行。参数为: φ115/E = 1.G3 2.G35,X X ==Ω 1.G1 2.G15,X X ==Ω 1.T1 1.T45,X X ==Ω 0.T10.T415,X X ==Ω 1.T615,X =Ω 0.T620,X =Ω A-B 50(138%)km L =?+B-C 40km,L =线路阻 抗120.4/km,Z Z ==Ω 0 1.2/km,Z =Ω I rel 1.2,K =II rel 1.15K =。 系统接线图 试对1、2进行零序保护的设计。 要完成的内容 ⑴ 请画出所有元件全运行时三序等值网络图,并标注参数; ⑵ 分别求出1、2零序Ⅰ、Ⅱ、Ⅲ段的定值,并校验灵敏度; ⑶ 保护1、2零序Ⅰ、Ⅱ是否需要方向元件。 2 分析要设计的课题内容(保护方式的确定) 设计规程 继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求,110~220kV 有效接地电力网线路,应按下列规定装设反应接地短路和相间短路的保护装置。 ⑴ 对于接地短路: ① 装设带方向和不带方向的阶段式零序电流保护; ② 零序电流保护不能满足要求时,可装设接地距离保护,并应装设一段或两段零序电流保护作为后备保护。 ⑵ 对于相间短路:

①单侧电源单回线路,应装设三相多段式电流或电压保护,如不能满足要求,则应装设距离保护; ②双侧电源线路宜装设阶段式距离保护。 本设计的保护配置 主保护配置 电力系统正常运行时是三相对称的,其零序、负序电流值理论上是零。多数的短路故障是不对称的,其零、负序电流电压会很大,利用故障的不对称性可以找到正常与故障的区别,并且这种差别是零与很大值得比较,差异更为明显。所以零序电流保护被广泛的应用在110kV及以上电压等级的电网中。 后备保护配置 距离保护是利用短路发生时电压、电流同时变化的特征,测量电压与电流的比值,该比值反应故障点到保护安装处的距离,如果短路点距离小于整定值,则保护装置动作。 在保护1、2、3和4处配备三段式距离保护,选用接地距离保护接线方式和相间距离保护接线方式。 3 短路电流及残压计算 等效电路的建立 将本题中的系统简化成三序电压等值网络,即正序网络如图1所示;负序网络如图2所示;零序网络,图3所示。

变压器零序电流保护的应用

变压器零序电流保护的应用 1概述 变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。本文就变压器的零序电流保护的一些特点进行介绍。 2零序电流互感器安装位置对保护的影响 零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。下面按故障点的不同展开如下分析(见图1): 由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序

电流保护只能对变压器高压侧与低压侧故障进行区分。如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。 3变压器中性点电流互感器极性试验 一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

零序电流保护课程设计

电力系统继电保护课程设计 专业:电气工程及其自动化 班级:电气 XXX 姓名: XXXX 学号: XXXXXXXXX 指导教师: XXXX 兰州交通大学自动化与电气工程学院 2012 年7 月 7日

1 设计原始资料 1.1 具体题目 系统接线图如下图,发电机以发电机-变压器组方式接入系统,开机方式为两侧各开1台机,变压器T6 1台运行。参数为: φ115/E = 1.G3 2.G35,X X ==Ω 1.G1 2.G15,X X ==Ω 1.T1 1.T45, X X ==Ω 0.T10.T415,X X ==Ω 1.T615,X =Ω 0.T620,X =Ω A-B 50(138%)km L =?+B-C 40km,L =线路 阻抗120.4/km,Z Z ==Ω 0 1.2/km,Z =Ω I rel 1.2,K =II rel 1.15K =。 系统接线图 试对1、2进行零序保护的设计。 1.2 要完成的内容 ⑴ 请画出所有元件全运行时三序等值网络图,并标注参数; ⑵ 分别求出1、2零序Ⅰ、Ⅱ、Ⅲ段的定值,并校验灵敏度; ⑶ 保护1、2零序Ⅰ、Ⅱ是否需要方向元件。 2 分析要设计的课题内容(保护方式的确定) 2.1 设计规程 继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求,110~220kV 有效接地电力网线路,应按下列规定装设反应接地短路和相间短路的保护装置。 ⑴ 对于接地短路: ① 装设带方向和不带方向的阶段式零序电流保护; ② 零序电流保护不能满足要求时,可装设接地距离保护,并应装设一段或两段零序电流保护作为后备保护。 ⑵ 对于相间短路:

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

三段式电流保护和零序电流保护习题

三段式电流保护和零序电流保护习题 一、 简答题 1. 继电保护的基本任务和基本要求是什么,分别简述其内容。 2. 后备保护的作用是什么,何谓近后备保护和远后备保护。 3. 说明电流速断、限时电流速断联合工作时,依靠什么环节保证动作的选择性,依靠什么环节保证保护动作的灵敏性和速动性。 4. 功率方向继电器90度接线方式的主要优点。 5. 中性点不接地电网发生单相接地时有哪些特征。 6. 简述零序电流方向保护在接地保护中的作用。 二、计算题 1.如下图所示35kV 电网,图中阻抗是按37kV 归算的有名值,AB 线最大负荷9MW ,cos 0.9?=,自启动系数 1.3ss K =。各段保护可靠系数均取1.2(与变压器配合时取1.3),电流继电器返回系数为0.9,变压器负荷各自保护的动作时间为1s 。计算AB 线三段电流保护的整定值,并校验灵敏系数。 ~ S A B 6.39.4Ω Ω C 10Ω 30Ω 30Ω 12Ω 1 T 2 T D E 2. 如图所示35kV 单侧电源放射状网络,确定线路AB 的保护方案。变电所B 、C 中变压器连接组别为Y,d11,且在变压器上装设差动保护,线路A 、B 的最大传输功率为MW P 9max =,功率因数为9.0cos =?,系统中的发电机都装设了自动励磁调节器。自起动系数取1.3。 3. 网络如图所示,已知:线路AB(A 侧)和BC 均装有三段式电流保护, 它们的最大负荷电流分别为120A 和100A ,负荷的自起动系数均为1.8;线路AB 第Ⅱ段保护的延时允许大于1s ;可靠系数2.1,15.1,25.1===I I I I I I rel rel rel K K K ,

相关主题
文本预览
相关文档 最新文档