当前位置:文档之家› 上交版材料科学基础考试资料

上交版材料科学基础考试资料

上交版材料科学基础考试资料
上交版材料科学基础考试资料

《材料科学基础》名词解释

1、晶体

原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相

两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相

亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或

动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数

晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶

冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而

性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)

6、伪共晶

非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由

非共晶成分的合金得到的共晶组织称为伪共晶。

7、交滑移

当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑

移面上去继续滑移,这一过程称为交滑移。

8、过时效

铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9、形变强化

金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变

强化。

10、固溶强化

由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11、弥散强化

许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种

材料的强度往往会增加,称为弥散强化。

12、不全位错

柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错

通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

14、螺型位错

位错线附近的原子按螺旋形排列的位错称为螺型位错。

15、包晶转变

在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。16、共晶转变

由一个液相生成两个不同固相的转变。

17、共析转变

由一种固相分解得到其他两个不同固相的转变。

18、上坡扩散

溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。表明扩散的驱动力是化学位梯

度而非浓度梯度。

19、间隙扩散

这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在

扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。

20、成分过冷

界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。

21、一级相变

凡新旧两相的化学位相等,化学位的一次偏导不相等的相变。

22、二级相变:

从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变等。

23、共格相界

如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两

相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。

24、调幅分解

过饱和固溶体在一定温度下分解成结构相同、成分不同的两个相的过程。

25、回火脆性

淬火钢在回火过程中,一般情况下随回火温度的提高,其塑性、韧性提高,但在特定的

回火温度范围内,反而形成韧性下降的现象称为回火脆性。对于钢铁材料存在第一类和第二类回火脆性。他们的温度范围、影响因素和特征不同。

26、再结晶退火

所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却至室温的过程。

27、回火索氏体

淬火刚在加热到400-600℃温度回火后形成的回火组织,其由等轴状的铁素体和细小的

颗粒状(蠕虫状)渗碳体构成。

28、有序固溶体

当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶

体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

29、非均匀形核

新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。

30、马氏体相变

钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变过程。

31、贝氏体相变

钢在珠光体转变温度以下,马氏体转变温度以上范围内(550℃-230℃)的转变称为贝

氏体转变。

32、铝合金的时效

经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合

金的时效。

33、热弹性马氏体

马氏体相变造成弹性应变,而当外加弹性变性后可以使马氏体相变产生逆转变,这种马

氏体称为热弹性马氏体。或马氏体相变由弹性变性来协调。这种马氏体称为热弹性马氏体。

34、柯肯达尔效应

反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散

速率快的组元一侧移动。

35、热弹性马氏体相变

当马氏体相变的形状变化是通过弹性变形来协调时,称为热弹性马氏体相变。

36、非晶体

原子没有长程的周期排列,无固定的熔点,各向同性等。

37、致密度

晶体结构中原子体积占总体积的百分数。

38、多滑移

当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的

现象。

39、过冷度

相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之

差称过冷度。

40、间隙相

当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构

的相,称为间隙相。

41、全位错

把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。

42、滑移系

晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。

43、离异共晶

共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从

而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。

44、均匀形核

新相晶核是在母相中存在均匀地生长的,即晶核由液相中的一些原子团直接形成,不受

杂质粒子或外表面的影响。

45、刃型位错

晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这

一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。

46、细晶强化

晶粒愈细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高。晶粒细

化导致晶界的增加,位错的滑移受阻,因此提高了材料的强度。

47、双交滑移

如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。

48、单位位错

把柏氏矢量等于单位点阵矢量的位错称为单位位错。

49、反应扩散

伴随有化学反应而形成新相的扩散称为反应扩散。

50、晶界偏聚

由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上

的富集现象。

51、柯氏气团

通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先

提出,又称柯氏气团。

52、形变织构

多晶体形变过程中出现的晶体学取向择优的现象叫形变织构。

53、点阵畸变

在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

54、稳态扩散

在稳态扩散过程中,扩散组元的浓度只随距离变化,而不随时间变化。

55、包析反应

由两个固相反应得到一个固相的过程为包析反应。

56、非共格晶界

当两相在相界处的原子排列相差很大时,即错配度δ很大时形成非共格晶界。同大角度

晶界相似,可看成由原子不规则排列的很薄的过渡层构成。

57、置换固溶体

当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子

置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

58、间隙固溶体

溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

59、二次再结晶

再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。

60、伪共析转变

非平衡转变过程中,处在共析成分点附近的亚共析、过共析合金,转变终了组织全部呈

共析组织形态。

61、肖脱基空位

在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能

克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。

62、弗兰克尔空位

离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间

隙原子。

63、非稳态扩散

扩散组元的浓度不仅随距离x 变化,也随时间变化的扩散称为非稳态扩散。

64、时效

过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程。

65、回复

指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

66、相律

相律给出了平衡状态下体系中存在的相数与组元数及温度、压力之间的关系,可表示为:f=C+P-2,f 为体系的自由度数,C 为体系的组元数,P 为相数。

67、合金

两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特

68、孪晶

孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。

69、相图

描述各相平衡存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹。70、孪生

晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。

71、晶界

晶界是成分结构相同的同种晶粒间的界面。

72、晶胞

在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

73、位错

是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。

74、偏析

合金中化学成分的不均匀性。

75、金属键

自由电子与原子核之间静电作用产生的键合力。

76、固溶体

是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

77、亚晶粒

一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。

78、亚晶界

相邻亚晶粒间的界面称为亚晶界。

79、晶界能

不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。

80、表面能

表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

81、界面能

界面上的原子处在断键状态,具有超额能量。平均在界面单位面积上的超额能量叫界面能。

82、淬透性

淬透性指合金淬成马氏体的能力,主要与临界冷速有关,大小用淬透层深度表示。

83、淬硬性

淬硬性指钢淬火后能达到的最高硬度,主要与钢的含碳量有关。

84、惯习面

固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称为惯习面。

85、索氏体

中温段珠光体转变产物,由片状铁素体渗碳体组成,层片间距较小,片层较薄。

铁碳合金共析转变的产物,是共析铁素体和共析渗碳体的层片状混合物。

87、莱氏体

铁碳相图共晶转变的产物,是共晶奥氏体和共晶渗碳体的机械混合物。

88、柏氏矢量

描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使

位错扫过后晶体相对滑动的量。

89、空间点阵

指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

90、范德华键

由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。

91、位错滑移

在一定应力作用下,位错线沿滑移面移动的位错运动。

92、异质形核

晶核在液态金属中依靠外来物质表面或在温度不均匀处择优形成。

93、结构起伏

液态结构的原子排列为长程无序,短程有序,并且短程有序原子团不是固定不变的,它

是此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏。

94、重心法则

处于三相平衡的合金,其成分点必位于共轭三角形的重心位置。

95、应变时效

第一次拉伸后,再立即进行第二次拉伸,拉伸曲线上不出现屈服阶段。但第一次拉伸后

的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会出现屈服阶段。不过,再次屈服的强度要高于初次屈服的强度。这个试验现象就称为应变时效。

96、枝晶偏析

固溶体在非平衡冷却条件下,匀晶转变后新得的固溶体晶粒内部的成分是不均匀的,先

结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点的组元原子,而通常固溶体晶体以树枝晶方式长大,这样,枝干含高熔点组元较多,枝间含低熔点组元原子多,造成同一晶粒内部成分的不均匀现象。

97、临界变形度

给定温度下金属发生再结晶所需的最小预先冷变形量。

98、电子化合物

电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。

凡具有相同的电子浓度,则相的晶体结构类型相同。

99、同质异构体

化学组成相同由于热力学条件不同而形成的不同晶体结构。

100、再结晶温度

形变金属在一定时间(一般1h)内刚好完成再结晶的最低温度。

101、布拉菲点阵

除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

102、配位多面体

原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子

或离子的配位多面体。

103、施密特因子

亦称取向因子,为cosΦcosλ, Φ为滑移面与外力F 中心轴的夹角,λ为滑移方向与

外力F 的夹角。

104、拓扑密堆相

由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空

间利用率和配位数都很高的复杂结构。由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。

105、间隙化合物

当非金属(X)和金属(M)原子半径的比值rX/rM>0.59 时,形成具有复杂晶体结构的相,通常称为间隙化合物。

106、大角度晶界

多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10o的晶界。107、小角度晶界

相邻亚晶粒之间的位相差小于10o,这种亚晶粒间的晶界称为小角度晶界,一般小于2

o,可分为倾斜晶界、扭转晶界、重合晶界等。

108、临界分切应力

滑移系开动所需的最小分切应力;它是一个定值,与材料本身性质有关,与外力取向无关。

固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

金属键:自由电子与原子核之间静电作用产生的键合力。

离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷

肖脱基缺陷:正负离子空位对的

奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

柏氏矢量物理意义:

①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。部分位错:柏氏矢量小于点阵矢量的位错

包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。

包析反应:由两个固相反应得到一个固相的过程为包析反应。

包析转变:两个一定成分的固相在恒温(T)下转变为一个新的固相的恒温反应。包析转变与包晶转变的相图特征类似,只是包析转变中没有液相,只有固相。

粗糙界面:界面的平衡结构约有一半的原子被固相原子占据而另一半位置空着,这时界面称为微观粗糙界面。

重合位置点阵:当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。由这些原子重合位置所组成的比原来晶体点阵大的新点阵,称为重合位置点阵。

成分过冷;界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。超塑性:某些材料在特定变形条件下呈现的特别大的延伸率。

超结构(超点阵,有序固溶体):对某些成分接近于一定的原子比(如AB或AB3)的无序固溶体中,当它从高温缓冷到某一临界温度以下时,溶质原子会从统计随机分布状态过渡到占有一定位置的规则排列状态,即发生有序化过程,形成有序固溶体。

动态回复:在塑变过程中发生的回复。

动态再结晶:在塑变过程中发生的再结晶。特点:反复形核,有限长大,晶粒较细。包含亚晶粒,位错密度较高,强度硬度高。

点阵畸变:在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

点阵常数:单胞的棱长。

单位位错:把柏氏矢量等于单位点阵矢量的位错称为单位位错。

堆垛层错:实际晶体结构中,密排面的正常堆垛顺序有可能遭到破坏和错排。

大角度晶界:相邻晶粒的位相差大于10o

单晶体:是指在整个晶体内部原子都按照周期性的规则排列。

多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成

多滑移:当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。

多形性:当外界条件(温度和压力)改变时,元素的晶体结构可以发生转变,把这种性质称为多形性。

多边形化:由于位错运动使其由冷塑性变形时的无序状态变为垂直分布,形成亚晶界,这一过程称多边形化。

对称倾斜晶界:晶界两侧晶体互相倾斜晶界的界面对于两个晶粒是对称的,其晶界视为一列平行的刃型位错组成。

电子化合物:电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。凡具有相同的电子浓度,则相的晶体结构类型相同。

电负性:元素获得或吸引电子的相对倾向。

电离势:从孤立的中性原子中去掉一个电子所需的能量。

电子亲合力:孤立的中性负电性原子得到一个电子所释放出的能量。

电子浓度:化合物中每个原子平均所占有的价电子数,用e/a表示。

二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。

二次硬化: 高温回火时回火硬度高于淬火硬度的现象.

非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

范德华键:由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。

范德华力:借助微弱的、瞬时的电偶极矩的感应作用将原来具有稳定的原子结构的原子或分子结合为一体的键合。

弗兰克尔空位:离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子。

非共格晶界:当两相在相界处的原子排列相差很大时,即错配度δ很大时形成非共格晶界。同大角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成。

非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。原因:由于溶质原子与位错相互作用的结果,溶质原子不仅使晶格发生畸变,而且易被吸附在位错附近形成柯氏气团,使位错被钉扎住,位错要脱钉,则必须增加外力,从而使变形抗力提高。

割阶:若由运动的位错线或发生交割形成的曲折线段垂直于位错的滑移面时,则称为割阶。扭折:若由运动的位错线或发生交割形成的曲折线段在位错的滑移面上时,称为扭折。

过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷

过冷:结晶只有在T0以下的实际结晶温度下才能进行,这种现象称为过冷。

过冷度:相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度。

光滑界面:界面的平衡结构应是只有少数几个原子位置被占据,或者极大部分原子位置都被固相原子占据,即界面基本上为完整的平面,这时界面呈光滑界面。

共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。

共析转变:由一种固相分解得到其他两个不同固相的转变。

共析反应:是指在一定温度下,由一定成分的固相同时析出两个成分和结构完全不同的新固相的过程。共析转变也是固态相变

共格相界:如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。

滑移线:材料在屈服时,试样表面出现的线纹称为滑移线。

滑移带:滑移线的集合构成滑移带,滑移带是由更细的滑移线所组成

滑移:在外加切应力的作用下,通过位错中心附近的原子沿柏氏矢量方向在滑移面上不断地作少量的位移而逐步实现的。

位错滑移的特点

1) 刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行;

2) 无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;(伯氏矢量方向代表晶体的滑移方向)

3) 刃型位错引起的晶体的滑移方向与位错运动方向一致,而螺型位错引起的晶体的滑移方向与位错运动方向垂直;

4) 位错滑移的切应力方向与柏氏矢量一致;位错滑移后,滑移面两侧晶体的相对位移与柏

氏矢量一致。

5) 对螺型位错,如果在原滑移面上运动受阻时,有可能转移到与之相交的另一滑移面上继续滑移,这称为交滑移(双交滑移)

滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。

回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

合晶转变是由两个成分不同的液相L1和L2相互作用形成一个固相,即L1 + L2 ? b

混合位错:其滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度,这种位错称为混合位错。

近程有序:在非晶态结构中,原子排列没有规律周期性,原子排列从总体上是无规则的,但是,近邻的原子排列是有一定的规律的这就是“短程有序”。

结构起伏:液态结构的原子排列为长程无序,短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。

晶体结构:晶体中原子(分子或离子)在三维空间的具体排列方式,其类型取决于原子的结合方式,阵点的位置上可以是一个或多个实际质点或者原子团,其种类可以是无限的。

晶格:人为地将阵点用一系列相互平行的直线连接起来形成空间架格。

晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。

晶面:点阵中阵点组成的面,表示原子面。

晶向:点阵中阵点的连线,表示原子列的方向。

晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

晶粒长大:是指再结晶结束后晶粒的长大过程,在晶界界面能的驱动下,新晶粒会发生合并长大,最终达到一个相对稳定的尺寸。

晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

间隙相:当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

间隙化合物:当非金属(X)和金属(M)原子半径的比值rX/rM>0.59 时,形成具有复杂晶体结构的相,106、大角度晶界:多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10o的晶界。

交滑移:当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

界面能:界面上的原子处在断键状态,具有超额能量。平均在界面单位面积上的超额能量叫界面能。

晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。

晶界:晶界是成分结构相同的同种晶粒间的界面。

晶界特性

1)晶粒的长大和晶界的平直化能减少晶界面积和晶界能,在适当的温度下是一个自发的过程;须原子扩散实现

2) 晶界处原子排列不规则,常温下对位错的运动起阻碍作用,宏观上表现出提高强度和硬

度;而高温下晶界由于起粘滞性,易使晶粒间滑动;

3) 晶界处有较多的缺陷,如空穴、位错等,具有较高的动能,原子扩散速度比晶内高;

4) 固态相变时,由于晶界能量高且原子扩散容易,所以新相易在晶界处形核;

5) 由于成分偏析和内吸附现象,晶界容易富集杂质原子,晶界熔点低,加热时易导致晶界先熔化;?过热

6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,晶界腐蚀比晶内腐蚀速率快。

界面:通常包含几个原子层厚的区域,其原子排列及化学成分不同于晶体内部,可视为二维结构分布,也称为晶体的面缺陷。包括:外表面和内界面

外表面:指固体材料与气体或液体的分界面。它与摩擦、吸附、腐蚀、催化、光学、微电子等密切相关。

内界面:分为晶粒界面、亚晶界、孪晶界、层错、相界面等。

晶界能:不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

结晶:物质从液态(溶液或熔融状态)或气态凝出具有一定的几何形状的固体(晶体)的过程。

交联:线型或支链型高分子链间以共价键连接成网状或体形高分子的过程。

交割:当一位错在某一滑移面上运动时,会与穿过滑移面的其他位错交割。

位错交割的特点

1) 运动位错交割后,在位错线上可能产生一个扭折或割阶,其大小和方向取决于另一位错的柏氏矢量,但具有原位错线的柏氏矢量(指扭折或割阶的长度和方向)

2) 所有的割阶都是刃型位错,而扭折可以是刃型也可是螺型的。

3) 扭折与原位错线在同一滑移面上,可随位错线一道运动,几乎不产生阻力,且在线张力的作用下易于消失;

4)割阶与原位错不在同一滑移面上,只能通过攀移运动,所以割阶是位错运动的障碍--- 割阶硬化。

加工硬化:金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为加工硬化。原因:随变形量增加, 位错密度增加,由于位错之间的交互作用(堆积、缠结),使得位错难以继续运动,从而使变形抗力增加;这是最本质的原因。

均匀形核:新相晶核是在母相中存在均匀地生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。

非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。结构起伏:液态结构的原子排列为长程无序,短程有序,并且短程有序原子团不是固定不变的,它是此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏。

空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位。

空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

扩展位错:通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。扩散:热激活的院子通过自身的热震动克服束缚而迁移它处的过程。

自扩散:不依赖于浓度梯度,而仅由热振动而产生的扩散。

互扩散:在置换式固溶体中,两组元互相扩散。

间隙扩散:这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙

中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散。

空位扩散:扩散原子从正常位置跳动到邻近的空位,即通过原子与空位交换位置而实现扩散。每次跳迁须有空位迁移与之配合。

下坡扩散:组元从高浓度区向低浓度区迁移的扩散的过程称为下坡扩散。

上坡扩散:组元从低浓度区向高浓度区迁移的扩散的过程称为上坡扩散。

稳态扩散:扩散组元的浓度只随距离变化,而不随时间变化。

非稳态扩散:扩散组元的浓度不仅随距离x 变化,也随时间变化的扩散称为非稳态扩散。

扩散系数:相当于质量浓度为一时,单位时间内的扩散通量。

互扩散系数:在互扩散当中,用来代替两种原子的方向相反的扩散系数D1、D2。

体扩散:物质在晶体内部的迁移过程。

表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时。

晶界扩散:是指原子沿着晶界渗入晶粒。

扩散退火:生产上常将铸件加热到固相线以下100-200℃长时间保温,以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处理工艺称做扩散退火。

柯肯达尔效应:反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。

柯氏气团:通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团。

螺型位错:位错线附近的原子按螺旋形排列的位错称为螺型位错。

孪晶:孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。

孪生:晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。

物质结晶时,晶体结构位置上的某些离子或原子的位置部分或全部地被介质中性质相近的其他离子活原子所置换,共同结晶成的单相晶体,而不改变晶体结构化和键性,只引起晶胞参数微小变化的现象。

临界晶粒:由于新相形核时单位体积的自由能减少,而新相表面的表面自由能增加,所以新相的晶核必须具有或超过一定临界尺寸r*才能成为稳定的晶核,半径为r*的晶核称为临界晶核。

临界形核功:形成临界晶核所需要的功。

临界分切应力:滑移系开动所需的最小分切应力;它是一个定值,与材料本身性质有关,与外力取向无关。

临界变形度:给定温度下金属发生再结晶所需的最小预先冷变形量。

离异共晶:共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。莱氏体:铁碳相图共晶转变的产物,是共晶奥氏体和共晶渗碳体的机械混合物。

马氏体转变:同成分、不变平面切变类型的固态转变。

弥散强化:许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。原因:由于硬的颗粒不易被切变,因而阻碍了位错的运动,提高了变形抗力。

密勒指数:由晶面指数和晶向指数组成,晶面指数表示晶面的方向,晶向指数表示晶体中点阵方向。

能量最低原理:电子的排布总是尽可能的使体系的能量最低。

能量起伏:是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。

扭折:位错交割形成的曲折线段在位错的滑移面上时,称为扭折。

配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

配位多面体:原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。

偏析:合金中化学成分的不均匀性。

偏晶转变:是一个液相L1分解出一个固相和另一成分的液相L2的转变。有可能产生偏晶转变的二元系往往在液态时两组元只能部分溶解,或几乎不溶解

平衡分配系数k0:平衡凝固时固相的溶质质量分数wS(成分)和液相溶质质量分数wL(成分)之比。

平衡凝固:指凝固过程中的每个阶段都能达到平衡,即在相变过程中有充分的时间进行组元间的扩散。

派-纳力:晶体滑移需克服晶体点阵对位错的阻力,即点阵阻力。

攀移:通过空位或原子的扩散使刃型位错离开原滑移面作上下运动。

平面状:在正温度梯度下,纯晶体凝固时,粗糙界面的晶体其生长形态呈平面状,界面与相面等温而平行树枝晶。

去应力退火:利用回复现象将冷变形金属低温加热,既稳定组织又保留加工硬化,这种热处理方法称去应力退火。

区域熔炼:原始质量浓度为?0,凝固前端部分的溶质浓度不断下降(k0<1),后端部分不断富集,使前端溶质减少而得到提纯,也叫区域提纯。

全位错:把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。

点缺陷:最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。包括空位、间隙原子、杂质、溶质原子等。

线缺陷:在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。主要为位错。

面缺陷:在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。包括晶界、相界、孪晶界、堆垛层错等。

刃型位错:晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。

刃型位错线可以理解为已滑移区和未滑移区的分界线,它不一定是直线。

热加工:在加工变形的同时产生加工硬化和动态回复与再结晶,并且热加工产生的加工硬化很快被回复再结晶产生的软化所抵消,所以热加工体现不出加工硬化现象。

热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷,这是晶体内原子的热运动的内部条件决定的。

熔晶转变:是一个固相转变为另一个固相和一个液相的恒温转变。之所以称为熔晶转变,是因为固相在温度下降时可以部分熔化。

双交滑移:如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。

缩孔:大多数液态金属的密度比固态的小,因此结晶时发生体积收缩。金属收缩后,如果没有液态金属继续补充的话,就会出现收缩孔洞,称之为缩孔

时效:过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程。

施密特因子:亦称取向因子,为cosΦcosλ, Φ为滑移面与外力F 中心轴的夹角,λ为滑移

方向与外力F 的夹角。

树枝晶:树枝晶的基本结构单元也是折叠链片晶,但与球晶不同的是,球晶是在所有半径方向以相同的速度发展,树枝晶则是在特定方向上优先发展,树枝晶中晶片具有规则的外形。树枝状:在负温度梯度下,纯晶体凝固时,处于温度更低的液相中,是凸出的部分的生长速度增大而进一步伸向液体中,这种情况下液-固界面会形成许多伸向液体的分支的生长方式。同质异构体:化学组成相同由于热力学条件不同而形成的不同晶体结构。

相同的化学组成,在不同的热力学条件下却能形成不同的晶体结构,表现出不同的物理、化学性质。我们把同一种化学组成在不同的热力学条件下(温度、压力、pH等),可以结晶成为两种以上不同结构的晶体的现象称为同质多晶(同质多象)。

拓扑密堆相:由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。

调幅分解:过饱和固溶体在一定温度下分解成结构相同、成分不同的两个相的过程。

退火孪晶:由于相变过程中原子重新排列时发生错排而产生的,称退火孪晶

无限固溶体):溶质的固溶度可达100%的固溶体。

无序固溶体):溶质原子在溶剂晶体结构中的分布是任意的、无规则的,不均匀的,这便是无序固溶体的概念。

位错:是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。

位错反应:位错线之间可以合并或分解,称为位错反应。

位错塞积:是指晶体塑性变形时往往在一滑移面上许多位错被迫堆积在某种障碍物前,形成位错群的堆聚。这些位错来自同一位错源,因此具相同的伯格斯矢量。

位错滑移:在一定应力作用下,位错线沿滑移面移动的位错运动。

位错线:晶体的已滑移区与未滑移区的交线。

位错的应变能:位错周围点阵畸变引起的弹性应力场,导致晶体能量的增加,称为位错的应变能或位错的能量。

伪共晶:非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

伪共析转变:非平衡转变过程中,处在共析成分点附近的亚共析、过共析合金,转变终了组织全部呈共析组织形态。

细晶强化:晶粒愈细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高。晶粒细化导致晶界的增加,位错的滑移受阻,因此提高了材料的强度。因为晶粒越细,单位体积内晶粒数目越多,参与变形的晶粒数目也越多,变形越均匀,使在断裂前发生较大的塑性变形。强度和塑性同时增加,金属在断裂前消耗的功也越大,因而其韧性也比较好。

小角度晶界:相邻亚晶粒之间的位相差小于10o,这种亚晶粒间的晶界称为小角度晶界,一般小于2o,可分为倾斜晶界、扭转晶界、重合晶界等。

肖脱基空位:在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。

形变织构:多晶体形变过程中出现的晶体学取向择优的现象叫形变织构。

形变强化:由塑性变形引起的材料强度、硬度升高的现象。

相:是指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。相图:描述各相平衡存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹。相界面:属于不同结构的两相之间的分界面。

相律:相律给出了平衡状态下体系中存在的相数与组元数及温度、压力之间的关系,可表示为:F=C+P-2,F为体系的自由度数,C 为体系的组元数,P 为相数。

线膨胀系数:固体物质的温度每改变1℃时,其长度的变化和它在0℃时长度之比。

匀晶反应:这种从液相中结晶出单一固相的转变称为匀晶转变或匀晶反应。

有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

有限固溶体:在一定的条件下,溶质组元在固溶体中的浓度有一定的限度,超过这个限度就不再溶解了;。这一限度称为溶解度或固溶度,这种固溶体就称为有限固溶体。大部分固溶体都属于有限固溶体。

亚晶粒:一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。

亚晶界:相邻亚晶粒间的界面称为亚晶界。

应变时效:第一次拉伸后,再立即进行第二次拉伸,拉伸曲线上不出现屈服阶段。但第一次拉伸后的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会出现屈服阶段。不过,再次屈服的强度要高于初次屈服的强度。这个试验现象就称为应变时效。异质形核:晶核在液态金属中依靠外来物质表面或在温度不均匀处择优形成。

亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

元素周期律:元素的外层电子结构随着原子序数(核中带正电荷的质子数)的递增而呈周期性的变化规律。

杨氏模量:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为杨氏模量。

原子堆垛因子:在晶体结构中原子占据的体积与可利用的总体积的比率

阵点、结点:构成空间点阵的每个点。

中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

致密度:晶体结构中原子体积占总体积的百分数。

置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)

再结晶温度:形变金属在一定时间(一般1h)内刚好完成再结晶的最低温度。

再结晶退火:所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却至室温的过程。

再结晶的形核率是指单位时间、单位体积内形成的再结晶核心的数目,一般用N表示;晶核一旦形成便会继续长大至相邻晶粒彼此相遇,长大速率用G表示。

再结晶织构:再结晶退火后形成的织构。退火可将形变织构消除,也可形成新织构。

珠光体:铁碳合金共析转变的产物,是共析铁素体和共析渗碳体的层片状混合物。

重心法则:处于三相平衡的合金,其成分点必位于共轭三角形的重心位置。

枝晶偏析:固溶体在非平衡冷却条件下,匀晶转变后新得的固溶体晶粒内部的成分是不均匀的,先结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点的组元原子,而通常固溶体晶体以树枝晶方式长大,这样,枝干含高熔点组元较多,枝间含低熔点组元原子多,造成同一晶粒内部成分的不均匀现象。

正偏析:溶质浓度由锭表面向中心逐渐增加的不均匀分布称为正偏析,它是宏观偏析的一种。这种偏析通过扩散退火也难以消除。

直线法则:在一定温度下三组元材料两相平衡时,材料的成分点和其两个平衡相的成分点必然位于成分三角形内的一条直线上,该规律称为直线法则或三点共线法则

重心法则:成分为R的三元合金在某一温度下,分解成α,β,γ三个相,则R的成分点必定位于△αβγ的重心位置上。

Pauli不相容原理:在一个原子中不可能有运动状态完全相同的两个电子,即不可能有四个量子数都相同的两个原子。

Hund规则:在同一亚层中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。

晶粒的长大:正常长大,异常长大。

正常长大:大多数晶粒几乎同时长大,晶粒长大的驱动力是降低其界面能,晶粒界面的不同曲率是造成界面迁移的直接原因,界面总是向曲率中心的方向移动。

异常长大(不连续晶粒长大、二次再结晶):少数晶粒突发性不均匀长大,使晶粒之间尺寸差别显著增大,直至这些迅速长大的晶粒完全相互接触为止。

塑性变形的方式:主要通过滑移和孪生、还有扭折。

滑移是通过滑移面上的位错的运动来实现的。

孪生与滑移的主要区别

1 孪生通过晶格切变使晶格位向改变,使变形部分与未变形

部分呈镜面对称;而滑移不引起晶格位向改变。

2 孪生时,相邻原子面的相对位移量小于一个原子间距;而滑移时滑移面两侧晶体的相对位移量是原子间距的整数倍。

3 孪生所需要的切应力比滑移大得多,变形速度大得多

回复阶段退火的作用:提高扩散促进位错运动释放内应变能

回复退火产生的结果:电阻率下降硬度、强度下降不多降低内应力

结构起伏与能量起伏是对应的。

粗糙界面长大机制:连续长大,晶体沿界面的法线方向向液相中生长。这种长大方式叫做垂直长大,或连续长大。

1原子间的一次结合键共有几种?各自的特点如何?

(1)金属键:绝大多数金属,基本特点是电子的共有化。

(2)离子键:大多数盐类、碱类和金属化合物,基本特点是离子为结合单位。

(3)共价键:亚金属、聚合物和无机非金属,主要特点是共用电子对。

2比较说明间隙固溶体、间隙化合物

间隙固溶体:于溶剂晶格间隙而形成的固溶体成为间隙固溶体。当溶质原子半径很小,使溶质与溶剂的原子半径差Δr > 41%时可形成间隙固溶体,通常引起晶格畸变,为有限固溶体;同纯金属相比,会产生固溶强化;导致物理、化学性能的变化。

间隙化合物:非金属元素和金属元素的原子半径比值大于0.59时,形成具有复杂晶体结构的相称为间隙化合物。如Fe3C、Cr7C3,Fe3W3C等。间隙化合物中原子间结合建为共价键和金属键,其熔点和硬度均较高(但不如间隙相)。

3分析纯金属生长形态与温度梯度的关系

纯金属生长形态是指晶体宏观长大时界面的形貌。界面形貌取决于前沿液体中的温度分布。(1)平面状长大:当液体具有正温度梯度时,晶体以平直界面方式推移长大。

(2)树枝状长大:当液体具有负温度梯度时,晶体以枝晶方式长大。

4铁素体与奥氏体的根本区别在于晶体结构不同,前者为BCC,后者为FCC。

5回复和再结晶过程中材料性能的变化

强度与硬度:回复时变化小,再结晶时明显减小

电阻:回复时明显下降

内应力:回复时宏观消失,再结晶时微观再消失

亚晶粒尺寸:回复时前期小后期大

6什么叫临界晶核半径?它的物理意义?

答案: 临界晶核半径是指ΔG为最大值时的晶核半径。

r0,晶核不能自动形成。

r>rc 时,ΔGv占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。

7比较刃型位错和螺型位错的异同。为什么只有螺位错可以发生交滑移而刃位错却不能?

答案: (1)相同:线缺陷、应力场、畸变能;

不同:位错线与柏氏矢量的相对位向、应力场的性质、运动方式。

(2)螺位错的柏氏矢量与位错线平行,因此包含位错线的所有晶面都可以是螺位错的滑移面,因此当螺位错滑移受阻时,他可以在另外一个晶面上进行滑移。

而刃位错的柏氏矢量与位错线垂直,他的滑移面就只有由位错线和柏氏矢量构成的平面,所以他只能在这个面上滑移,故不能发生交滑移。

8原子扩散的驱动力是浓度梯度

9.晶体材料在力的作用下,主要表现为: 线弹性变形、非线弹性变形、均匀塑性变形、非均匀塑性变形、断裂五个过程。

10.菲克第一定律描述了稳态扩散的特征,即浓度不随时间变化

11马氏体是C在α-Fe中的过饱和间隙式固溶体。具有体心立方点阵。马氏体相变属于位移型无扩散相变。

12固态相变按热力学可分为一级相变、二级相变,按原子迁移方式可分为扩散型、切变型,按相变方式可分为有核相变、无核相变。

13在点阵中选取晶胞的原则有哪些?反映对称性;相等的棱和角最多;直角最多;体积最小。

14简述柏氏矢量的物理意义与应用。代表位错;判断位错类型;表示晶体滑移的方向与大小;守+恒性及其推论。

15二元相图中有哪些几何规律?相区接触法则;三相区是一条水平线…;三相区中间是由它们中相同的相组成的两相区;单相区边界线的延长线进入相邻的两相区。

16材料结晶的必要条件有哪些?过冷;结构起伏;能量起伏;成分起伏(合金)。

17细化材料铸态晶粒的措施有哪些?提高过冷度;变质处理;振动与搅拌。

18简述共晶系合金的不平衡冷却组织及其形成条件。

(1) 伪共晶-非共晶合金得到的完全共晶组织; 条件: 冷却速度快, 合金成分位于共晶点附件.(2) 不平衡共晶-共晶线以外的合金得到的共晶组织; 条件: 冷却速度快, 合金成分位于共晶线以外端点附近..(3) 离异共晶-两相分离的共晶组织; 条件: 不平衡条件下, 合金成分位于共晶线以外端点附近;平衡条件下, 合金成分位于共晶线以内端点附近.

19晶体中的滑移系与其塑性有何关系?(1) 一般滑移系越多,塑性越好;(2) 与滑移面密排程度和滑移方向个数有关;(3) 与同时开动的滑移系数目有关.

20马氏体高强度高硬度的主要原因是什么?固溶强化; 细晶强化; 相变强化.

21哪一种晶体缺陷是热力学平衡的缺陷,为什么?点缺陷. 因为在一定浓度点缺陷存在的情况下晶体的能力可达到最低状态.

Q试论材料强化的主要方法及其原理。

固溶强化. 原理:晶格畸变、柯氏气团,阻碍位错运动;方法:固溶处理、淬火等。

细晶强化:原理:晶界对位错滑移的阻碍作用。方法:变质处理、退火等。

弥散强化:原理:第二相离子对位错的阻碍作用;方法:形成第二硬质相如球化退火、变质处理等。

相变强化:原理:新相为高强相或新相对位错的阻碍。方法:淬火等。

加工硬化;原理:形成高密度位错等。方法:冷变形等。

1柏氏矢量的确定方法,如何利用柏氏矢量和位错线来判断位错的类型?

答:首先在位错线周围作一逆时针回路,然后在无位错的晶格内作同样的回路,该回路必不闭合,连接终点与起点即为柏氏矢量. 位错线与柏氏矢量垂直的是刃型位错,平行的是螺型位错. 2简要说明成分过冷的形成及其对固溶体组织形态的影响。

答: 固溶体凝固时,由于溶质原子在界面前沿液相中的分布发生变化而形成的过冷.

3为什么晶粒细化既能提高强度,也能改善塑性和韧性?

答: 晶粒细化减小晶粒尺寸,增加界面面积,而晶界阻碍位错运动,提高强度; 晶粒数量增加,塑性变形分布更为均匀,塑性提高; 晶界多阻碍裂纹扩展,改善韧性.

4共析钢的奥氏体化有几个主要过程?合金元素对奥氏体化过程有什么影响?

共析钢奥氏体化有4个主要过程: 奥氏体形成、渗碳体溶解、奥氏体均匀化、晶粒长大。合金元素的主要影响通过碳的扩散体现,碳化物形成元素阻碍碳的扩散,降低奥氏体形成、渗碳体溶解、奥氏体均匀化速度。

5提高钢材耐蚀性的主要方法有哪些?为什么说Cr是不锈钢中最重要的合金元素?答:提高钢材耐蚀性的主要方法有:在表面形成致密氧化膜、提高基体电极电位、形成单相组织。Cr可形成表面致密氧化膜Cr2O3,可提高电极电位,可形成单相铁素体。

中南大学考试试卷答案

2001 —— 2002 学年第二学期时间 110 分钟

材料科学与工程课程 64 学时 4 学分考试形式:闭卷

专业年级材料 1999 级总分 100 分,占总评成绩 70%

一、名词解释(5分×8)

1、金属玻璃

2、金属间化合物

3、离异共晶

4、晶界偏聚

5、科垂尔气团(Cottrell Atmosphere)

6、孪生

7、反应扩散

8、变形织构

参考答案:

1.金属玻璃:指金属从液态凝固后其结构与液态金属相同的固体;

2.金属间化合物:金属与金属、金属与某些非金属之间形成的化合物,结构与组成金属间化合物的纯金属不同,一一般具有熔点高、硬度高、脆性大的特点。

3.离异共晶:有共晶反应的合金中,如果成分离共晶点较远,由于初晶数量多,共晶数量很少,共晶中与初晶相同的相依附初晶长大,共晶中另外一个相呈现单独分布,使得共晶组织失去其特有组织特征的现象;

4.晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象;

5.科垂尔气团:溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产生固溶强化效应等结果;

6.孪生:是晶体塑性变形的一种重要方式,晶体在切应力作用下,晶体的一部分沿着一定的晶面和晶向相对于另一部分晶体作均匀切变,使得相邻部分晶体取向不同,并以切变晶面(挛晶面)成镜面对称;

7.反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散,如从金属表面向内部渗入金属时,渗入元素浓度超过溶解度出现新相;

8.变形织构:经过塑性变形后原来多晶体中位向不同的晶粒变成取向基本一致,形成晶粒的择优取向,择优取向后的晶体结构为织构,若织构是在塑性变形中产生的,称为变形织构。

二、问答题

1、(10分)标出hcp 晶胞中晶面ABCDEF 面、ABO 面的晶面指数, OC 方向、OC 方向的晶向指数。这些晶面与晶向中,那些可构成滑移系?指出最容易产生滑移的滑移系。

参考答案: ABCDEF 面的晶面指数为(0001)或(001);O AB '面的晶面指数为)1110(; OC 方向的晶向指数为]0121[或[010];C O '方向的晶向指数为]3121[或[011];(0001)与]0121[、)1110(与]0121[可构成滑移系;其中滑移系(0001)]0121[容易产生滑移。

2、(10分)判断]1101[6]121[6]112[6a a a →+位错反应在面心立方晶体中能否进行?若两个扩展位错的领先位错发生上述反应,会对面心立方金属性能有何影响。

参考答案:

参照几何条件和能量条件要求,位错反应可以进行;反应后位错不可动,影响晶体的加工硬化机制和断裂性能。

3、(10分)写出非稳态扩散方程的表达式,说明影响方程中扩散系数的主要因素。 参考答案:

非稳态扩散方程的表达式为x x c D t C ????=??)(,若扩散系数D 不随浓度变化,则可以简化为

22x c D t C ??=??;影响方程中扩散系数的主要因素有温度、晶体结构、晶体缺陷、固溶体类型、扩散元素性质、扩散组元浓度等。

4、(10分)指出影响冷变形后金属再结晶温度的主要因素。要获得尺寸细小的再结晶晶粒,有那些主要措施,为什么?

参考答案:

影响冷变形后金属再结晶温度的主要因素有:变形程度、微量杂质和合金元素、金属晶粒度、加热时间、加热速度;要获得尺寸细小的再结晶晶粒主要措施有:加大冷变形程度,加入微量合金元素,提高加热速度、采用细晶粒金属。

5、(15分)试述针对工业纯铝、Al -5%Cu 合金、Al -5%Al2O3复合材料分别可能采用那些主要的强化机制来进行强化。

参考答案:

对工业纯铝主要的强化机制为加工硬化、细晶强化;Al -5%Cu 合金的强化机制为固溶强化、沉淀强化、加工硬化、细晶强化;Al -5%Al2O3复合材料的强化机制为加工硬化、细晶强化、弥散强化。

6、(15分)请在如下Pb -Bi -Sn 相图中

(1) 写出三相平衡和四相平衡反应式;

(2) 标出成分为5%Pb ,65%Bi 与30%Sn 合金所在位置,写出该合金凝固结晶过程,画

出并说明其在室温下的组织示意图。

参考答案:

(1) 三相平衡反应式:E 2E 线:L →Bi +Sn ;E 1E 线:L →Bi +Pb ;E 点为四相平衡,其反应式为L →Bi +Sn +Pb 。

(2) 合金所在位置(略);该合金凝固过程为:析出初晶L →Bi ,剩余液相析出二元共晶,L →Bi +Sn ,再从多余液相中析出三元共晶L →Bi +Sn +Pb ;室温下的组织为Bi 初晶+(Bi +Sn )二元共晶+(Bi +Sn +Pb )三元共晶,室温下的组织示意图(略)。

7、(20分)Cu -Sn 合金相图如图所示。

(1) 写出相图中三条水平线的反应式,并画出T1温度下的成分-自由能曲线示意图;

(2) 说明Cu -10wt %Sn 合金平衡和非平衡凝固过程,分别画出室温下组织示意图;

(3) 非平衡凝固对Cu -5wt %Sn 合金的组织性能有何影响,如何消除?

材料科学基础期末考试历届考试试题复习资料

四川理工学院试卷(2009至2010学年第1学期) 课程名称:材料科学基础 命题教师:罗宏 适用班级:2007级材料科学与工程及高分子材料专业 考试(考查) 年 月 日 共 页 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试题答案及评分标准 得分 评阅教师 一、判断题:(10分,每题1分,正确的记错误的记“%” 1?因为晶体的排列是长程有序的,所以其物理性质是各向同性。 (% 2. 刃型位错线与滑移方向垂直。(话 3. 莱氏体是奥氏体和渗碳体的片层状混合物。(X ) 4?异类原子占据空位称为置换原子,不会引起晶格畸变。 (X 5. 电子化合物以金属键为主故有明显的金属特性。 (话 6. 冷拉后的钢条的硬度会增加。(话 7. 匀晶系是指二组元在液态、固态能完全互溶的系统。 (话 题号 -一- -二二 三 四 五 六 七 八 总分 评阅(统分”教师 得分 :题 * 冷 =要 密;

8.根据菲克定律,扩散驱动力是浓度梯度,因此扩散总是向浓度低的方向进行。(X

9. 细晶强化本质是晶粒越细,晶界越多,位错的塞积越严重,材料的强度也就 越高。(V ) 10. 体心立方的金属的致密度为 0.68。(V ) 、单一选择题:(10分,每空1分) (B) L+B — C+B (C ) L —A+B (D ) A+B^L 7. 对于冷变形小 的金属,再结晶核心形成的形核方式一般是( A ) (A ) 凸出形核亚 ( B )晶直接形核长大形核 (B ) 亚晶合并形核 (D )其他方式 8. 用圆形钢饼加工齿轮,下述哪种方法更为理想? ( C ) (A )由钢板切出圆饼(B )由合适的圆钢棒切下圆饼 (C ) 由较细的钢棒热镦成饼 (D )铸造成形的圆饼 1. 体心立方结构每个晶胞有(B ) 个原子。 2. 3. (A) 3 ( B) 2 (C) 6 固溶体的不平衡凝固可能造成 (A )晶内偏析 (C )集中缩孔 属于<100>晶向族的晶向是( (A) [011] (B) [110] (D) 1 (B) (D) (C) 晶间偏析 缩松 [001] (D) [101] 4.以下哪个工艺不是原子扩散理论的具体应用 (A )渗氮 (B )渗碳 (C )硅晶片掺杂 () (D )提拉单晶5.影响铸锭性能主要晶粒区是(C ) (A )表面细晶粒区 (B )中心等轴(C )柱状晶粒区 三个区影 响相同 6 ?属于包晶反应的是(A ) ( L 表示液相, A 、B 表示固相) (A) L+A — B

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

《材料科学基础》期末考试试卷及参考答案,2019年6月

第1页(共11页) ########2018-2019学年第二学期 ########专业####级《材料科学基础》期末考试试卷 (后附参考答案及评分标准) 考试时间:120分钟 考试日期:2019年6月 题 号 一 二 三 四 五 六 总 分 得 分 评卷人 复查人 一、单项选择题(请将正确答案填入表中相应题号处,本题13小题,每小题2分,共26分) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 答案 1. 在形核-生长机制的液-固相变过程中,其形核过程有非均匀形核和均匀形核之分,其形核势垒有如下关系( )。 A. 非均匀形核势垒 ≤ 均匀形核势垒 B. 非均匀形核势垒 ≥ 均匀形核势垒 C. 非均匀形核势垒 = 均匀形核势垒 D. 视具体情况而定,以上都有可能 2. 按热力学方法分类,相变可以分为一级相变和二级相变,一级相变是在相变时两相自由焓相等,其一阶偏导数不相等,因此一级相变( )。 A. 有相变潜热改变,无体积改变 B. 有相变潜热改变,并伴随有体积改变 C. 无相变潜热改变,但伴随有体积改变 D. 无相变潜热改变,无体积改变 得分 专业 年级 姓名 学号 装订线

3. 以下不是材料变形的是()。 A. 弹性变形 B. 塑性变形 C. 粘性变形 D. 刚性变形 4. 在固溶度限度以内,固溶体是几相?() A. 2 B. 3 C. 1 D. 4 5. 下列不属于点缺陷的主要类型是()。 A. 肖特基缺陷 B. 弗伦克尔缺陷 C. 螺位错 D. 色心 6. 由熔融态向玻璃态转变的过程是()的过程。 A. 可逆与突变 B. 不可逆与渐变 C. 可逆与渐变 D. 不可逆与突变 7. 下列说法错误的是()。 A. 晶界上原子与晶体内部的原子是不同的 B. 晶界上原子的堆积较晶体内部疏松 C. 晶界是原子、空位快速扩散的主要通道 D. 晶界易受腐蚀 8. 表面微裂纹是由于晶体缺陷或外力作用而产生,微裂纹同样会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要,微裂纹长度,断裂强度。() A. 越长;越低 B. 越长;越高 C. 越短;越低 D. 越长;不变 9. 下列说法正确的是()。 A. 再结晶期间,位错密度下降导致硬度上升 B. 再结晶期间,位错密度下降导致硬度下降 C. 再结晶期间,位错密度上升导致硬度上升 D. 再结晶期间,位错密度上升导致硬度下降 10. 下列材料中最难形成非晶态结构的是()。 A. 陶瓷 B. 金属 C. 玻璃 D. 聚合物 第2页(共11页)

上交材料科学基础习题与解答

各章例题、习题以及解答 第1章原子结构与键合 1.何谓同位素?为什么元素的相对原子质量不总为正整数? 答案:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 2.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? 答案:原子数=个 价电子数=4×原子数=4×2.144×1024=8.576×1024个 a) b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以 3.有一共聚物ABS(A-丙烯腈,B-丁二烯,S-苯乙烯),每一种单体的质量分数均相同,求各单体的摩尔分数。 答案:丙烯腈(-C2H3CN-)单体相对分子质量为53; 丁二烯(-C2H3C2H3-) 单体相对分子质量为54; 苯乙烯(-C2H3C6H5-) 单体相对分子质量为104; 设三者各为1g,则丙烯腈有1/53mol,丁二烯有1/54mol,苯乙烯有1/104mol。 故各单体的摩尔分数为

1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?答案 2. 在多电子的原子中,核外电子的排布应遵循哪些原则?答案 3. 在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答案 4. 何谓同位素?为什么元素的相对原子质量不总为正整数?答案 5. 铬的原子序数为24,它共有四种同位素:4.31%的Cr 原子含有26个中子,83.76%含有28个中子,9.55%含有29个中子,且2.38%含有30个中子。试求铬的相对原子质量。答案 6. 铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu 63和Cu 65,试求两种铜的同位素之含量百分比。答案 7. 锡的原子序数为50,除了4f 亚层之外其它内部电子亚层均已填满。试从原子结构角度来确定锡的价电子数。答案 8. 铂的原子序数为78,它在5d 亚层中只有9个电子,并且在5f 层中没有电子,请问在Pt 的6s 亚层中有几个电子?答案 9. 已知某元素原子序数为32,根据原子的电子结构知识,试指出它属于哪个周期?哪个族?并判断其金属性强弱。答案 10. 原子间的结合键共有几种?各自特点如何?答案 11. 图1-1绘出三类材料—金属、离子晶体和高分子材料之能量与距离关系曲线,试指出它们各代表何种材料。答案 12. 已知Si 的相对原子质量为28.09,若100g 的Si 中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占 价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?答案 13. S 的化学行为有时象6价的元素,而有时却象4价元素。试解释S 这种行为的原因。答案 14. A 和B 元素之间键合中离子特性所占的百分比可近似的用下式表示: [ ] 1001%2 )(25.0?-=--B A x x e IC 这里x A 和x B 分别为A 和B 元素的电负性值。已知Ti 、O 、In 和Sb 的电负性分别为1.5,3.5,1.7和1.9,试计算TiO 2和InSb 的IC%。答案 15. Al 2O 3的密度为3.8g/cm 3,试计算a)1mm 3中存在多少原子?b)1g 中含有多少原子?答案

材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

上交材料科学基础各章例题、习题与及解答

各章例题、习题与及解答 第1章原子结构与键合 1.何谓同位素?为什么元素的相对原子质量不总为正整数? ????答案:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同 位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 ????2.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? ????答案:原子数=个 ????价电子数=4×原子数=4×2.144×1024=8.576×1024个 ????a) ????b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以 ????3.有一共聚物ABS(A-丙烯腈,B-丁二烯,S-苯乙烯),每一种单体的质量分数均相同,求各单体的摩尔分数。 ????答案:丙烯腈(-C2H3CN-)单体相对分子质量为53; ????丁二烯(-C2H3C2H3-) 单体相对分子质量为54; ????苯乙烯(-C2H3C6H5-) 单体相对分子质量为104; ????设三者各为1g,则丙烯腈有1/53mol,丁二烯有1/54mol,苯乙烯有1/104mol。 ????故各单体的摩尔分数为 1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?答案 2.在多电子的原子中,核外电子的排布应遵循哪些原则?答案 3.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什 么区别?性质如何递变?答案 4.何谓同位素?为什么元素的相对原子质量不总为正整数?答案 5.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含有28个中子,9.55% 含有29个中子,且2.38%含有30个中子。试求铬的相对原子质量。答案 6.铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量 百分比。答案

材料科学基础期末考试

《材料科学基础》考试试卷(第一套) 课程号 6706601060 考试时间 120 分钟 一、 名词解释(简短解释,每题2分,共20分) 空间点阵 线缺陷 吸附 渗碳体组织 适用专业年级(方向): 材 料 科 学 与 工 程 专 业 2006 级 考试方式及要求: 闭 卷 考 试

固态相变 稳态扩散 形核率 调幅分解 霍尔-配奇方程 平衡凝固 二、选择题(只有一个正确答案,每题1分,共10分)

1、弯曲表面的附加压力△P 总是( ) 曲面的曲率中心。 A.指向 B.背向 C.平行 D.垂直 2、润湿的过程是体系吉布斯自由能( )的过程。 A.升高 B.降低 C.不变 D.变化无规律 3、一级相变的特点是,相变发生时,两平衡相的( )相等,但其一阶偏微分不相等。 A.熵 B.体积 C.化学势 D.热容 4、固溶体合金的凝固是在变温下完成的,形成于一定温度区间,所以在平衡凝固条件下所得到的固溶体晶粒( ) A.成分内外不均匀 B.不同温度下形成的各晶粒成分是不同的 C.晶粒内外,晶粒形成不分先后,同母液成分是一致的 5、强化金属材料的各种手段,考虑的出发点都在于( ) A.制造无缺陷的晶体或设置位错运动的障碍 B.使位错增殖 C.使位错适当的减少 6、既能提高金属的强度,又能降低其脆性的手段是( ) A.加工硬化 B. 固溶强化 C. 晶粒细化 7、根据显微观察,固液界面有两种形式,即粗糙界面与光滑界面,区分两种界面的依据是值大小( ) A. α<=2为光滑界面 B. α>=1为光滑界面 C. α>=5为光滑界面 8、渗碳处理常常在钢的奥氏体区域进行,这是因为( ) A. 碳在奥氏体中的扩散系数比在铁素体中大 B. 碳在奥氏体中的浓度梯度比在铁素体中大 C. 碳在奥氏体中的扩散激活能比在铁素体中小 9、界面能最低的相界面是( ) A. 共格界面 B. 孪晶界 C. 小角度晶界 10、铁碳合金组织中的三次渗碳体来自于( )

上海交通大学材料科学基础试题真题

2005年上海交通大学材料科学基础考博试卷[回忆版] 材料科学基础: 8选5。每题两问,每问10分,我当10个题说吧,好多我也记不清是那个题下的小问了。 1。填空。你同学应该买那本材料科学基础习题了吧,看好那本此题就没多大问题,因为重复性很强。 2。论述刃位错和螺位错的异同点 3。画晶面和晶向,立方密排六方一定要会,不仅是低指数;三种晶型的一些参数象原子数配位数之类的 4。计算螺位错的应力。那本习题也有类似的,本题连续考了两年,让你同学注意下此题 5。置换固熔体、间隙固熔体的概念,并说明间隙固熔体、间隙相、间隙化合物的区别。那本习题上有答案、 6。扩散系数定义,及对他的影响因素 7。伪共晶定义,还有个相关的什么共晶吧,区分下。根据这概念好像有个类似计算的题,这我没做,不太记得了,总之就是共晶后面有点内容看下 8。关于固熔的题,好像是不同晶型影响固熔程度的题,我就记得当时我画了个铁碳相图举例说明了下还有两个关于高分子的题,我没做也没看是啥题 总之,我觉得复习材科把握课本及习题,习题很重要,有原题,而且我发现交大考试重基础,基本概念要搞清楚,就没问题。 上海交通大学2012年材料科学基础考博试卷[回忆版] 5 个大题,每个大题20分。下面列出的是材料科学基础的前五个大题,其中第一大题有几个想不起来了,暂列9个。 其实后边还有三道大题,一道是关于高分子的,一道是关于配位多面体的,还有最后一个是作为一个材料工作者结合经验谈谈对材料科学特别是对材料强韧化的看法和建议,我都没敢选。

一填空(20分,每空1分) 1 密排六方晶体有()个八面体间隙,()个四面体间隙 2 晶体可能存在的空间群有(230)种,可能存在的点群有(32)种。 3 离子晶体中,正负离子间的平衡距离取决于(),而正离子的配位数则取决于()。(鲍林第一规则) 4 共价晶体的配位数服从()法则。 5 固溶体按溶解度分为有限固溶体和无限固溶体,那么()固溶体永远属于有限固溶体。 6 空位浓度的计算公式:()。 7 菲克第一定律描述的是()扩散过程,菲克第二定律描述的是()扩散过程。 8 原子扩散的动力是(),物质由低浓度区域向高浓度区域的扩散过程称为()。9 一次再结晶的动力是(),而二次再结晶的动力是()。 二在立方晶体和密排六方晶体中画出下列M勒指数的晶面和晶向。(20分,每个2分)各有三个晶面、两个晶向,别的不记得了,就记得一个在密排六方中画[2 2 -4 3]晶向。 三简答 1 写出霍尔佩奇公式,并指出各参数的意义。(8分) 2 说明什么是屈服和应变失效,解释其机理。(12分) 四简答 1 忘了。。。(8分) 2 刃型位错和螺型位错的异同点(12分) 五相图题(20分)这个就是个送分题,Pb-Sn相图,分析w(Sn)%=50%的平衡凝固过程,并用杠杆定律计算室温下α相的含量。(见交大第三版材科第268、270页) 感言:可以看出,上交今年的材科题目比较简单,偏重于基础知识。这次考材科感觉像是上当了,复习的方向完全不对,那么多计算公式一个也没用到,像是一拳打出去扑了个空,而空间群有多少种、共价晶体配位数服从的8—N法则这种基础知识却没看到!所以以后要考的同学们一定要注意,课本要细细看一遍那,太难的题目基本不用做的。

材料科学基础期末试题

几种强化加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。 细晶强化:是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制和绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用和化学交互作用。 几种概念 1、滑移系:一个滑移面和该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带)原因:柯氏气团的存在、破坏和重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。滑移和孪晶的区别 滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1. 相律是在完全平衡状态下,系统的相数、组元数和温度压力之间的关系,是系统的平衡条件的数学表达式:f=C-P+2 2. 二元系相图是表示合金系中合金的相与温度、成分间关系的图解。 3?晶体的空间点阵分属于7大晶系,其中正方晶系点阵常数的特点为a=b M c,a = B =Y =90°,请列举除立方和正方晶系外其他任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4. 合金铸锭的宏观组织包括表层细晶区、柱状晶区和中心等轴晶区三部分。 5.在常温和低温下,金属的塑性变形主要是通过滑移的方式进行的。此外还有孪生和扭

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料 1、名词解释 (1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 (2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称 为共晶转变。 (3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。即HJB---包晶转变线,LB+δH→rJ (4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。 (5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析 (6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。 (7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。 (9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。 (10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线 通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。 (11)加工硬化:随着冷变形程度的增加,金属材料强度和硬 度指标都有所提高,但塑性、韧性有所下降。 (12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。 (13)能量起伏:能量起伏是指体系中每个微小体积所实际具 有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 (14)垂直长大:对于粗糙界面,由于界面上约有一半的原子 位置空着,故液相的原子可以进入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种长大方式为垂直生长。 (15)滑移临界分切应力:晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移

材料科学基础期末试题

几种强化 加工硬化:金属材料在再结晶温度以下塑性变形时强度与硬度升高,而塑性与韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎与纤维化,金属内部产生了残余应力。 细晶强化:就是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。就是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制与绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级就是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用与化学交互作用。 几种概念 1、滑移系:一个滑移面与该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带) 原因:柯氏气团的存在、破坏与重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但就是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。 滑移与孪晶的区别 滑移就是指在切应力的作用下,晶体的一部分沿一定晶面与晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面与晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度就是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1、相律就是在完全平衡状态下,系统的相数、组元数与温度压力之间的关系,就是系统的平衡条件的数学表达式: f=C-P+2 2、二元系相图就是表示合金系中合金的相与温度、成分间关系的图解。 3、晶体的空间点阵分属于7 大晶系,其中正方晶系点阵常数的特点为a=b≠c,α= β=γ=90°,请列举除立方与正方晶系外其她任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4、合金铸锭的宏观组织包括表层细晶区、柱状晶区与中心等轴晶区三部分。

2005_2016年上海交通大学827材料科学基础试题真题版

2005年上海交通大学材料科学基础考博试题[ 回忆版] 材料科学基础: 8选5。每题两问,每问10 分,我当10 个题说吧,好多我也记不清是那个题下的小问了。 1。填空。你同学应该买那本材料科学基础习题了吧,看好那本此题就没多大问题,因为重复性很强。 2。论述刃位错和螺位错的异同点 3。画晶面和晶向,立方密排六方一定要会,不仅是低指数;三种晶型的一些参数象原子数配位数之类的 4。计算螺位错的应力。那本习题也有类似的,本题连续考了两年,让你同学注意下此题 5。置换固熔体、间隙固熔体的概念,并说明间隙固熔体、间隙相、间隙化合物的区别。那本习题上有答案、 6。扩散系数定义,及对他的影响因素 7。伪共晶定义,还有个相关的什么共晶吧,区分下。根据这概念好像有个类似计算的题,这我没做,不太记得了,总之就是共晶后面有点内容看下 8。关于固熔的题,好像是不同晶型影响固熔程度的题,我就记得当时我画了个铁碳相图举例说明了下还有两个关于高分子的题,我没做也没看是啥题 总之,我觉得复习材科把握课本及习题,习题很重要,有原题,而且我发现交大考试重基础,基本概念要搞清楚,就没问题。 上海交通大学2012年材料科学基础考博试题[回忆版] 5个大题,每个大题20 分。下面列出的是材料科学基础的前五个大题,其中第一大题有几个想不起来了,暂列9 个。 其实后边还有三道大题,一道是关于高分子的,一道是关于配位多面体的,还有最后一个是作为一个材料工作者结合经验谈谈对材料科学特别是对材料强韧化的看法和建议,我都没敢选。 一填空(20 分,每空1 分)

1密排六方晶体有()个八面体间隙,()个四面体间隙 2晶体可能存在的空间群有(230)种,可能存在的点群有(32 )种。 3离子晶体中,正负离子间的平衡距离取决于(),而正离子的配位数则取决于()。(鲍林第一规则) 4共价晶体的配位数服从()法则。 5固溶体按溶解度分为有限固溶体和无限固溶体,那么()固溶体永远属于有限固溶体。6 空位浓度的计算公式:()。 7 菲克第一定律描述的是()扩散过程,菲克第二定律描述的是()扩散过程。 8 原子扩散的动力是(),物质由低浓度区域向高浓度区域的扩散过程称为()。9 一次再结晶的动力是(),而二次再结晶的动力是()。 二在立方晶体和密排六方晶体中画出下列米勒指数的晶面和晶向。(20 分,每个2 分)各有三个晶面、两个晶向,别的不记得了,就记得一个在密排六方中画[2 2 -4 3] 晶向。 三简答 1写出霍尔佩奇公式,并指出各参数的意义。(8 分) 2说明什么是屈服和应变失效,解释其机理。(12 分) 四简答 1忘了。。。(8 分) 2刃型位错和螺型位错的异同点(12 分) 五相图题(20 分)这个就是个送分题,Pb-Sn 相图,分析w(Sn)%=50%的平衡凝固过程,并用杠杆定律计算室温下α相的含量。(见交大第三版材科第268、270 页) 感言:可以看出,上交今年的材科题目比较简单,偏重于基础知识。这次考材科感觉像是上当了,复习的方向完全不对,那么多计算公式一个也没用到,像是一拳打出去扑了个空,而 空间群有多少种、共价晶体配位数服从的8—N 法则这种基础知识却没看到!所以以后要考 的同学们一定要注意,课本要细细看一遍那,太难的题目基本不用做的。 英语部分:(没有听力~~)最后,附上今年的英语作文题目:Some people argue that one can succeed by taking risks or chances, however, some other people advocate that careful planning is the key to success. To what extent do you agree with the two opinions? Use specific examples to support your view. (300 words)感言:今年的英 语题目类型跟2008 年的题型一样,第一大题40 个选择题(20 分),第二大题6 篇阅读

材料科学基础期末考试题

2010-2011年材料科学基础期末考试题 一、简答题 1.简述空间点阵和晶体结构的区别 空间点阵是由周围环境相同的阵点在空间排列的三维列阵,其中一个节点可以为原子、分子、离子或原子集团;晶体结构是在点阵晶胞的范围内,标出相应的晶体结构中各原子的位置,即其中一个点代表一个原子。空间点阵将构成晶体的实际质点的体积忽略,抽象成为纯粹的几何点,晶体结构是指原子的具体排列。2.简述间隙固溶体、间隙化合物和间隙相的区别 间隙固溶体属于固溶体,保持溶剂的晶格类型,表达式为α、β、γ,强度硬度较低,塑性、韧性好;间隙相与间隙化合物属于金属间化合物,形成与其组元不同的新点阵,用分子式、MX…2等表示,强度硬度高,塑性韧性差。间隙相和间隙化合物的主要区别是原子半径比不同,用、分别表示化合物中的金属与非金属的原子半径,当<0.59时,形成具有简单晶体结构的相,称为间隙相;当>0.59时,形成具有复杂晶体结构的相,称为间隙化合物。 3.在正温度梯度下,纯金属和单相固溶体凝固形貌的区别 在正温度梯度下,纯金属以平直界面方式推移长大(此时,界面上任何偶然的、小的凸起伸入液体时,都会使其过冷度减小、长大速率减小或者停止生长,即被周围部分赶上,保持平直界面,长大中晶体沿平行温度梯度方向生长或者沿散热方向的推移).

反向生长,其他方向生长受到抑制。 单相固溶体中不仅存在热过冷,还可能存在成分过冷,当<(1)时,即存在成分过冷,平面生长被破坏。当成分过冷较小000时,凸起部分不可能有较大的伸展,使界面形成胞状组织;若成分过冷区较大,则界面可形成树枝状组织。温度梯度较小不形成成分过冷时,仍可保持平直状生长。 4.铝板在轧制一天后和四天后在同一温度下进行退火,退火时间相同,将它们进行再结晶时温度有何不同,为什么? 放置四天后的铝板再结晶温度较高。 原因:再结晶驱动力是变形金属储存的畸变能,畸变能越大,驱动力越大,再结晶温度越低。放置四天后的铝板由于时效作用,释放出部分畸变能,因而再结晶驱动力减小,再结晶温度升高。 5.许多金属材料的塑性比陶瓷好,为什么?纯铁和纯铜的相比,谁的塑性比较好,为什么? 金属材料的塑性好,因为陶瓷烧结过程中具有很多先天性微裂纹,在拉伸时,裂纹尖端会产生严重的应力集中,当裂纹达到临界尺寸时就会失稳扩展而断裂;且构成陶瓷晶体相的主要为离子键和共价键,共价键的饱和性和方向性使陶瓷的塑性较低。(加上金 属材料主要是金属键。。。。。。) 纯铜的塑性好,因为纯铜是结构,纯铁是结构,虽然的滑移系较多,但是滑移方向较的少,且滑移面原子的密排程度较低,所以面心立方的塑性高于体心立方。

【上海交大材料科学基础复习要点(原版)】材料科学基础习题及参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。 (213) 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112) 2110 <>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011 <>的等价晶向:[1011][1101][0111][0111][1101][1011] [1011][1101][0111][0111][1101][1011]

材料科学基础期末试题

几种强化 加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。 细晶强化:是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制和绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用和化学交互作用。 几种概念 1、滑移系:一个滑移面和该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带) 原因:柯氏气团的存在、破坏和重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。滑移和孪晶的区别 滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1. 相律是在完全平衡状态下,系统的相数、组元数和温度压力之间的关系,是系统的平衡条件的数学表达式:f=C-P+2 2.二元系相图是表示合金系中合金的相与温度、成分间关系的图解。 3.晶体的空间点阵分属于7 大晶系,其中正方晶系点阵常数的特点为a=b≠c,α=β=γ=90°,请列举除立方和正方晶系外其他任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4.合金铸锭的宏观组织包括表层细晶区、柱状晶区和中心等轴晶区三部分。

相关主题
文本预览
相关文档 最新文档