当前位置:文档之家› 20091231--地下水位监测方案(终)

20091231--地下水位监测方案(终)

20091231--地下水位监测方案(终)
20091231--地下水位监测方案(终)

北京地铁15号线7标段车站及附属构筑物

地下水位监测方案

编制:

审核:

审批:

北京勤业测绘科技有限公司

2009年9月7日

联系电话:88123128/88435669 传真号码:88435669 公司地址:北京市海淀区西四环北路15号依斯特大厦517 电子邮箱:

1、编写说明

此监测项目系车站主体结构施工由止水帷幕方案改为井点降水方案后,应委托方要求增加项目;并编写此专项方案。

2、编制依据

委托方合同

《建筑与市政降水工程技术规范》(JGJ/T111)

3、观测井的布设

3.1观测井施工

3.1.1、井位选择

观测井原则上布设在基坑的四角及基坑的长短边中部的土层中,鉴于施工现场实际情况,如围挡内有井位,井位应距围护桩墙 1.5~2.0m左右;如围挡内无井位,可在围挡外对应位置的绿地中设置,距围护桩墙5.0~10.0m左右。

3.1.2、观测井深度

观测井深度为基坑设计深度加 2.0m(从自然地面起计);应接近降水井的降水曲线最低处。

3.1.3观测井结构与施工

观测井结构见图1和图2,施工流程:成孔----下管---洗井—井室保护。

⑴成孔

采用勘探钻机,地层自造浆护壁,孔径保持圆整垂直。

图1:观测井结构平面图图2:观测井结构剖面示意图⑵下管、回填

塑料花管开孔率15%,滤管外包一层40目尼龙网;外填3-5mm石屑或中粗砂作为滤料,管外回填至进水段上方300mm(见图1和图2)。

⑶洗井

借助空压机清洗孔内砂浆至出清水为至。再用泵进行恢复性抽洗,次数不少于6次。

⑷井室保护

管口埋设DN150mm,长500钢管,并配置钢盖予以保护。

3.2观测井质量

孔径圆整垂直,孔深与设计深度误差<500mm;孔深>设计深度300-500mm。

4、监测方法、频次、精度

4.1监测方法

4.1.1采用常州金土木工程仪器有限公司SWJ-90型钢尺水位计,量程:50m,最小读数:1mm。

4.2监测频率

基坑开挖初期,1次/3天;施工过程中,1次/2天;开挖后期,1次/7天。经数据分析确认达到基本稳定后,1次/月。出现异常情况时,增大监测频率。

4.3监测精度

4.3.1位观测数值以m为单位,测记至小数点后两位即mm。

4.3.2每次观测水位应应重复两次测量,间隔时间不应少于1min。

4.3.3取两次水位的平均值,两次测量允许偏差应小于10mm。

5、工作量预算

依据规范规定,顺义站设6个观测井(布置图见附图3),俸伯站设7个观测井(布置图见附图2);俸后区间设8个观测井(布置图见附图1),总计21个井。

附图1

附图1 俸伯站后区间监测井布置图

附图2

附图2 俸伯站监测井布置图

附图3

附图3 顺义站监测井布置图

地下水监测系统整体解决方案

陕西颐信网络科技有限责任公司 2014年9月22日 陕西颐信网络科技有限责任公司 地下水监测系统 整体解决方案

目录 一、概述.................................................................................................................................................... - 1 - 1.1项目背景...................................................................................................................................... - 1 - 1.2新产品研究.................................................................................................................................. - 2 - 二、系统简介............................................................................................................................................ - 2 - 三、系统功能............................................................................................................................................ - 3 - 四、系统方案............................................................................................................................................ - 4 - 4.1数据流程及组网.......................................................................................................................... - 4 - 4.2系统组成...................................................................................................................................... - 4 - 4.3数据采集...................................................................................................................................... - 5 - 4.4数据传输格式.............................................................................................................................. - 5 - 五、系统软件............................................................................................................................................ - 5 - 5.1软件平台...................................................................................................................................... - 5 - 5.2数据接收软件.............................................................................................................................. - 5 - 5.3数据查询分析软件...................................................................................................................... - 6 - 六、系统特点.......................................................................................................................................... - 10 - 七、产品性能.......................................................................................................................................... - 10 - 7.1一体化智能水位采集装置........................................................................................................ - 10 - 7.1.1产品特点....................................................................................................................... - 11 - 7.1.2技术指标......................................................................................................................... - 12 - 7.2无线手持参数设置仪................................................................................................................ - 12 - 八、工程实例.......................................................................................................................................... - 14 -

地下水监测技术方案

咸潮监测预警技术方案 2013年7月

目录 1. 概述 (2) 2. 技术方案 (3) 2.1系统组成 (3) 2.2方案特点 (3) 2.3产品功能特点介绍 (4) 2.3.1 OTT Ecolog800 温盐深监测记录仪 (4) 2.4 供电模式 (8) 2.5 数据通讯 (9) 2.6 系统安装 (9) 2.7 监控中心软件 (9) 3. 产品主要应用情况 (11)

1. 概述 地下水作为人类生存空间的重要组成部分,为人类提供了优质的淡水资源。但是,随着我国环境污染的日趋严重,人类活动导致地下水污染已从点状扩展到面状污染。除地下水自身受污染外,又成为土地污染的重要媒介。 含水层对污染源的敏感性、纳污的脆弱性及其与土地污染的相关性已引起行业专家的普遍关注。而且,土壤和含水层一旦受到污染,清除、治理、修复十分困难,不仅经济投入很大,技术上也有难度,时间周期也很长。 我国的淡水资源严重不足,人均占有量只及世界人均量的四分之一,目前,国内七大地表水系均遭到不同程度的污染,地下水污染也面临十分严峻的局面,这对我国本不充裕的水资源来说无疑更让人忧虑。随着人口密度加大和工农业生产的发展,水资源供需矛盾日益突出,地下水降落漏斗逐步扩大,地表水体的严重污染也使地下水逐步遭到污染,而浅层地下水的无法使用迫使许多地区大量开发深层地下水,又带来了地面沉降,海水入侵等缓变地质灾害。据环保部门统计,1996年全国废水排放总量约1356亿吨,江、河、湖污染严重,并呈加重趋势,50%的浅层地下水遭到不同程度的污染,其中40%已不适宜饮用。 国家发展改革委、水利部、建设部、卫生部、国家环保总局编制的《全国城市饮用水安全保障规划(2006—2020)》日前印发。按照《规划》目标,到2020年,将建立起比较完善的饮用水安全保障体系,满足2020年全面实现小康社会目标对饮用水安全的要求。“十一五”期间,重点解决205个设市城市及350个问题突出的县级城镇饮用水安全问题。 目前来看,全国各地,尤其是北方地区广泛采用地下水作为饮用水源。为保障供水安全,有必要对地下水的水文和水质参数进行监测,以便实时掌握地下水的储量变化,水质指标等情况,选择合适优质的地下水源,保障饮用水源的安全,合理有效的利用地下水,在近海地区,更可以根据实时监测指标对可能出现的海水倒灌实现预警等目的。

20091231--地下水位监测方案(终)

北京地铁15号线7标段车站及附属构筑物 地下水位监测方案 编制: 审核: 审批: 北京勤业测绘科技有限公司 2009年9月7日 联系电话:88123128/88435669 传真号码:88435669 公司地址:北京市海淀区西四环北路15号依斯特大厦517 电子邮箱:

1、编写说明 此监测项目系车站主体结构施工由止水帷幕方案改为井点降水方案后,应委托方要求增加项目;并编写此专项方案。 2、编制依据 委托方合同 《建筑与市政降水工程技术规范》(JGJ/T111) 3、观测井的布设 3.1观测井施工 3.1.1、井位选择 观测井原则上布设在基坑的四角及基坑的长短边中部的土层中,鉴于施工现场实际情况,如围挡内有井位,井位应距围护桩墙 1.5~2.0m左右;如围挡内无井位,可在围挡外对应位置的绿地中设置,距围护桩墙5.0~10.0m左右。 3.1.2、观测井深度 观测井深度为基坑设计深度加 2.0m(从自然地面起计);应接近降水井的降水曲线最低处。 3.1.3观测井结构与施工 观测井结构见图1和图2,施工流程:成孔----下管---洗井—井室保护。 ⑴成孔 采用勘探钻机,地层自造浆护壁,孔径保持圆整垂直。

图1:观测井结构平面图图2:观测井结构剖面示意图⑵下管、回填 塑料花管开孔率15%,滤管外包一层40目尼龙网;外填3-5mm石屑或中粗砂作为滤料,管外回填至进水段上方300mm(见图1和图2)。 ⑶洗井 借助空压机清洗孔内砂浆至出清水为至。再用泵进行恢复性抽洗,次数不少于6次。 ⑷井室保护 管口埋设DN150mm,长500钢管,并配置钢盖予以保护。 3.2观测井质量 孔径圆整垂直,孔深与设计深度误差<500mm;孔深>设计深度300-500mm。 4、监测方法、频次、精度 4.1监测方法

水位远程监测系统方案

水位远程监测系统 方案

水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求....................................................................................2二、方案概述....................................................................................2三、系统组成....................................................................................2 3.1控制中心主站 (3) 3.2通讯网络....................................................................................3 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功

能..........................................................................................5 5.2特点..........................................................................................6六、主要硬件设备概述 (9) 6.1G P R S无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

水库水位监测系统

雷达水库水位监测GPRS远传系统 一、概述 我公司研发的“水位远程监控系统”,已广泛的应用于大坝、河流河道、水库、水力发电厂、环境水文、地下水水位、水池水位监测等。该系统能够实时在线监测水库、河流的液位高度、雨量等参数。系统采用集散式控制结构,通过高精度传感器及高敏感器件遥测水库水位及雨量信息。经过计算机分析处理,通过GPRS模块把水位数据及工况传回监控中心实时监控。供工程技术人员实时掌握水位动态,为决策提供依据。 二、设计原则 1) 适用性:由于客户现场要求特殊,要求考虑距离监控中心较远(70~80公里),尽量选取一种技术成熟、可靠性高的传输方案。 2) 实用性:功能强大、用户界面友好、报表、趋势图等功能齐全,日常维护简单方便。在保证满足应用的同时,又要体现出GPRS网络系统的先进性,充分考虑网络应用的现状和未来发展趋势。

3) 灵活性和扩展性:根据未来应用的需求和变化,应具备充分的接入能力和可扩展性,我们采用一种标准化接口,如以后系统改造增加I/O接口组态方便容易,设点成本很低,包括以后带宽的扩展以及监控点移位的可扩展性,最大程度地减少对网络架构和现有设备的调整。 4) 兼容性和经济性:对于设备就绪以后,一定要考虑以后的扩展需要,并且能够最大限度地保证以后对现有资源的可用性和连续性,最大限度地降低网络系统的总体投资。 三、系统组成 系统只要有监控中心、通信网络、终端设备、测量设备、供电系统等组成。 1.监控中心: 主要硬件:服务器、客户端和GPRS数据传输模块。 主要软件:操作系统软件、数据库软件、水位监测系统软件、防火墙软件。2.通信网络:中国移动公司GPRS网络。

地下水位监测

地下水位监测 地下水位监测宜通过孔内设置水位管,采用水位计进行监测。 监测目的: 利用地下水位监测来确定地下水的位置,判断地下水位情况,降水是否合适。如果降水过快,地下水位较深的时候会引起周边地表下沉。 埋设方法: 用钻机成孔至基坑米深度后清孔,成孔后加清水,检验成孔质量,将PVC管分级装好放入孔内,孔口用盖子盖好,防止地表水进入孔内。 使用仪器: 选用PVC管和钢尺水位仪。(如图1 所示) 图1 钢尺水位计 观测方法:

地下水位可采用刚才或钢尺水位计,一般采用水位仪,观测前先打开水位仪,在已埋设好的水位管中放入水位计测头,当测头接触到地下水时,水位仪迅响起亮起红等,发出响声时,读取测量钢尺与管顶的距离。根据管顶高程可以计算地下水位的高程。对于地下水位比较高的观测井,可以采用钢尺直接插入观测井内,记录湿迹与管顶的距离,根据管顶高程可以计算地下水位高程,钢尺长度需大于地下水位与管顶的距离,并做好清晰记录。 计算方法: 把测量好的数据做好时间、观测员、记录员等检查。准确无误后方可以输入电脑,计算出水位生成报表上报各有关单位,计算公式如下: h水= h孔口一h深 式中:h水—水位高程 h孔口—管口高程 h深—地下水位深度(管口与管内水面之距离) dh水i = h水i一h水i-1 式中:Dh水i = (dh水1 + dh水2 + …+ dh水i) dh水i一本次水位变化 Dh水i一累计水位变化

注意事项: 随着基坑的开挖会影响到周边土质结构的变形和沉降,降水较严重时,应随时观察周边情况,发现有变形或裂缝的及时通知施工单位做好相应措施,严重时要停止施工,随时关注基坑内的漏水情况,堵水是否有效。根据现场情况来判断基坑是否安全稳定。 [此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]

地下水位监测系统、地下水位自动监测系统

地下水位监测系统、地下水位自动监测系统 概述: 地下水位监测系统是掌握地下水变化规律、了解地下水开采状况、指导地下 水资源保护的重要手段。地下水位监测系统可对地下水的水位、水温、水质等参 数进行长期监测并自动存储监测数据,可对地下水的变化规律进行动态分析。 地下水位监测系统依托既有的 GPRS/CDMA 无线网络进行建设,具有投资 成本低、 建设速度快、 无通信距离限制等优点。 系统支持水利部地下水通信规约, 已在各地的国家地下水监测工程中广泛应用。
系统拓扑图
DATA-6218
DATA-9201

系统优势
● 《水文监测数据通信规约(SL651-2014)》 ● 《国家地下水监测工程(水利部分)监测数据通信报文规定》 ● 《特殊区域水文、水资源数据安全采集系统 RTU 追加测试》 ● 《四川省水文测报系统技术规约(SCSW008-2011)》 ● 《水文自动测报系统设备 遥测终端机(SL 180-2015)》 ● 全国工业产品生产许可证 ● 《地下水监测与管理系统》软件著作权证书 ● 《水文实时监测管理系统》软件著作权证书 ● 《水文实时监测管理系统》软件产品登记证书 ● 现场无电源:采用锂电池供电——定时采集、集中上报监测数据。 ● 现场无电源:采用太阳能供电——实时上报监测数据。 ● 现场有市电:采用 220V 供电——实时上报监测数据。
软件主要功能
◆ 测点分布总览 ◆ 智能数据统计 ◆ 等水位线生成
◆ 实时数据监测 ◆ 趋势曲线分析 ◆ 测点信息维护

DATA86 地下水位监测系统软件
应用案例 案例 1——河北省地下水超采综合治理地下水监测项目 河北省水资源严重短缺, 面临着地下水严重超采、水环境不断恶化等诸多问 题。2015 年初,河北省率先开展了“地下水超采综合治理”试点项目,对超采 严重县、市的地下水展开全面监测。 河北省水利厅建设了专用的地下水监测中心和地下水监测软件平台, 多个厂 商的监测设备通过统一的通信协议上报至该平台。

水位远程监测系统方案设计

实用文档 水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求 (2) 二、方案概述 (2) 三、系统组成 (2) 3.1控制中心主站 (3) 3.2通讯网络 (3) 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功能 (5) 5.2特点 (6) 六、主要硬件设备概述 (9) 6.1 GPRS无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

一、客户需求 在某单位建立一套水位远程监测系统,来实对水位的实时监测,统一管理。 二、方案概述 作为行业领先者的水位远程监测系统的解决方案,经过我们多年的水位监测系统项目实施经验,依据用户的具体情况,并结合实际需求,我们提供并建立一个合理、完整的地下水位系统的决方案。 水位数据的收集不仅能够及时、准确地反应问题,分析问题,解决问题,从而指导工作实践,而且更是研究地下水位动态规律,掌握不同水文地质单元、不同层位、不同水源地地下水位变化特征的重要依据,对水资源的研究与管理具有重要意义。 可实现如下功能: (1)数据自动采集:自动实时采集计量点的地下水位数据,实现数据采集的准确性、完整性、及时性和可靠性,; (2)报警信息主动上报:现场监测箱开门、断电、设备运行异常等信息能够主动发送到监测中心; (4)计量装置监测:远程监测水位计运行信息,分析计量故障等信息,及时发现用户计量异常; (5)统计分析:配合水位监测体系的建立,实现各地下水位监测点的数据统计、做出日周月年报表、曲线、柱状图等。 三、系统组成 本系统主要地下水位监测中心主站、通信网络、现场监测设备三部分组成,利用前端监控、数据采集设备的数据远传通讯功能和系统软件功能实现。采集数据,使监测中心通过简单而又经济的计量手段,实现对整个地区地下水信息的实时监测,进而实现良好的社会效益和经济效益。

地下管网水位监控系统-需求设计说明书

附件19 地下管网水位监控系统

1系统概述 1.1 项目背景 城镇排水系统是城镇建设、环境保护、防洪排涝的重要基础设施,关系到社会经济稳定发展和人民生活的安定,在保障城镇发展和安全运行中发挥着重要的作用。随着城镇的迅速发展,城镇排水管网系统越来越复杂、越来越庞大,对排水管网的运行管理、养护管理、应急防汛和科学决策等提出了越来越高的要求。但由于在管网的运行管理上缺乏掌握排水管网真实运行状况的技术手段,在养护管理上难以评估排水管网的日常养护效果,在排水管网的水力分析和管理决策上缺少必要的数据支持,遇到紧急情况无法依据实时变化信息以制定相应的应急措施,依靠传统的管理手段已越来越不能满足排水管网的现代化管理需要。 随着城镇的迅速发展,某些区域雨水管网的规划设计与建设由于历史的原因存在先天不足,根据水文水资源管理的资料统计,在近3年时间里,暴雨实际强度远远超过设计暴雨强度标准,雨水管网在暴雨灾害时运行负荷过重,导致城镇内涝。但是,雨水管网设计的某些先天不足有时很难通过管网改造弥补,中心城区许多道路下面的各种管网错综复杂,地下也已经很难提供管网的扩容空间,故而只有通过强化管理手段来提高区域排水能力,改善困难的局面。 1.2面临的问题 1)应急排涝决策指挥缺乏有效的管网运行数据支 由于当前排水系统现状,造成排水管网应对突发事件的能力严重不足,一个突出的例子是特大暴雨夜袭周浦事件。据报道,2009年8月4

日的暴雨,3小时降雨量达223毫米,周浦镇13条主干道排水不畅, 镇区居民受灾户数6339户,占21%;受灾面积达到87万平方米,进 水1500户,停电1050户,停水3000余户。受灾企业共290户,48.9%。 因此,在城镇暴雨内涝应急指挥工作中存在以下问题: ?难以及时准确地获得暴雨内涝时管网运行预警信息; ?难以制定出不同等级雨情下科学的应急预案; ?无法依据区域全局的管网运行情况合理指挥局部内涝漫水区域的排水应急抢险工作。 2)排水管网养护管理缺乏有效的监测技术手段 许多地区排水体制是合流制与分流制并存,部分排水系统存在雨污水混接现象,目前的排水管理还缺乏监测雨污混接状况的科学手段。由 于晴天污水流速较低,导致混接的雨水管网淤积严重,有的管道甚至堵 塞大半过水断面;城镇建设节奏的加快,有的建筑工地建设垃圾排放也 会阻塞排水管网,然而由于地下管网的隐蔽性,日常养护人员缺少有力 的工具方便的发现问题管段和乱排垃圾的用户。 日常养护作业人员缺乏现代化的监测技术手段来提升工作效率,目前,排水管网的养护管理存在以下问题: ?难以有效评估管网的日常养护效果; ?难以制定具有针对性的管网养护计划; ?建筑工地乱排建筑垃圾难以监控,易导致管网堵塞问题; ?由于养护清淤不到位而易导致河道环境污染问题。 3)排水管网运行调度管理相对薄弱

地下水位监测实施细则

测量专业作业指导书地下水位监测实施细则文件编号: 版本号: 分发号: 编制: 批准: 生效日期:

地下水位监测实施细则 1.目的 为使测试人员在做检测时有章可循,并使其操作合乎规范。 2.适用范围 适用于地下水位监测。 3.检测内容 通过在受力面埋设钢尺水位计,对基坑地下水位变化进行量测。 4.检测依据 《建筑基坑工程监测技术规范》(GB50497—2009)。 5.主要仪器设备 5.1 频率读数仪; 5.2钢尺水位计:地下水位量测精度不宜低于10mm。 6. 检测条件 6.1 气温应在-10℃~+40℃; 6.2 相对湿度≤80%。 7. 检测前的准备 7.1 检测仪器和计量器具必须满足精度、等级要求,并应有计量部门定期检验的合格证书; 7.2测试工作前应通过搜集资料和现场踏勘后编制测试纲要; 7.3搜集资料应包括有关的工程设计施工场地周围环境和地质资料并应根据测试任务书要求认真进行分析研究; 7.4现场踏勘应着重调查了解场地环境和埋设作业条件; 7.5测试纲要内容应包括目的与要求工程概况工作量布置及依据仪器类型选定和精度要求埋设和测试方法监测工程要求的控制标准当日阶段和最终提交的成果; 7.6监测传感器埋设前应进行性能检验和编号; 7.7监测传感器宜在基坑开挖前至少1 周埋设,并取开挖前连续2d 获得的稳定测试数据的平均值作为初始值。 8.钢尺水位计埋设 8.1潜水水位管应在基坑施工前埋设,滤管长度应满足量测要求;承压水位监测时被测含水层与其他含水层之间应采取有效的隔水措施。 9.试验步骤 9.1测量时,拧松绕线盘后面的止紧螺丝,让绕线盘自由转动后,按下电源按钮(电源指示灯亮),把测头放入水位管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头的触点接触到水面时,接收系统的音响器便会发出连续不断的蜂鸣声,此时读写出钢尺电缆在管口处的深处的深度尺寸,即为地下水位离管口的距离。 9.2若是在噪声比较大的环境中测量时,蜂鸣声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压挡即可,测量方法同上,此时的测时精度与音响测得的精度相同。9.3当测头的触点接触到水面时,音响器会发出声音,或电压表立即会有指示,此时应缓慢地收放钢尺电缆,以便仔细地寻找到发音或指示瞬间的确切位置后读出该点距孔口的深度尺寸。 9.4读数的准确性,决定于及时判定峰鸣声或指示的起始位置,测量的精度与操作者的熟练程度有关,故应反复练习与操作。 10.数据处理 对两次测量的水位差值进行比较,得出水位的升降数据。 11.现场检测工作的安全措施。 现场检测人员必须穿戴劳保用品,安全帽,进行测试时应注意安全。 12数据处理与信息反馈

地下水位监测孔施工方案

天津港场地监测井施工方案 地下水位监测孔施工方案如下: 现场实地踏勘→施工前测量放点→设备转场运输→就位准备→钻孔→测量孔深→安装监测井管→投料及回填灌浆→孔口保护墩浇注及保护罩安装→编号喷涂。 1现场实地踏勘 使用测量设备对设计图纸中的地下水位监测孔位置进行实地踏勘,观察各相关地下水位监测孔是否位于不便于施工的位置,编制初步踏勘报告,邀请业主、设计和监理现场查看,对于不便施工的地下水位监测孔位置进行调整和处理。 2施工前测量放点 完成现场实地踏勘后,采用工程联系单的方式将踏勘、调整后的地下水位监测孔位置上报。待业主、监理、设计批复认可后,将在进行地下水位监测孔位置放点,为接下来的施工提供点位位置。 3设备转场运输 将机械设备转移至相应点位,并做好准备工作。 4钻孔 待准备完毕后,即可进行钻孔工作,钻进至设计孔底高程为止。开孔钻进必须加强护孔和防斜措施,放置孔口他先和确保钻孔垂直。在松散覆盖层钻孔过程中,需采取措施处理覆盖层坍孔的问题。 5测量孔深 使用钻机测量孔深。测深时由监理现场签认钻孔深度。 6安装监测井管 用钻机将配好的监测井管下入钻孔中。下管时由监理现场签认井管长度。7投料及回填灌浆 监测井管安装完毕后,即可在钻孔及钢管之间的缝隙中投入石英砂和膨润土,最后用水泥砂浆将缝隙灌满抹平。

8孔口保护墩浇注及保护罩安装 按照设计图纸在地下水位监测孔孔口立模浇注孔口保护墩,并安装孔口保护罩。 9编号喷涂 待孔口保护墩终凝后,在保护墩上喷涂地下水位监测孔编号。 二、工作范围及防护装备 北扩2区:工作服,长衣长裤,防毒面具,眼罩,安全鞋 核心区、南扩区:防护服,防毒面具,眼罩,安全鞋 三、安全工作 1、每天进厂区前进行安全教育,检查安全防护装备是否齐全; 2、每天进出现场进行签到,保证工人安全进出,不掉队; 3、时刻进行安全检查,保护工人安全作业。

地下水水质在线自动监测系统

1.地下水水质在线自动监测系统 一技术方案 1.系统组成及概述 1、1系统结构组成 地下水水质自动监测系统由以下两部分构成:监控子站(地下水子站),水质监控中心平台。 1、2监控子站组成及概述 1、2、1 地下水水质在线自动监测系统 采用投入式、免试剂多参数水质分析仪,仪器通过地下水监测井悬吊于待监测水层中,对地下水体实施现场原位连续自动监测。采用太阳能供电方式,通过无线通讯技术实现地下水监测系统与中心监控平台之间的数据传输与远程控制。 系统由供电系统,数据采集传输单元、水位水温传感器、水质多参数分析仪、地下水监测信息管理平台等组成。 地下水监测系统示意图

地下水监测系统效果图 1、2、2地下水水质监测站配置 1、标准配置 目前国内地下水监测常规因子: 水文监测因子:水温、水位; 水质监测因子:溶解氧、电导率、浊度、PH 监测因子选择原因 水位地下水总量控制 水温地下水的温度场与压力场与化学场的变化密切相关 溶解氧溶解氧对饮用水地下原水的除铁、锰的效果有影响 电导率(EC) 地下水的电导率异常与其污染状况密切相关 浊度浊度就是地下水透明度的衡量指标 pH 地下水水化学特征的因子 2、可选配置 地下水监测可扩展监测因子: 水质监测因子:总溶解性固体、氨氮、硝酸盐、氯化物、氟化物、钙、CODmn、盐度、矿化度、水中油等

1、3系统特点 ●太阳能、市电、电池供电多种模式 ●长期、连续、定点在线监测,全自动无人值守工作 ●适合于各种水文地质类型含水层水文、水质监测 ●多通道数据采集传输设备,并有数据记录、处理、报警功能 ●根据野外环境,具备相应避雷保护、抗干扰功能,提高系统野外适应性 ●野外环境长期专用传感器,高精度、高稳定性 ●传感器多层抗生物污染设计:环境安全防垢部件与防垢涂层;独特的双清洗刷装置 ●标准化接口,模块化设计,安装简易、灵活,可根据需求扩展监测参数 ●采用光谱分析、电化学分析技术,对水体进行免试剂原位监测,不对环境产生二次污染

地下水位监测方法

地下水位监测方法Last revision on 21 December 2020

地下水位监测 利用水位管和钢尺水位计,配合水准测量,确定地下水位高程,通过各观测期水位管内水面高程的变化,监测地下水位的变化量。 水位管及其埋设:水位管采用φ65mmPVC 塑料管,水位管底部设1m 沉淀段,沉淀段以上为滤水段,滤水段管壁设6~8列6mm 孔径的滤水孔, 滤水段外壁用3-5层纱网包裹,绑扎牢固。在监测对象设计位置处使用钻机钻孔(孔径100mm )至设计深度,用水冲洗沉渣。冲洗完成后,将制作好的水位管下入孔中。钻孔与管间用砂子回填至过滤段,再用粘土填充。水位管管口应高出地面100mm 以上并安装管口盖以防地表水及杂物进入管内。 水位监测仪器:SWJ90钢尺水位仪(钢尺量距读数精度为1mm )、索佳SDL30电子水准仪。 水位监测方法:松开钢尺水位计绕线盘后面制动螺丝,使绕线盘能自由转动,按下电源按钮(电源指示灯亮),把测头放入水位管内,手拿钢尺电缆,让水位测头在管内缓慢向下移动,当测头触点接触到水面时,水位仪接收系统便会发出蜂鸣声,此时读出钢尺电缆在管口处的读数,即为水位管内水面至管口的距离。 水位监测计算:为了确定水位变化量,采用水准仪水准测量的方法测定水位管管口高程,由下式计算水位管内水面的高程: 式中:S D —水位管内水面高程(m ); S H —水位管管口高程(m ); S h —水位管内水面与管口的距离(m )。 若初始观测水位高程为0S D ,当期(第i 次)观测水位高程为i S D ,上期(第i-1次)观测 水位高程为1 i S D ,则当期水位变化量为:

地下水位动态监测与分析系统.

地下水位动态监测与分析系统 1、概述 地下水资源较地表水资源复杂,因此地下水本身质和量的变化以及引起地下水变化的环境条件和地下水的运移规律不能直接观察,同时,地下水的污染以及地下水超采引起的地面沉降是缓变型的,一旦积累到一定程度,就成为不可逆的破坏。因此准确开发保护地下水就必须依靠长期的地下水监测,及时掌握动态变化情况。 2、系统解决方案 2.1系统概述 该系统依托中国移动公司GPRS网络,工作人员可以在监测中心远程查看地下水的水位数据。监测中心的监测管理软件能够实现数据的远程采集、远程监测,监测的所有数据进入数据库,可以生成各种报表和曲线。 2.2系统组成 地下水位动态监测系统由四部分组成:监测中心、通信网络、水位监测终端、水位计。 2.3系统拓扑图

2.4监测中心 2.4.1中心软件系统概述 该软件是地下水监测系统专用软件,采用B/S结构,由系统管理员负责管理,领导者或其它工作人员经授权后可在自己的计算机上通过局域网访问服务器,可进行权利范围内的操作。如果需要,该软件可以在INTERNET公网上发布,被授权者在任何地方的计算机上都可以通过INTERNET公网访问和操作该系统。 该软件采用模块化结构,主要包括两大模块:一个是人机界面、另一个是通讯前置机。每个模块又由若干小模块组成。通讯前置机软件主要负责监控中心与现场设备的通信,它具有强大的兼容性,可支持任何厂家生产的GPRS、CDMA、MODEM、RS485等通信产品,支持多种通信方式共存一个系统。人机界面包括基础数据管理、远程操作、人工录入、数据查询、数据报表、数据分析、地图管理等多项内容,可根据不同客户的不同需求设计组合成个性化的监控与管理系统软件。

地下水位监测作业指导书实施细则

***公司 测量专业作业指导书地下水位监测实施细则文件编号: 版本号: 分发号: 编制: 批准: 生效日期:

地下水位监测实施细则 1.目的 为使测试人员在做检测时有章可循,并使其操作合乎规范。 2.适用范围 适用于地下水位监测。 3.检测内容 通过在受力面埋设钢尺水位计,对基坑地下水位变化进行量测。 4.检测依据 《建筑基坑工程监测技术规范》(GB50497—2009)。 5.主要仪器设备 5.1 频率读数仪; 5.2钢尺水位计:地下水位量测精度不宜低于10mm。 6. 检测条件 6.1 气温应在-10℃~+40℃; 6.2 相对湿度≤80%。 7. 检测前的准备 7.1 检测仪器和计量器具必须满足精度、等级要求,并应有计量部门定期检验的合格证书; 7.2测试工作前应通过搜集资料和现场踏勘后编制测试纲要; 7.3搜集资料应包括有关的工程设计施工场地周围环境和地质资料并应根据测试任务书要求认真进行分析研究; 7.4现场踏勘应着重调查了解场地环境和埋设作业条件; 7.5测试纲要内容应包括目的与要求工程概况工作量布置及依据仪器类型选定和精度要求埋设和测试方法监测工程要求的控制标准当日阶段和最终提交的成果; 7.6监测传感器埋设前应进行性能检验和编号; 7.7监测传感器宜在基坑开挖前至少1 周埋设,并取开挖前连续2d 获得的稳定测试数据的平均值作为初始值。 8.钢尺水位计埋设 8.1潜水水位管应在基坑施工前埋设,滤管长度应满足量测要求;承压水位监测时被测含水层与其他含水层之间应采取有效的隔水措施。 9.试验步骤 9.1测量时,拧松绕线盘后面的止紧螺丝,让绕线盘自由转动后,按下电源按钮(电源指示灯亮),把测头放入水位管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头的触点接触到水面时,接收系统的音响器便会发出连续不断的蜂鸣声,此时读写出钢尺电缆在管口处的深处的深度尺寸,即为地下水位离管口的距离。 9.2若是在噪声比较大的环境中测量时,蜂鸣声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压挡即可,测量方法同上,此时的测时精度与音响测得的精度相同。9.3当测头的触点接触到水面时,音响器会发出声音,或电压表立即会有指示,此时应缓慢地收放钢尺电缆,以便仔细地寻找到发音或指示瞬间的确切位置后读出该点距孔口的深度尺寸。 9.4读数的准确性,决定于及时判定峰鸣声或指示的起始位置,测量的精度与操作者的熟练程度有关,故应反复练习与操作。 10.数据处理 对两次测量的水位差值进行比较,得出水位的升降数据。

地下水监测资料

地下水监测 3 测验 3.1 一般规定 3.1.1 应建立随监测、随记载、随整理、随分析的工作制度,各项原始监测数据均应经过记载、校核、复核三道工序。 3.1.2 测具应准确、耐用,并定期检定,不合格者,应及时校正或更换,否则不得继续使用。 3.1.3 现场监测必须做到: (1)准时监测,用硬铅笔记载。 (2)监测数据准确,记载的字体工整、清晰,严禁涂抹或擦试。(3)将本次监测的数值与前次监测的数值进行对照,若发现异常,应分析原因,必要时检查测具和进行复测,并在备注栏内做出说明和及时向监测管理人员报告。 3.1.4 监测数据必须及时进行检查和整理。 3.1. 4.1 定期检查测具。

及时整理各项现场原始记载数据,内容包括: (1)点绘单项和综合监测资料过程线。 (2)进行单项和综合监测资料的合理性检查。 (3)分析监测资料发生异常的原因,必要时采取补救措施。 (4)对原始记载资料进行校核、复核。 3.1.5 原始记载资料不得毁坏和丢失,并按时上报。 3.2 高程测量 3.2.1 水准基面采用1985国家高程基准。 3.2.2 基本水准点高程,应从不低于三等水准点按三等水准测量标准接测;据以引测的国家水准点,在复测或校测时,不宜更换。 3.2.3 校核水准点和基本监测井固定点高程,应从不低于国家三等水准点或基本水准点按四等水准测量标准接测,同时测量监测井周围不少于4个地面点的高程取其均值作为该监测井附近的地面高程。 3.2.4 统测井固定点高程和地面高程,可从不低于四等水准点按五等水准测量标准接测。

基本水准点每10年校测一次,校核水准点每5年校测一次,固定点高程每1~3年校核一次;如有变动迹象,应随时校测。 3.2.6 三、四、五等的水准测量的标准,按照《水文普通测量规范》SL58-93执行。 3.2.7 高程校测应填制统计表,表式样见附录C中表C1。 3.3 水位监测 3.3.1 监测频次应符合下列规定: (1)重点基本监测井每日监测一次。 (2)普通基本监测井5日监测一次。 (3)统测井每年监测三次。 3.3.2 监测时间应符合下列规定: (1)使用定时自记水位计监测,每日8时、20时应有监测记录,并记录日内最高、最低水位及其发生时、分。 (2)逐日监测为每日8时。 (3)5日监测为每月1、6、11、16、21、26日的8时。 (4)统测时间为每年汛前、汛末和年末,监测日以5日监测日中选

地下水监测内容

地下水监测内容 ——地下水水质监测、地下水水位监测、地下水水量监测 作者:杨亚芳、朱加蓝、陈孜、范辉 一、地下水水质监测(monitoring of groundwater quality) 为了掌握地下水环境质量状况和地下水体中污染物的动态变化,依据《地下水水质量标准》(GB/T 14848-93)对地下水的各种特性指标取样、测定,并进行记录或发生讯号的程序化过程,叫做地下水水质监测。各地地下水监测部门,应在不同质量类别的地下水域设立监测点进行水质检测,监测频率不得少于每年二次(丰、枯水期)。其监测内容主要分为以下几个方面: (一)地下水开采区的水质监测 依据区域和城市区地下水水质分布规律及其动态特征,布设水质监测点。应将所有的国家级城市区水位监测点、30%~50%的国家级区域水位监测点、30%的省级水位监测点及特殊水质分布区的水位监测点,同时作为长期水质监测点。 水质测定项目:国家级监测点以水质全分析为主;省级监测点以水质简分析为主,但水质全分析不少于水质简分析的20%。 a.水质简分析测定项目:感官性状(色、浑浊度、臭、味、肉眼可见物)、pH值、钾加钠、钙、镁、铵、重碳酸盐、碳酸盐、硫酸盐、氯化物、硝酸盐(以氮计)、总硬度(以碳酸钙计)、游离二氧化碳、溶解性总固体等。 b. 水质全分析测定项目:包括简分析项目并增加测定氟化物、碘化物、磷酸盐、亚硝酸盐、氢氧化物、侵蚀性二氧化碳、可溶性二氧化硅、永久硬度、暂时硬度、化学耗氧量、生化需氧量、总碱度、总酸度、钾、钠、全铁、铜、铅、锌、锰、镉、钻、银等。在监测过程中,可根据需要调整测定项目。 水质监测频率:每年应对水质监测点总量的50%进行采样监测。其中,浅层地下水和水质变化较大的含水层,每年丰、枯水期各采一次水样;深层地下水和水质变化不大的含水层,每年在开采高峰期采一次水样。其余50%水质监测点,可以每2~3年在开采高峰期普遍采样一次。 (二)地下水污染区的水质监测 地下水污染区水质测定项目,在水质简分析或全分析的基础上,按不同污染源所排放的污染物,分别增加以下测定项目: a.工业污染源:必测项目有挥发酚、氰化物、六价铬、总铬、砷、汞及其他有毒有害物勇 b. 生活污染源:必测项目有硝酸盐、亚硝酸盐、氨氮、生化需氧量、化学耗氧量、阴离合成洗涤剂、细菌总数、总大肠菌群及其他有毒有害物质。

地下水水位水温监测、地下水位监测系统

地下水水位水温监测、地下水位监测系统 概述: 地下水水位水温监测是掌握地下水变化规律、了解地下水开采状况、指导地 下水资源保护的重要手段。地下水位监测系统可对地下水的水位、水温、水质等 参数进行长期监测并自动存储监测数据,可对地下水的变化规律进行动态分析。 地下水水位水温监测依托既有的 GPRS/CDMA 无线网络进行建设, 具有投资 成本低、 建设速度快、 无通信距离限制等优点。 系统支持水利部地下水通信规约, 已在各地的国家地下水监测工程中广泛应用。
系统拓扑图
DATA-6218
DATA-9201

系统优势
● 《水文监测数据通信规约(SL651-2014)》 ● 《国家地下水监测工程(水利部分)监测数据通信报文规定》 ● 《特殊区域水文、水资源数据安全采集系统 RTU 追加测试》 ● 《四川省水文测报系统技术规约(SCSW008-2011)》 ● 《水文自动测报系统设备 遥测终端机(SL 180-2015)》 ● 全国工业产品生产许可证 ● 《地下水监测与管理系统》软件著作权证书 ● 《水文实时监测管理系统》软件著作权证书 ● 《水文实时监测管理系统》软件产品登记证书 ● 现场无电源:采用锂电池供电——定时采集、集中上报监测数据。 ● 现场无电源:采用太阳能供电——实时上报监测数据。 ● 现场有市电:采用 220V 供电——实时上报监测数据。
软件主要功能
◆ 测点分布总览 ◆ 智能数据统计 ◆ 等水位线生成
◆ 实时数据监测 ◆ 趋势曲线分析 ◆ 测点信息维护

DATA86 地下水监测系统软件
应用案例 案例 1——河北省地下水超采综合治理地下水监测项目 河北省水资源严重短缺, 面临着地下水严重超采、水环境不断恶化等诸多问 题。2015 年初,河北省率先开展了“地下水超采综合治理”试点项目,对超采 严重县、市的地下水展开全面监测。 河北省水利厅建设了专用的地下水监测中心和地下水监测软件平台, 多个厂 商的监测设备通过统一的通信协议上报至该平台。

相关主题
相关文档 最新文档