当前位置:文档之家› CO2 storage potential of sedimentary basins of Slovakia, the Czech Re pub lic

CO2 storage potential of sedimentary basins of Slovakia, the Czech Re pub lic

Geo l og i c al Quar t erly,2013,57(2): 219–232

DOI: https://www.doczj.com/doc/0c11156574.html,/10.7306/gq.1088

CO 2stor a ge po t en t ial of sed i m en t ary bas i ns of Slovakia, the Czech Re p ub l ic, Po l and and the Bal t ic States

Saulius ?LIAUPA 1, *, Rich a rd LOJKA 2, Zuzana TASáRYOVá2, Vladi m ir KOLEJKA 2, Vit HLADíK 2,

Julia KOTULOVá3, Ludovit KUCHARIè3, Vlado FEJDI 3, Adam WóJCICKI 4, Rados3aw TARKOWSKI 5, Barbara ULIASZ-MISIAK 6, Rasa LIAUPIEN #1, Inara NULLE 7, Raisa POMERANCEVA 7, Olga IVANOVA 7,

Alla SHOGENOVA 8 and Kazbulat SHOGENOV 8

1In s ti t ute of Ge o l o gy and Ge o g r a p hy, Na t ure Re s earch Cen t re, ?evèenkos 13, 03223 Vilnius, Lith u a n ia 2Czech Geo l og i c al Sur v ey, Klárov 3, 118 21 Praha 1, Czech Re p ub l ic

3Dionyz ?túr State Geo l og i c al In s ti t ute, Mlynská dol i na 1, 817 04 Bratislava 11, Slo v ak Re p ub l ic 4Pol i sh Geo l og i c al In s ti t ute – Na t ional Re s earch In s ti t ute, Rakowiecka 4, 00-975 Warszawa, Po l and

5Min e ral and En e rgy Econ o my Re s earch In s ti t ute, Pol i sh Acad e my of Sci e nces, Wybickiego 7, 31-261 Kraków, Po l and 6AGH Uni v er s ity of Sci e nce and Tech n ol o gy, Fac u lty of Drill i ng, Oil and Gas, A. Mickiewicza 30, 30-059 Kraków, Po l and 7State Ltd “Lat v ian En v i r on m ent, Ge o l o gy and Me t e o r ol o gy Cen t re”, Maskavas 165, 1019 Riga, Lat v ia 8

In s ti t ute of Ge o l o gy at Tallinn Uni v er s ity of Tech n ol o gy, Ehitajate tee 5, 19086 Tallinn, Es t o n ia

?liaupa S., Lojka R., Tasáryová Z., Kolejka V., Hladík V., Kotulová J., Kuchariè L., Fejdi V., Wójcicki A., Tarkowski R.,

Uliasz-Misiak B., liaupien ? R., Nulle I., Pomeranceva R., Ivanova O., Shogenova A. and Shogenov K. (2013) CO 2 stor a ge po t en t ial of sed i m en t ary bas i ns of Slovakia, the Czech Re p ub l ic, Po l and and Bal t ic States. Geo l og i c al Quar t erly, 57 (2):219–232, doi: 10.7306/gq.1088

It has been in c reas i ngly real i sed that geo l og i c al stor a ge of CO 2 is a pro s pec t ive op t ion for re d uc t ion of CO 2 emis s ions. The CO 2 geo l og i c al stor a ge po t en t ial of sed i m en t ary bas i ns with the ter r i t ory of Slovakia, the Czech Re p ub l ic, Po l and and the Bal t ic States is here as s essed, and dif f er e nt stor a ge op t ions have been con s id e red. The most pro s pec t ive tech n ol o gy is hy -dro d y n amic trap p ing in the deep sa l ine aqui f ers. The uti l i s a t ion of hy d ro c ar b on (HC) fields is con s id e red as a ma t ure tech n ol -ogy; how e ver, stor a ge ca p ac i t ies are lim i ted in the re g ion and are mainly re l ated to en h anced oil (gas) re c ov e ry. Pro s pec t ive res e r v oirs and traps have been iden t i f ied in the Dan u be, Vi e nna and East Slovakian Neo g ene bas i ns, the Neo g ene Carpathian Foredeep, the Bo h e m ian and Fore-Sudetic Up p er Pa l eo z oic bas i ns, the Me s o z oic Mid-Pol i sh Ba s in and the pericratonic Pa l eo z oic Bal t ic Ba s in. The to t al stor a ge ca p ac i ty of the sed i m en t ary bas i ns is es t i m ated to be as much as 10,170 Mt of CO 2 in deep sa l ine aqui f er struc t ures, and 938 Mt CO 2 in the de p leted HC fields. The uti l i s a t ion of coal seams for CO 2 stor a ge is re l ated to the Up p er Silesian Ba s in where CO 2 stor a ge could be com b ined with en h anced re c ov e ry of coal-bed meth a ne. Key words: CO 2geo l og i c al stor a ge,sa l ine aqui f er,coal bed,EOR,ECBM.

INTRODUCTION

Most of the en e rgy used to meet hu m an needs is de r ived

from the com b us t ion of fos s il fu e ls, such as coal, nat u r al gas, oil shale, or shale gas which re l ease car b on di o x i de into the at m o -

sphere. Ac c ord i ng to In t er g ov e rn m en t al Panel on Cli m ate Change (IPCC, 2007), the an n ual amount of CO 2 trans f erred to the at m o s phere and at t rib u t a ble to hu m an eco n omic ac t iv i ty equals 27 Gt; about 30% of 27 Gt is ab s orbed in land or in ocean as, ac c ord i ng to IPCC, about 70% of this anthropogenic CO 2 is sup p osed to re m ain in the at m o s phere. As a re s ult of hu -man ac t iv i t ies, CO 2 con c en t ra t ion in the at m o s phere has risen from pre-in d us t rial 280 ppmv to 396.8 ppmv by Feb r u a ry 2013and may reach 1100 ppmv by 2100 in a case con t in u ed busi -ness as usual sce n ario (White et al., 2003; https://www.doczj.com/doc/0c11156574.html,/).For the past de c ade 2003–2012 the av e r a ge an n ual in c rease is 2.1 ppm per year, while the av e r a ge for de c ade 1993–2002 is 1.7 ppm per year (https://www.doczj.com/doc/0c11156574.html,/). In 2010, 33 Gt of CO 2

* Corresponding author: sliaupa@geo.lt

Received: May 10, 2012; accepted: November 27, 2012; first

published online: May 6, 2013

were pro d uced glob a lly (Pe t ers et al., 2011). The at m o s pheric con c en t ra t ion of CO2, a green h ouse gas, is in c reas i ng, caus i ng trap p ing of so l ar heat and sub s e q uent global warm i ng (e.g., Hansen et al., 1981). Global warm i ng stud i es pre d ict that cli -mate changes, re s ult i ng from in c rease of at m o s pheric con c en -tra t ion of CO2, will ad v ersely af f ect life on Earth (Mac k en z ie and Lerman, 2006).

Car b on man a ge m ent con s ists of a broad port f o l io of strat e-gies to re d uce CO2 emis s ions via CO2cap t ure and geo l og i c al stor a ge (CCS), en h anced ef f i c iency of power gen e r a t ion and use, ap p li c a t ion of low car b on fu e ls, and the em p loy m ent of re -new a ble en e rgy sources (Lokhorst and Wildenborg, 2005).

Car b on di o x i de is al r eady be i ng cap t ured by the oil and gas and chem i c al in d us t ries. Once CO2 has been cap t ured, it needs to be stored se c urely for thou s ands of years. CO2 has been used for en h anced oil re c ov e ry (EOR) since the 1950s (Crawford et al., 1963). Re s earch re l ated to stor a ge of CO2 for en v i r on m en t al pur p oses be g an only 10–15 years ago. CO2 stor a ge in geo l og i c al me d ia can be safely un d er t aken within na -tional bound a ries in most coun t ries, thus avoid i ng in t er n a t ional po l it i c al is s ues. Geo l og i c al sinks for CO2in c lude de p leted oil and gas res e r v oirs, unminable coal seams, and deep sa l ine po -rous for m a t ions. To g ether, these can hold world w ide hun d reds to thou s ands of gigatonnes of car b on di o x i de, and the tech n ol -ogy to in j ect CO2 into the ground is well es t ab l ished. CO2 is stored in geo l og i c al for m a t ions by a num b er of dif f er e nt trap -ping mech a n isms, with the par t ic u l ar mech a n ism de p end i ng on the for m a t ion type (Bradley et al., 1991; Blunt et al., 1993; Win -ter and Berg m an, 1993; Bachu et al., 1994; Law and Bachu, 1996; Gunter et al., 1997; Herzog et al., 1997; Bruant et al., 2002; Bachu and Ad a ms, 2003; Pashin and McIntyre, 2003; Lokhorst and Wildenborg, 2005).

The pres e nt study has been per f ormed within the frames of the EU GeoCapacity and CO2NET EAST pro j ects sup p orted by the Eu

r o

p ean Com

m is

s ion’s 6th and 7th Frame

w ork Programmes (Willscher et al., 2007). Geo l og i c al sinks po t en t ially suit a ble for CO2 stor a ge were eval u a ted us i ng a com m on ap -proach. The re g ion stud i ed is one of the larg e st CO2pro d uc e rs per ca p ita in Eu r ope. In the coun t ries con s id e red, the sta t ion a ry sources of CO2 that are listed in the Eu r o p ean Un i on Emis s ion Trad i ng Scheme pro d uce 16.9% of Eu r o p ean emis s ions (year 2005). This av e r a ges 8.1 Mt CO2 per ca p ita in 2007, with the larg -est emis s ions per ca p ita re p orted from Es t o n ia and the Czech Re -pub l ic – 15.2 and 12.1 Mt CO2 re s pec t ively, while Lat v ia and Lith u-a n ia ac c ount only for 3.4 and 4.5 Mt CO2 (World Bank Data, https://www.doczj.com/doc/0c11156574.html,/in d i c a t or/ E N.ATM.CO2E.PC).

CO2 STORAGE TECHNOLOGIES

Var i o us types of for m a t ions are con s id e red suit a ble for CO2 stor a ge, though the ma t u r ity of dif f er e nt stor a ge tech n ol o g ies dif f ers. The car b on di o x i de can be trapped in a geo l og i c al for -ma t ion in the fol l ow i ng ways:

–meth a ne dis p lace m ent in coal beds (Gunter et al., 1997;

Pashin and McIntyre, 2003);

–stor a ge in salt cav e rns (Bradley et al., 1991);

–stor a ge in de p leted hy d ro c ar b on res e r v oirs (Winter and Berg m an, 1993), in par t ic u l ar when ap p ly i ng the en -

hanced oil re c ov e ry tech n iques (Blunt et al., 1993);

–stor a ge in deep sa l ine aqui f ers through hy d ro d y n amic trap p ing (Bachu et al., 1994);

–min e ral trap p ing (Bachu et al., 1994; IPCC, 2005; Teir et al., 2010).

Se l ec t ion of a par t ic u l ar tech n ol o gy de p ends on geo l og i c al con d i t ions of the sink and on eco n omic fea s i b il i ty. In most of sed i m en t ary bas i ns, the traps in the deep sa l ine aqui f ers rep r e -sent the most pro s pec t ive ap p roach. Stor a ge in salt de p os i ts and min e ral trap p ing are con s id e red to be still un e co n omic and too lit t le stud i ed, though the prog r ess in de v el o p i ng those tech -nol o g ies is gen e r a lly en c our a g i ng. Stor a ge of CO2 in coal seams is an at t rac t ive method due to the pos s i b il i ty of ad d i t ional re c ov e ry of coal-bed meth a ne com b ined with CO2 stor a ge. It should be, how e ver, noted that coal stor a ge tech n ol o g ies are still immature and not applicable at a commercial scale at present.

Stor a ge of car b on di o x i de in deep res e r v oirs, in c lud i ng hy -dro c ar b on (HC) fields, is re g arded as the most ad v anced tech -nol o gy and is ready to use.

REQUIREMENTS FOR GEOLOGICAL MEDIA

The hy d ro d y n amic trap p ing of CO2 in deep sa l ine aqui f ers is con s id e red as a nearly ma t ure tech n ol o gy and is the main near-fu t ure op t ion for geo l og i c al stor a ge of car b on di o x i de. The pro s pec t ive for m a t ions com p rise wa t er-sat u r ated po r ous lay -ers, at pres e nt not used for any other pur p ose. The high sa l in i ty ren d ers the wa t er un s uit a ble for use for drink i ng or for ir r i g a t ion.

A num b er of pa r am e t ers,such as pres s ure,tem p er a t ure, res e r v oir prop e r t ies and avail a bil i ty of traps de f ine the stor -age po t en t ial of an aqui f er. De p end i ng on the for m a t ion pres -sure and tem p er a t ure,CO2 can be stored as com p ressed gas or in super c riti c al state (P > 73.8 bars, T > 31°C). At depths greater than ~800 m the car b on di o x i de will be in super c riti c al state,which en a bles its ef f i c ient in j ec t ion and brings ad v an t ages for both pipe l ine en g i n eer i ng and fill i ng the deep pore space. There f ore, thermobaric con d i t ions of P = 73.8 bars, T = 31°C are con s id e red as the lower limit for the geo l og i c al stor a ge of CO2.

CO2 can be stored in struc t ural and strati g raphic hy d ro d y -namic traps. The ca p a b il i ty of an aqui f er to trans f er and store CO2 is con t rolled by the depositional en v i r on m ent,struc t ure, stra t ig r a p hy and pres s ure/tem p er a t ure con d i t ions of a res e r-voir. Crit i c al fac t ors for CO2 stor a ge in the deep sa l ine aqui -fers are:

–the re g ional wa t er flow sys t em;

–the thick n ess, lat e ral ex t ent and con t i n u i ty of the aqui f er;

–the po r os i ty, per m e a bil i ty and ho m o g e n e i ty of the aqui f er;

–the tight n ess of the seal above the aqui f er, in c lud i ng the faults that are po t en t ial path w ays for CO2 es c ape to the

over l ay i ng res e r v oirs;

–the ca p a b il i ty of over b ur d en lay e rs above the res e r v oir seal to de l ay or dif f use leak a ge.

ASSESSMENT OF CO2 STORAGE POTENTIAL

OF GEOLOGICAL SINKS

Dif f er e nt ap p roaches have been used to cal c u l ate the stor -age po t en t ial of deep sa l ine aqui f ers, HC fields, and coal seams.

In a sa l ine aqui f er, the pore vol u me avail a ble for CO2 stor -age (the ef f ec t ive stor a ge ca p ac i ty) de p ends on the geo m et r ic vol u me of the struc t ural or strati g raphic trap down to the spill point, as well as on its po r os i ty, sweep ef f i c iency and the ir r e -duc i ble wa t er sat u r a t ion(CSLF, 2007):

220Saulius ?liaupa et al.

M A h S S eff Wirr CO CO 22=′′′′′-j r ()

1[1]

where: M CO 2–ef f ec t ive stor a ge ca p ac i ty;A – area of trap; h – av e r -age thick n ess of trap mul t i p lied by the net-to-gross ra t io; j – av e r -age aqui f er po r os i ty;r CO 2– CO 2 den s ity at sa l ine aqui f er con d i t ions;S eff – sweep ef f i c iency (frac t ion of porewater that can be re p laced by in j ected CO 2);S Wirr –ir r e d uc i ble wa t er sat u r a t ion.

Of the var i o us op t ions for stor i ng CO 2, the use of de p leted oil and gas fields has a num b er of at t rac t ions. These fields are known to have held gases and liq u ids for mil l ions of years, and their ge o l o gy is known. De p leted and semi-de p leted fields pro -vide an op p or t u n ity for stor i ng CO 2. It is a proven tech n ol o gy. In the oil in d us t ry, CO 2 flood i ng has been used world w ide as a Ter t iary En h anced Oil Re c ov e ry (CO 2-EOR) mech a n ism for about 40 years, par t ic u l arly for res e r v oirs with pres s ures above the min i m um mis c i b il i ty pres s ure where mis c i b le dis p lace m ent of the re s id u al oil by CO 2 would oc c ur. The stor a ge ca p ac i ty of hy d ro c ar b on fields has been es t i m ated as s um i ng 1:1 vol u m et -ric re p lace m ent ra t io be t ween hy d ro c ar b ons and CO 2:

M URp B

CO CO r 22=′′r [2]

where: M CO 2 – hy d ro c ar b on field ef f ec t ive stor a ge ca p ac i ty;r CO r 2 –CO 2den s ity at res e r v oir con d i t ions (best es t i m ate);URp – the vol -ume of proven ul t i m ate re c ov e r a ble oil or gas; B – the oil or gas for -ma t ion vol u me fac t or.

In j ec t ion of CO 2 into deep unminable coal seams is an al t er -na t ive op t ion for geo l og i c al stor a ge of CO 2. Some seams al -ready hold nat u r ally oc c ur r ing car b on di o x i de. All coals have

vary i ng amounts of meth a ne ad s orbed onto pore sur f aces. The dif f er e nces in ad s orp t ion be h av i our of CO 2 and CH 4 can be used for CO 2stor a ge with si m ul t a n eous pro d uc t ion of coal-bed meth a ne from seams that are con s id e red unmineable un d er ac t ual tech n i c al or eco n om i c al con d i t ions. The pro c ess is called en h anced coal-bed meth a ne re c ov e ry (ECBM). Car b on di o x i de has a greater af f in i ty to coal than meth a ne. Coal can ad s orb ap -prox i m ately twice as much CO 2 as meth a ne. Some stud i es have shown that this rate may be as high as 10:1 (Mazzotti et al., 2009). One ton of coal can ad s orb about 30–35 m 3 of CO 2 at pres s ures in ex c ess of 5 to 8 MPa (Cook et al., 2000). One mol -e c ule of meth a ne can be ex c hanged by 1.5 to 6 mol e c ules of CO 2 de p end i ng on the avail a ble pres s ure (van Bergen and Pagnier, 2001). Two pa r am e t ers are im p or t ant for CO 2-ECBM po t en t ial – the pro d uc i ble gas in place (PGIP) and the CO 2 stor -age ca p ac i ty, which is a func t ion of PGIP, CO 2 den s ity and CO 2to CH 4 ex c hange ra t io (ER). PGIP de n otes the coal bed meth -ane re s erves for CO 2-ECBM eco n omic use (it dif f ers from reg u -lar es t i m a t ions of CBM re s erves as s um i ng the use of stan d ard pro d uc t ion mea s ures). CO 2stor a ge ca p ac i ty (S)de n otes the amount of CO 2 which re p laces the PGIP, to the ex t ent spec i f ied by the ER (hard coal usu a lly has a ra t io of about 2; brown coal and lig n ite may have higher ra t ios):

S = PGIP ′ CO 2 den s ity ′ ER

[3]

The stan d ard ap p roach of cal c u l at i ng PGIP es t i m ates the

vol u me and mass of coal within a seam, tak i ng into con s id e r -ation the meth a ne con t ent of the coal, the re c ov e ry fac t or and the com p le t ion factor:

PGIP = coal vol u me ′ coal den s ity ′ CH 4 con t ent ′ com p le t ion fac t or ′re c ov e ry fac t or

[4]

The depth range cor r e s ponds to the super c riti c al state of CO 2 and depths where suf f i c ient data are avail a ble and/or suit -able res e r v oir prop e r t ies occur.

CBM (and CO 2) is trapped in coal in dif f er e nt forms (Klibáni and Nìmec, 2001), such as (1) gas sorp t ion in micropores; (2)gas sorp t ion in meso- and macropores; (3) free gas; (4) gas dis -solved in pore wa t er (Henry′s law). The first two mech a n isms trap up to 90% of the to t al con t ent of meth a ne in coal seams.The amount of ad s orbed gas in most of the coals is com m only

2.5–40 m 3

per ton.

CO 2 STORAGE POTENTIAL OF SEDIMENTARY BASINS

VIENNA BASIN (CZECH AND SLOVAK PARTS)

The Vi e nna Ba s in (Fig. 1) is a pull-apart fea t ure that sub -sided nearly 5.5 km. The ba s in is sub d i v ided tec t oni c ally into a

sys t em of horsts and grabens (Royden, 1985; Piller et al.,1996). It was ini t i a ted as a piggy-back depocentre on the Al p ine nappes in the Lower Mio c ene. The es c ape of the West e rn Carpathians trig g ered the pull-apart mech a n ism in late Early Mio c ene that also af f ected the Dan u be Ba s in (dis c ussed be -low). Thus, the two bas i ns shared a sim i l ar sub s e q uent tec t onic

CO 2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States

221

Fig. 1. Pro s pec t ive aqui f ers and es t i m a t ions of CO 2 stor a ge

ca p ac i ty per coun t ry (Mt CO 2)Dots – lo c a t ions of pro s pec t ive stor a ge sites; BB – Bal t ic Ba s in, CBB

– Cen t ral Bo h e m ian bas i ns, CF – Carpathian Foredeep, DB – Dan -ube Ba s in, ESB – East Slovakian Ba s in, MPB – Mid-Pol i sh Ba s in,VB – Vi e nna Ba s in; con t ours of aqui f ers match i ng hy d ro s tatic pres -sure and tem p er a t ure con d i t ions for CO 2 stor a ge (>7.8 MPa and >31°C) are shown only; A, B, C – se l ected struc t ural traps (white-black dots) in d i c ated in Fig u re 5

his t ory. The syn-rift sub s i d ence was re p laced by post-rift ther -mal sag and ces s a t ion of fault tec t on i cs and sub s i d ence rate in the Late Mio c ene. Only in the east (e.g., Zohor–PlaveckyMikulá?), sinistral transtension main t ained rapid, fault-con -trolled sub s i d ence of grabens.

The Neo g ene fill of the Vi e nna Ba s in is com p osed of Eggenburgian to Pontian se q uences that over l ap the Al -pine–Carpathian units and flysch nappes (Piller et al., 1996).

The main pros p ects of the Vi e nna Ba s in are re l ated to HC fields. Some of the res e r v oirs are prac t i c ally de p leted, es p e -cially the shal l ow ones. Deeper struc t ures in the Vi e nna Ba s in are still pro d uc i ng, as e.g., the res e r v oirs Hru?ky (oil and gas),Tynec (oil), Gajary (oil and gas) and oth e rs. Most of the struc -tures in the Vi e nna Ba s in rep r e s ent tec t onic traps in the Neo -gene sed i m en t ary infill (Pícha et al., 2006). Res e r v oir bod i es are mostly rep r e s ented by Mio c ene (Badenian, Sarmatian)sand s tones. Mio c ene oil and gas ac c u m u l a t ions oc c ur in the depth in t er v al of 150–2000 m. Res e r v oir rocks are sand s tones and con g lom e r a tes (2–30 m, in some places up to 60 m thick).Po r os i ty of sandy lay e rs ranges from 10 to 29%, per m e a bil i ty from 50 to 250 mD. The stor a ge ca p ac i ty of six t een ma j or hy -dro c ar b on fields dis c ov e red in the Slovakian and Czech parts of the Vi e nna Ba s in is as high as 93.1 Mt CO 2.

DANUBE BASIN

The Dan u be Ba s in is sit u a ted in the SW part of Slovakia (Fig. 1). To g ether with the Vi e nna Ba s in it rep r e s ents the north -west e rn part of the Pannonian Ba s in sys t em. The pre-Ce n o z oic base m ent is com p osed of Austro-Al p ine and Slo v ak- C arpathian ter r ains as well as of Transdanubicum in the south-east (Rasser and Harzhauser, 2008). The depth of the Dan u be graben ba s in ex c eeds 8.5 km. It was es t ab l ished as a fault-con t rolled rift ba s in ow i ng to wrench fault i ng in d uced by NW–SE com p res s ion dur i ng the late Early Mio c ene. Pull-apart depocentres opened in some parts of the ba s in (e.g., Blatná).The extensional re g ime was un s ta b le. The ex t en s ion di r ec t ion changed to NW–SE in Mid d le Mio c ene, which led to unroofing of some base m ent blocks and high ac t iv i ty of N–S, NNE–SSW and NE–SW strik i ng, pre d om i n antly low-an g le nor m al faults.The Pannonian and Pontian res e r v oir siliciclastics de p os i ts (that ac c u m u l ated along the north e rn mar g in of Lake Pannon)were de p os i ted in the post-rift ther m al sag phase that sub s e -quently gave way to tec t onic in v er s ion dur i ng the Plio c ene, in -duced by SW–NE com p res s ion, which, how e ver, did not in t er -rupt the sub s i d ence. In this case, the struc t ural ex t en -sion-to-com p res s ion his t ory re s em b les the tec t onic sce n ario of the Mid-Pol i sh Me s o z oic Ba s in. The struc t ures, how e ver, lack ev i d ence of salt tec t on i cs; there f ore the ge o m e t ry of the struc -tural traps is some w hat dif f er e nt.

Two pro s pec t ive large deep sa l ine aqui f ers were de f ined in the geo l og i c al sec t ion of the Dan u be Ba s in (Fig. 2). The lower,Pannonian for m a t ion is com p osed of sands, sand s tones and grav e ls, with sub o r d i n ate clay in t er c a l a t ions (Hru?ecky et al.,1996). The depth of the for m a t ion ex c eeds 3000 m in the cen -tral part of the ba s in. The tem p er a t ure is in the range of 80–140°C. The youn g er, sandy Pontian for m a t ion has more fa -

222

Saulius ?liaupa et al.

Fig. 2. Geo l og i c al cross-sec t ion of Dan u be Ba s in (Slovakia)

(af t er Franko et al., 1995; with some mod i f i c a t ions)Lo c a t ions of Neo g ene bas i ns of Slovakia and geo l og i c al pro f ile A–B (hatched line) are shown in the left cor n er of the fig u re; other

ex p la n a t ions as in Fig u re 1

vour a ble thick n ess, depths, tem p er a t ures, and res e r v oir prop -er t ies (Franko et al., 1995). The av e r a ge po r os i ty of the Pannonian for m a t ion is 6%, while that of the Pontian for m a t ion is 12%. How e ver, the Pontian for m a t ion has a more com p lex syn-sed i m en t ary ar c hi t ec t ure show i ng a highly frag m ented pat -tern. Fur t her m ore, it un d er l ies an im p or t ant Qua t er n ary drink -ing-wa t er aqui f er that is con s id e red as a risk fac t or for CO2 leak -age, as the ba s in is strongly faulted and fault seal i ng po t en t ial has not been proven.

Apart from sa l ine aqui f er struc t ures, the HC fields might be pro s pec t ive tar g ets for stor i ng CO2. The HC fields have been in -tensely ex p loited. Pres e ntly there is the only one pro d uc i ng gas field. The to t al ca p ac i ty of thir t een HC fields of the Dan u be Ba -sin (Fig. 3) is as s essed at 9.9 Mt CO2, which is a neg l i g i b le amount from the emis s ions re d uc t ion point of view.

EAST SLOVAKIAN BASIN

The East Slovakian Ba s in, locked be t ween the West e rn and East e rn Carpathians, reaches 9 km in thick n ess. The Neo -gene sed i m ents are up to 7000 m thick in the deep e st part of the ba s in (Fig. 1; Kováè et al., 2007). The Carpathian nappes com p ose the base m ent of the ba s in. The tec t onic and struc t ural style of the de p res s ion changed in the course of ba s in his t ory (Kováè et al., 1995). Ini t ial Lower Mio c ene sed i m en t a t ion took place in a forearc set t ing and was sub j ect to NE–SW com p res -sion that fi n ally led to frag m en t a t ion of the depocentre. The hor -i z on t al com p res s ion was as s o c i a ted with nor m al and strike-slip fault i ng. Up p er Lower Mio c ene sed i m ents filled the pull-apart de p res s ions of the early rift i ng phase. The pro s pec t ive Sarmatian res e r v oir ac c u m u l ated dur i ng a backarc syn-rift phase that was also marked by ex t en s ive vol c a n ic ac t iv i ty.

Shales and sand s tones are the dom i n ant lithologies. Two pro s pec t ive sa l ine aqui f ers have been iden t i f ied. The lower, Sarmatian aqui f er is com p osed of pre d om i n ant sand s tones characterized by good res e r v oir prop e r t ies. The for m a t ion also con t ains im p er m e a ble claystones and volcanoclastic lay e rs. The thick n ess of the Sarmatian sed i m en t ary fill var i es from 92 to 1030 m, but the av e r a ge ef f ec t ive thick n ess (res e r v oir lay e rs) is only 127 m. The av e r a ge depth of the Sarmatian aqui f er is 1050 m; the av e r a ge po r os i ty of the sand s tones is 18%. The sec o nd, Pannonian sa l ine aqui f er com p rises the lower part of the Pannonian for m a t ion. The aqui f er is com p osed of basal con g lom e r a tes and sand s tones about 25 m in thick n ess; the po r os i ty av e r a ges 22%. The aqui f er is sealed by a thick package of shales. Average aquifer depth is 794 m.

Some pro s pec t ive struc t ures have been iden t i f ied, such as the Bzovik up l ift, that can store 830 Mt of CO2 (Kuchariè, 2009). The stor a ge po t en t ial of the Dan u be and East Slovakian bas i ns re m ains an ob j ect of fur t her study due to in s uf f i c ient cov e r a ge by in d us t rial seis m ic pro f iles and drill i ng; ac c ord i ngly, only a lim -ited num b er of struc t ures were iden t i f ied in the aqui f ers. As s um -ing a the o r et i c al re g ional stor a ge ef f i c iency co e f f i c ient of 4%, the re g ional po t en t ial of the Pannonian and Pontian aqui f ers of the Slovakian part of the Pannonian Ba s in is 1360 and 8165 Mt of CO2re s pec t ively. The ca p ac i t ies of the Sarmatian and Pannonian aqui f ers of the East Slovakian Ba s in are eval u a ted as high as 2940 and 416 Mt of CO2re s pec t ively.

A num b er of HC fields were dis c ov e red in the East Slovakian Ba s in. Res e r v oirs are lo c ated mainly in the Badenian and Sarmatian volcanoclastic sed i m en t ary for m a t ions. The ca -pac i ty of nine ma j or HC fields of the East Slovakian Ba s in was eval u a ted at 49.9 Mt CO2.

CARPATHIAN FOREDEEP BASIN

The Neo g ene Carpathian Foredeep rep r e s ents a nar r ow de p res s ion lim i ted to the SE by the de f ormed Carpathian Flysch Zone. The autochthonous sed i m en t ary for m a t ions com p rise im p or t ant oil and gas fields and large aqui f er struc t ures. The sed i m ents fill i ng the ba s in are of Eocene, Oligocene and Mio -cene age. The av e r a ge po r os i ty of res e r v oir rocks is in the range of 15–20% and the per m e a bil i ty is 50–200 mD. Sev e n -teen po t en t ially suit a ble deep sa l ine aqui f er sites were iden t i f ied in the Czech part of the foredeep.

The Carpathian Foredeep com p rises a num b er of hy d ro c ar -bon fields. Mio c ene de p os i ts rep r e s ent the res e r v oir rocks. Six -teen de p leted/de p let i ng gas and oil fields have been eval u a ted for CO2 stor a ge, most of them of mod e r a te size. Most of the HC res e r v oirs are de p leted or al m ost de p leted (80–90%) and some of them have been trans f ormed into nat u r al gas un d er g round stor a ge sites (e.g., Dolní Dunajovice).

In the Czech Re p ub l ic, the most im p or t ant pro d uc i ng oil and gas res e r v oirs are lo c ated in the Carpathian Flysch Zone (Hladík et al., 2008). In this area the pro d uc t ion lay e rs are re -lated to Ju r as s ic and Car b on i f e r o us strata un d er l y i ng flysch nappes. There are also some gas fields in Mio c ene de p os i ts (?dánice area) and small oil res e r v oirs were dis c ov e red in the crys t al l ine base m ent (?dánice, Lubná–Kostelany).

The stor a ge ca p ac i ty of the HC fields is very dif f er e nt, rang -ing from 4.17 Mt in the Uszkowce field to 244.6 Mt in the Przemy?l field (Po l and). The to t al stor a ge po t en t ial of HC fields was eval u a ted at 434.6 Mt CO2, mostly in the Pol i sh part, where they be l ong usu a lly to the Carpathian Neo g ene Foredeep zone

CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States

223 Fig. 3. Hy d ro c ar b on fields con s id e red for CO2 stor a ge

along the Carpathian Front con t ain i ng Mio c ene res e r v oirs.Some HC fields are re l ated to the base m ent of the foredeep com p ris i ng Me s o z oic and Pa l eo z oic res e r v oir lay e rs, es p e c ially in the west e rn part (Karnkowski, 1999).

CZECH CRETACEOUS BASINS

Czech Cre t a c eous bas i ns com p rise sev e ral large aqui f ers,such as the Bo h e m ian Cre t a c eous Ba s in in cen t ral and east Bo h e m ia or the Ce n o z oic and Cre t a c eous de p os i ts of south Bo h e m ia com p ris i ng the Budìjovice and T?eboò bas i ns (Malkovsky, 1987). How e ver, these bas i ns are too shal l ow to be con s id e red as pro s pec t ive for CO 2stor a ge. Fur t her m ore,the Cenoman i an–Santonian de p os i ts of the Bo h e m ian Cre t a -ceous Ba s in, one of the larg e st de p res s ions in the Czech Re -pub l ic, are im p or t ant ground w a t er res e r v oirs used for wa t er sup p ly and there f ore are also un s uit a ble for CO 2 stor a ge.

UPPER PALEOZOIC BOHEMIAN BASINS

Up p er Pa l eo z oic bas i ns, lo c ated in the cen t ral and north e rn part of the Czech Re p ub l ic and southwesternmost Po l and, con -tain pro s pec t ive Perm i an–Car b on i f e r o us for m a t ions com p ris -ing deep sa l ine aqui f ers of Early Car b on i f e r o us–Late Perm i an age (Holub and Tásler, 1978). Two main fault sys t ems de f ine the struc t ural frame w ork of the bas i ns. Faults that were ac t ive dur i ng Late Pa l eo z oic sed i m en t a t ion might have con s id e r a bly in f lu e nced the lat e ral lithofacies pat t ern. NW–SE trending faults are most com m on. They show ki n e m atic fea t ures of nor m al faults with some dextral strike-slip com p o n ent. This fault pop u -la t ion was re c ur r ently ac t i v ated, es s en t ially dur i ng Cre t a c eous Al p ine compressional fault i ng. The sec o nd fault fam i ly, strik i ng NE–SW, is also likely of synsedimentary or i g in. These are mostly nor m al faults show i ng off s et am p li t udes of sev e ral tens to hun d reds of metres. The larg e st am p li t udes are de f ined in mar g inal parts of the bas i ns. The rel a t ive ver t i c al dis p lace -ments on these synsedimentary faults reach up to sev e ral hun -dreds of metres. An ex a m p le of a large-scale bor d er fault is the Litome?ice Fault Zone. It was es t ab l ished in the Late Pa l eo z oic and was re p eat e dly ac t ive dur i ng the Cre t a c eous and mainly in Ce n o z oic times, when it rep r e s ented a part of the NE-trending Eger rift com p ris i ng a sys t em of depocentres and a vol c a n ic range (a large Doupov stratovolcano emerged along this fault zone, and partly cov e red the ?atec Ba s in). Post-vol c a n ic hy d ro -ther m al ac t iv i ty gave rise to sev e ral ben t on i te de p os i ts as s o c i -ated with tuff de p o s i t ion.

The bas i ns con t ain large struc t ures that might be pro s pec -tive for CO 2stor a ge. The Cen t ral Bo h e m ian bas i ns rep r e s ent a chain of flu v ial-lac u s t rine depocentres com p ris i ng sev e ral pro -spec t ive aqui f ers as well as coal-bear i ng lay e rs (e.g., Pe?ek et al., 2001).

Only struc t ures with fa v our a ble seal i ng, suit a ble depth and sig n if i c ant pore vol u me were con s id e red for CO 2 stor a ge. Al t o -gether, five po t en t ially suit a ble struc t ures were iden t i f ied within these basins.

The Permian–Carboniferous Cen t ral Bo h e m ian and Lower Silesian bas i ns are partly cov e red by thick (up to 900 m) sed i -men t ary units of the Bo h e m ian Cre t a c eous Ba s in. Res e r v oir bod i es com p rise mainly Up p er Car b on i f e r o us (Westphalian)sand s tones sealed by Stephanian and Lower Perm i an shales.The struc t ures are of com p lex ge o m e t ry, and suf f i c ient in f or m a -tion about their prop e r t ies is lack i ng in most of the bas i ns. The

as s umed po r os i ty of aqui f ers for cal c u l at i ng CO 2 stor a ge ca -pac i t ies was 15%. The as s umed av e r a ge per m e a bil i ty is in the

range of 1–80 mD. The the o r et i c al stor a ge ca p ac i ty of the Cen -tral Bo h e m ian bas i ns was as s essed at 471 Mt CO 2.

The Cen t ral Bo h e m ian bas i ns con t ain coal fields that might be con s id e red for po t en t ial CO 2 stor a ge (Fig. 4). The Slany,Peruc and Mìlník–Benátky fields have been eval u a ted at a ba -sin scale.

UPPER SILESIAN BASIN

The Up p er Silesian Coal Ba s in is a large and com p lex paralic-limnic sed i m en t ary struc t ure that is lo c ated in the north-east Czech Re p ub l ic and south Po l and. Coal seams oc -cur here within Namurian and Westphalian sed i m ents (Up p er Car b on i f e r o us) that have a po t en t ial for CO 2 stor a ge in coal seams and for ap p li c a t ion of en h anced coal-bed meth a ne re -cov e ry tech n ol o g ies. It should be men t ioned that coal min i ng meth a ne (CMM) is ex p loited to g ether with coal (usu a lly at a depth range of 300–1000 m), for safety rea s ons in pro d uc i ng col l ier i es as a sec o nd a ry re s ource. The ma j or i ty of CBM is,how e ver, pro d uced from unmineable coal seams or from aban -doned mines. For ex a m p le, the pro d uc t ion of CBM from the Czech part of the ba s in reaches 40 mil. m 3 per year.

For the pur p oses of CO 2 stor a ge, the un m ined coal mea -sures were con s id e red. Stor a ge ca p ac i t ies are based on es t i -ma t ions of pro d uc i ble gas in place (PGIP) cal c u l ated for the fa -vour a ble depth range. The to t al ef f ec t ive CO 2stor a ge ca p ac i ty of 33 sites was as s essed as high as 469 Mt. Es t i m ated stor a ge

224

Saulius ?liaupa et al.

Fig. 4. Coal seams (black poly g ons) and the o r et i c al CO 2

stor a ge ca p ac i t ies in coal per coun t ry (Mt CO 2)

ca p ac i t ies of in d i v id u al fields vary from 0.3 Mt (Moszczenica) to 46.1 Mt (ˉory-Suszec, both in Po l and). The re g ional stor a ge ca p ac i ty at the depth range 1–2 km was assessed at 1254 Mt.

FORE-SUDETIC MONOCLINE

The Fore-Sudetic Monocline rep r e s ents the west e rn flank of the larger Mid-Pol i sh Me s o z oic Ba s in. It con t ains a num b er of HC fields (Fig. 3). There are nu m er o us gas fields sit u a ted in the Rotliegend and Zechstein de p os i ts. Due to its deep burial and the Early Perm i an vol c a n ic ac t iv i ty, most of the Fore-Sudetic Ba s in is overmature. In the HC area, two prin c i p al depositional ep i s odes of Tri a s s ic–Ju r as s ic and Late Cre t a c eous ages are rec o g n ized. The res e r v oirs are usu a lly com p rised of flu v ial and ae o lian de p os i ts of the Rotliegend and, es p e c ially in the north -ern part, car b on a tes of Zechstein (Karnkowski, 1999).

The stor a ge ca p ac i ty of HC fields var i es from 2.4 Mt (Gorzys3aw) to 91.9 Mt (ˉuchlów). Most HC fields are de p leted to over 90% of re s erves, es p e c ially the larg e st ones.

The size of hy d ro c ar b on fields is highly vari a ble. The Barn -ówko–Mostno–Buszewo (BMB) struc t ure of about 150 km2 in size is the larg e st oil and gas field de v el o ped in Po l and (Górski et al., 1999); its stor a ge ca p ac i ty has been eval u a ted at 34.2 Mt. To t al stor a ge ca p ac i ty of HC fields of the Fore-Sudetic Monocline was as s essed as high as 240 Mt.

MID-POLISH BASIN

The Mid-Pol i sh Me s o z oic Ba s in is one of the larg e st sed i-men t ary depocentres in Eu r ope (Dadlez, 2006). It com p rises large aqui f ers of Early Cre t a c eous, Early Ju r as s ic and Early Tri -as s ic age. Tec t onic anal y s is of the Mid-Pol i sh Ba s in in d i c ates an ini t ial Late Perm i an–Early Tri a s s ic syn-rift phase with sub s e -quent ex tensional re j u v e n a t ion dur i ng the Late Ju r as s ic (Stephenson et al., 1995) that cor r e l ates with in t en s i f ied rift i ng and wrench ac t iv i ty within the Arc t ic–North At l an t ic rift sys t em and along the north e rn Tethyan mar g in (Stephenson et al., 2003). In con t rast, ac c el e r a t i ng tec t onic sub s i d ence be g in n ing in the Cenomanian was a pre c ur s or of compressional de f or m a -tion in the ba s in that cul m i n ated in Al p ine-re l ated ba s in in v er -sion dur i ng the lat e st Late Cre t a c eous and ear l i e st Ce n o z oic.

The Lower Cre t a c eous res e r v oir con s ists mainly of Barremian–Mid d le Albian sandy and car b on a te-sandy de p os -its. They are sep a r ated by se r ies of low- and non-per m e a ble siltstones and mudstones. The Barremian–Mid d le Albian sand -stones rep r e s ent a po t en t ial res e r v oir for CO2 stor a ge. They are over l ain by Up p er Cre t a c eous lime s tones and chalk char a c t er -ized by low per m e a bil i ty (Górecki, 2006). The to t al thick n ess of the Lower Cre t a c eous suc c es s ion var i es from sev e ral metres at the pe r iph e ral zones of the ba s in to sev e ral hun d red metres (500 m) in the cen t re (Leszczy?ski, 2012). The ef f ec t ive po r os -ity is of or d er of 20–40%. Pore wa t er sa l in i ty at t ains 100 g/l.

Lower Ju r as s ic aqui f ers are pre d om i n antly com p osed of sand s tones of Hettangian, Sinemurian, Domerian, Late Pliensbachian and Late Toarcian age. They are sep a r ated by de p os i ts of low per m e a bil i ty. The to t al thick n ess of the Lower Ju r as s ic suc c es s ion ranges from ~10 metres in the ba s in pe -riph e ry to 400–1200 m in the cen t re (Górecki, 2006). The best prop e r t ies for CO2 stor a ge have been iden t i f ied in the Up p er Toarcian and Lower Aalenian sand s tones over l ain by Up p er Aalenian shaly seal rock. The Up p er Pliensbachian aqui f er is sealed by Lower Toarcian shales. Com m only, the open po r os -ity ranges from 15 to 20%. Pore wa t er sa l in i ty reaches 200 g/l.

Mid d le Buntsandstein sand s tones com p ose the ma j or part of the Lower Tri a s s ic aqui f er. They are sealed by R?t silty and clastic-car b on a te-evaporitic de p os i ts re f erred to as the Up p er Buntsandstein. The to t al thick n ess of the Lower Tri a s s ic unit changes from sev e ral tens of metres to over 1600 m (Górecki, 2006). The av e r a ge ef f ec t ive po r os i ty of aqui f er sand s tones is about 10%. The porewater sa l in i ty of the Lower Tri a s s ic aqui f er var i es from sev e ral g/l in the mar g inal parts to over 350 g/l in the cen t ral parts of the ba s in.

Nu m er o us tec t onic trap struc t ures have been de f ined in the Me s o z oic aqui f ers, mainly re l ated to salt struc t ures. Some of these may prove to be geo l og i c al struc t ures ad e q uate for CO2 stor a ge. 18 pro s pec t ive lo c al anticlines and tec t onic grabens have been ex a m i ned – 7 struc t ures in Lower Cre t a c eous, 7 struc t ures in Lower Ju r as s ic and 4 struc t ures in Tri a s s ic for m a -tions. These rel a t ively well ex p lored struc t ures likely com p rise only a part of stor a ge ca p ac i ty po t en t ial of the ba s in which is still be i ng stud i ed in new do m es t ic re s earch pro j ects. The stor a ge ca p ac i ty of in d i v id u al struc t ures var i es from 64 to 575 Mt of CO2. The to t al stor a ge ca p ac i ty of these 18 struc t ures amounts to 3522 Mt of CO2. This would al l ow stor a ge 11-years’ CO2 emis s ions from Po l and (re f er r ing to the emission level of 2004; Tarkowski et al., 2008).

BALTIC BASIN

The Bal t ic Ba s in is a part of the East Eu r o p ean Plat f orm. It com p rises Lith u a n ia, Lat v ia, Es t o n ia, the Kaliningrad Dis t rict of Rus s ia as well as parts of Po l and, Swe d en and Den m ark ( liaupa et al., 2004, 2005, 2008).

A num b er of large aqui f ers have been iden t i f ied within this ba s in. How e ver, ex c ept for a very small part of the Me s o z oic Mid-Pol i sh Ba s in lo c ated off s hore, only the sa l ine Cam b rian aqui f er matches the ba s ic re q uire m ents for CO2 stor a ge ( liaupa et al., 2008). The main de f i c iency of the other aqui f ers is the ab s ence of struc t ural traps that are large enough.

The Cam b rian res e r v oir rep r e s ents the base of the Bal t ic Ba -sin sed i m en t ary infill. The depths vary from out c rops in Es t o n ia to more than 2 km in west Lith u a n ia and 4 km in north Po l and (Podhala?ska and Modli?ski, 2010). The res e r v oir is com p osed of quartz arenites with sub o r d i n ate siltstones and shales. The thick n ess of the aqui f er is in the range of 10–70 m (av e r a ge 40–60 m). Po r os i ty is 3–26%, de c reas i ng with depth. The Cam -brian sand s tones are con f ined by a 200–2000 m thick Or d o v i -cian–Si l u r ian shale pack a ge that en s ures re l i a ble seal i ng of the res e r v oir. Tem p er a t ure (>31°C) and pres s ure (>7.8 MPa) con d i -tions fa v our a ble for CO2geo l og i c al stor a ge have been iden t i f ied in the south e rn Bal t ic Sea, the Kaliningrad dis t rict, north e ast e rn Po l and, cen t ral and west Lith u a n ia and Lat v ia. De t ailed geo l og i-cal and geo p hys i c al data, col l ected dur i ng ex t en s ive oil ex p lo r a -tion in the past, has en a bled iden t i f i c a t ion of a num b er of lo c al struc t ures in the Cam b rian res e r v oir. The main de f or m a t ion took place dur i ng the lat e st Si l u r ian–ear l i e st De v o n ian that was in -duced by dock i ng of Laurentia to Baltica (Sliaupa et al., 2004). They struc t ures are, how e ver, mostly of small size. For in s tance, only two struc t ures in Lith u a n ia have a stor a ge ca p ac i ty ex c eed -ing 1 Mt (8 and 21 Mt CO2re s pec t ively).

The pro s pec t ive stor a ge area is con f ined to cen t ral Lat v ia and the Lat v ian off s hore re g ion. Six t een on s hore and six t een off s hore large Cam b rian struc t ures, each with es t i m ated stor -age ca p ac i ty ex c eed i ng 2 Mt CO2, have been iden t i f ied in this area (Fig. 1; Shogenova et al., 2009a, b). The av e r a ge ef f ec t ive po r os i ty of Cam b rian sand s tones is 20–25%, per m e a bil i ty reaches hun d reds and thou s ands of mD, min e r a l i za t ion of ground w a t er is 85–126 g/l and wa t er tem p er a t ure is 17–25°C. Thick n ess of the res e r v oir sand s tones is 20–70 m (Shogenova et al., 2011). The to t al ca p ac i ty of large struc t ures is es t i m ated as high as 400 Mt of CO2 on s hore and 300 Mt off s hore, with the po t en t ial of the larg e st up l ifts reach i ng 40–70 Mt of CO2.

CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States225

The Bal t ic Ba s in rep r e s ents a proven HC prov i nce (Fig. 3). In to t al, about 40 HC ac c u m u l a t ions have been dis c ov e red (Brangulis et al., 1993; ?liaupa et al., 2004). Most of them are oil ac c u m u l a t ions, but off s hore Po l and, gas ac c u m u l a t ions oc -cur as well. In the Kaliningrad dis t rict, oil pro d uc t ion be g an in 1975. Cur r ently 5–6 Mbbl/year are pro d uced from the on s hore fields. Lith u a n ian on s hore oil pro d uc t ion started in 1991. It reached its pro d uc t ion peak in 2004 with 2.8 Mbbl. There is light oil and gas pro d uc t ion in the Pol i sh sec t or of the Bal t ic Sea (Pikulski et al., 2010). In the north e rn part of the ba s in, there is small-scale oil pro d uc t ion in Gotland. In Lat v ia, sev e ral small oil ac c u m u l a t ions have been dis c ov e red. Only mi n or, brief oil pro -duc t ion took place in 1990. The oil and gas fields are gen e r a lly small in size and most of them are de p let i ng. There f ore, the EOR op t ion is con s id e red as a pro s pec t ive CO2ap p li c a t ion tech n ique for the re g ion. The net (and gross) CO2 vol u mes re -quired for EOR have been eval u a ted. The to t al po t en t ial of Lith -u a n ian oil fields is 4.3 (9) Mt CO2, Kaliningrad on s hore 29.1 (58) Mt and off s hore 7.7 (15) Mt, Pol i sh off s hore 7.4 (15) Mt. The CO2 stor a ge po t en t ial was eval u a ted at 5.7 Mt in Lith u a n ia, 26 Mt on s hore Kaliningrad, 7 Mt off s hore Kaliningrad, 7 Mt for Pol -ish off s hore oil fields and 16 Mt for gas fields.

In Pol i sh part of the ba s in, ex c lud i ng seven known HC fields, forty Cam b rian traps of var i o us size have been iden t i f ied (Dom?alski et al., 2004) as pro s pec t ive for hy d ro c ar b on pros -pect i ng. The stor a ge ca p ac i ty of these struc t ures have yet not been as s essed but they might be com p a r a b le to those de -scribed of Lat v ia. One prob l em might be in t eg r ity of the caprock, be c ause of lo c ally in t ense fault i ng there.

DISCUSSION

The pres e nt study shows that the main po t en t ial for geo l og i-cal stor a ge of car b on di o x i de emis s ions in the coun t ries con s id -ered is re l ated to deep sa l ine aqui f ers. The sed i m en t ary bas i ns dis c ussed are of very dif f er e nt type, size and age that range from Cam b rian to Neo g ene. De s pite the con s id e r a ble dif f er -ences in geo l og i c al evo l u t ion, the stor a ge po t en t ial fig u res eval -u a ted for particular basins are quite comparable.

The pro s pec t ive traps iden t i f ied at the first study stage of deep sa l ine aqui f ers are of ex p lic i tly struc t ural na t ure. Struc -tures show very dif f er e nt ki n e m atic fea t ures that re l ate to var i-ous tec t onic types of the bas i ns considered.

The Bal t ic Sed i m en t ary Ba s in rep r e s ents the larg e st depocentre among the bas i ns ana l ysed. Yet, the cratonic set -ting of the ba s in re s ults in only weak tec t onic struc t ur i ng of the sed i m en t ary infill, ow i ng to a me c han i c ally strong litho s phere (Ershov and liaupa, 2000) and long dis t ance to the tec t onic stress source sys t ems. Ac t iv i ty of these sys t ems is the prin c i p al rea s on for the for m a t ion of ma j or struc t ural traps in the Bal t ic Ba s in. Due to low tec t onic forces and a stiff litho s phere, the struc t ures are gen e r a lly small in size. The am p li t udes of lo c al up l ifts are com m only in the range of 10–20 m. There f ore, the stor a ge ca p ac i ty of the struc t ures iden t i f ied is low and can n ot be con s id e red as pro s pec t ive for CO2 stor a ge ( liaupa et al., 2005). Only cen t ral Lat v ia and the ad j a c ent off s hore area have been sub j ect to strong de f or m a t ion within the Liepaja–Saldus Ridge, com p ris i ng lo c al up l ifts of con s id e r a ble size pro d uc i ng struc t ures with high stor a ge ca p ac i ty ( liaupa et al., 2008). The struc t ures are clas s i f ied as transpressional fault-con t rolled anticlines (Fig. 5A). The re g ion a lly dif f er e n t i a ted de f or m a t ion was re l ated to vari a t ions in the litho s phere strength of the ba s in. The more de f ormed cen t ral Lat v ia is con f ined to the lo c ally weak e st and thick e st (~60 km) part of the Earth’s crust. There -fore, only Lat v ia has a large stor a ge po t en t ial, while other coun -tries sit u a ted within the Bal t ic Ba s in are de v oid of pro s pec t ive traps.

The Mid-Pol i sh Me s o z oic Sed i m en t ary Ba s in is sit u a ted in a dif f er e nt tec t onic set t ing, strad d ling the zone where the East Eu r o p ean Craton and the youn g er West Eu r o p ean Plat f orm are jux t a p osed, i.e. the Teisseyre-Tornquist Zone (TTZ). The TTZ rep r e s ents a pre-weak e ned zone that is sen s i t ive to act i ng tec t onic forces. There f ore, the ba s in in gen e ral, and the tec t onic struc t ures in par t ic u l ar, are of much larger mag n i t udes than those of the cratonic Bal t ic Ba s in. The Mid-Pol i sh depocentre was es t ab l ished in the Late Perm i an. Multiphase tec t onic ac t iv -ity, chang i ng from extensional to compressional re g imes, has re s ulted in the com p lex ge o m e t ry of the tec t onic struc t ures (Krzywiec, 2006). Fur t her m ore, they are as s o c i a ted with in -tense salt tec t on i cs (Fig. 5B). There f ore, the struc t ural traps iden t i f ied in cen t ral Po l and are of much larger size and have larger stor a ge vol u mes; some of them ex c eed more than 10-fold the size of the Lat v ian struc t ures.

The sed i m en t ary bas i ns lo c ated south of the Bal t ic and Mid-Pol i sh depocentres are of much smaller size due to tec -tonic frag m en t a t ion.

The tec t onic his t ory was com p lex in the Cen t ral Bo h e m ian Up p er Pa l eo z oic bas i ns. The po t en t ial sinks rep r e s ent largely fault-bounded depocentres with a gen e r a lly flat ba s in floor. The ba s in fill, ar r anged in a large brachysyncline su p er i m p osed by lower-or d er brachyanticlines, is dis s ected by nu m er o us faults and associated structures.

The other group of small sed i m en t ary bas i ns is rep r e s ented by Neo g ene extensional de p res s ions com p ris i ng the Vi e nna, Dan u be and East Slovakian bas i ns. They bear sim i l ar i t ies in tec t onic evo l u t ion, struc t ur i ng style and sed i m en t a t ion. Struc -tures rep r e s ent i ng se r ies of extensional fault-blocks formed that are con s id e red pro s pec t ive for stor a ge of CO2 (Fig. 5C). The sec o nd im p or t ant res e r v oir of Pannonian age is rep r e s en t a t ive of the post-rift sub s i d ence phase that was as s o c i a ted with tec -tonic ex t en s ion and fault ac t iv i ty. As in the Dan u be Ba s in, the East Slovakian de p res s ion was sub j ect to tec t onic in v er s ion and slight fold i ng dur i ng the Plio c ene.

A con f lict of in t er e sts should be noted. In this in s tance, the Dan u be Ba s in is the larg e st res e r v oir of po t a b le wa t er in the cen t ral Eu r ope. The sources are lo c ated in the Qua t er n ary cover of thick n ess of up to 500 m and in the up p er part of the Neo g ene suc c es s ion com p ris i ng Pannonian and Pontian aqui -fers. Fur t her m ore, they con t ain large sources of sa l ine geo t her -mal wa t er at depths ex c eed i ng 1500 m. At this depth, the av e r -age tem p er a t ure is about 60o C. It is es t i m ated that the re c ov e r -able amount of geo t her m al en e rgy is 150 MWt across the whole ba s in (Franko et al., 1995). These is s ues are rel e v ant also to other sed i m en t ary bas i ns of sim i l ar hydrogeological char a c t er -is t ics in Eu r ope. The pri o r i t ies de p end on de v el o p m ent of en -ergy sec t or, de m ands on po t a b le wa t er, as well as CCS tech -nol o gy prog r ess.

An o ther type of aqui f er sink is re l ated to foredeep bas i ns lo -cated along the north e rn mar g in of the Carpathian orogen. A num b er of pro s pec t ive struc t ural traps have been iden t i f ied in the Carpathian Foredeep, up to 40 km across, in the Czech Re -pub l ic. The ini t ial re-collisional ba s in was es t ab l ished in the Oligocene through to the early part of the Early Mio c ene (Nehyba and ?ikula, 2007). The flex u ral bend i ng phase and de -po s i t ion of a syn-orogenic clastic wedge started in the mid Early Mio c ene due to the on s et of thrust i ng in Carpathians. This cli -maxed in the late Carpathian time and was fol l owed by Early

226Saulius ?liaupa et al.

Badenian postcollisional de p o s i t ion. Foredeep sub s i d ence was as s o c i a ted with the on s et of for m a t ion of compressional struc -tures, many of which are con s id e red to be pro s pec t ive for CO2 stor a ge in the Czech ter r i t ory. The struc t ural traps suit a ble for CO2 stor a ge in south Po l and were formed in a sim i l ar tec t onic set t ing (Oszczypko, 1998; Oszczypko et al., 2006). Syn-sed i-men t ary faults con t rolled the lat e ral pat t ern of lithofacies. The fault i ng was com p lex in the foredeep, that shows both flex u ral ex t en s ion re l ated to the Late Badenian–Sarmatian re a c t i v a t ion of the base m ent fault zones and thrust i ng com p res s ion. Proven struc t ural traps are re l ated to an t i c li n al bends com p ris i ng a pas -sive-roof du p lex, and to de t ach m ent folds above the roof back-thrust (Oszczypko et al., 2006). Some pro s pec t ive struc -tures are lo c ated in the Me s o z oic and Pa l eo z oic base m ent.

The depths of po t en t ial struc t ural traps are dif f er e nt in var i-ous sed i m en t ary bas i ns. The crit i c al min i m um depth is ap p rox i-mately 780 m – the depth at which CO2 can be usu a lly in j ected in the super c riti c al state that is im p or t ant for ef f i c ient stor a ge op e r a t ion. There is no max i m um depth limit; the deep e st con -sid e red struc t ure in the study re g ion is lo c ated at a depth of 2,630 m (Fig. 6). Iden t i f ied pro s pec t ive struc t ures are lo c ated mainly in the depth range 800–1600 m (88%) with a peak at depths of 1000–1200 m (40%). Such a shal l ow set t ing of the ma j or i ty of the pro s pec t ive sites is largely re l ated to the im p act of depth (and tem p er a t ure) on the res e r v oir prop e r t ies of siliciclastic de p os i ts, show i ng a sys t em a tic de c reases in po r os -ity and per m e a bil i ty with depth. An es s en t ial re q uire m ent for a res e r v oir body is fa v our a ble petrophysical prop e r t ies, as high gas in j ec t ion rates are re q uired for ef f ec t ive op e r a t ion of CO2 stor a ge sites.

Only siliciclastic res e r v oirs have been con s id e red in the pres e nt study. Em p loy m ent of car b on a te res e r v oirs for CO2 stor a ge is still a mat t er of dis c us s ions (e.g., Lagneau et al., 2005; An d re et al., 2007). The sandy res e r v oirs con s id e red are highly vari a ble in terms of min e ral com p o s i t ion (quarz arenites, ar k os e s, greywackes), sed i m en t ary en v i r on m ent (con t i n en t al, ma r ine) and diagenetic at t rac t ion. For ex a m p le, Cam b rian, Ju -ras s ic and Cre t a c eous ma r ine res e r v oirs of the Bal t ic and Mid-Pol i sh bas i ns are char a c t er i zed by a gen e r a lly sim p le syn-sed i m en t ary ar c hi t ec t ure, while Perm i an–Car b on i f e r o us and Neo g ene con t i n en t al and ma r ine de p os i ts in the south show i ng very com p lex sed i m en t a t ion pat t erns. The sed i m en t a -tion his t ory ac c ord i ngly in f lu e nces the qual i ty of a stor a ge site. The range in po r os i ty of pro s pec t ive struc t ures con s id e red is 0.08–0.30 (Fig. 7). Most po t en t ial sites (76%) have po r os i t ies of 0.12–0.24. The range of per m e a bil i ty is 10–1300 mD, mostly 50–300 mD (Fig. 7).

The stor a ge ca p ac i ty es t i m ates of the po t en t ial struc t ures iden t i f ied de p end con s id e r a bly struc t ure size and res e r v oir prop e r t ies. In most cases, the size of pro s pec t ive struc t ures iden t i f ied ranges from small to me d ium with an es t i m ated stor -age ca p ac i ty of 2–100 Mt of CO2 (Fig. 8). Only two struc t ures ex c eed i ng 500 Mt were dis c ov e red in the re g ion. Such small struc t ures re l ate pri m ar i ly to lim i ted tec t onic ac t iv i ty (e.g., the Bal t ic and Mid-Pol i sh bas i ns) and to the small size of sed i m en -tary bas i ns, re s ult i ng in a frag m en t a t ion of depocentres (e.g., the Vi e nna, Dan u be and East Slovakian bas i ns).

The al t er n a t ive stor a ge op t ions re l ated to uti l i s a t ion of HC and coal fields are of con s id e r a bly lower po t en t ial in the coun -tries stud i ed. The HC traps on cratonic Bal t ic Ba s in are small.

CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States 227

Fig.5.Rep r e s en t a t ive struc t ural traps

of the Bal t ic sed i m en t ary bas i ns

A –Dobele;B– Pol i sh (Dzierzanowo); C – east

Slovakian (Ptruk?a); the ma j or sa l ine aqui f ers pro s pec -

tive for CO2 geo l og i c al stor a ge are shown in grey; ori e n -

ta t ions of pro f iles are in d i c ated in Fig u re1; struc t ural

traps of the Bal t ic Ba s in are re l ated to re v erse faults, a

com p lex in t er p lay of ex tensional and sub s e q uent

compressional tec t onic forces su p er i m p osed by salt

tec t on i cs is typ i c al of the Pol i sh Me s o z oic Ba s in,while

extensional fault-blocks are typ i c al traps in the Dan u be

Ba s in

228Saulius ?liaupa et al.

Fig. 6. Depths and thick n esses of res e r v oirs of pro s pec t ive aqui f er struc t ures

N – num b er of struc t ures

Fig.7.P er m e a bil i ty and po r os i ty of pro s pec t ive res e r v oirs

Ex p la n a t ions as in Fig u re6

Fur t her m ore, ex t en s ive diagenetic ce m en t a t ion of Cam b rian

sand s tones and a pre d om i n ance of frac t ure-type res e r v oirs makes it prac t i c ally im p os s i b le to ap p ly ter t iary oil re c ov e ry us -ing CO 2. The oil fields of Po l and, the Czech Re p ub l ic and Slovakia show better res e r v oir prop e r t ies and are larger. There -fore, CO 2-EOR might be con s id e red as an at t rac t ive tech n ique for the hy d ro c ar b on in d us t ry. Pi l ot stud i es are re q uired to dem -on s trate the ap p li c a b il i ty of this tech n ol o gy in these coun t ries,as only Hun g ary and Croatia have ap p lied this ap p roach in Eu -rope so far. On the other hand, HC fields of Po l and, the Czech Re p ub l ic and Slovakia are dom i n ated by gas ac c u m u l a t ions,while oil fields are scarce. There is no proven tech n ol o gy de v el -oped for en h anced gas re c ov e ry (EGR), there f ore the pros -pects of most of HC fields re m ain in ques t ion (van den Burgt,1990; Polak and Grimstad, 2009). Only a few HC fields are suf -fi c iently large in size to be con s id e red pro s pec t ive for stor i ng CO 2 (e.g., the ˉuchlow field, 91.9 Mt CO 2). In most cases, the fields are struc t ural traps. Also, some struc t ural traps of pinch-out type have been con s id e red in the Fore-Sudetic Monocline. Such traps are in t er e st i ng in terms of their large size and thick n ess (Górski et al., 1998).

The stor a ge po t en t ial of coal seams is also lim i ted and is de f ined as a pro s pec t ive tech n ique only in Po l and and the Czech Re p ub l ic. This po t en t ial is con s id e red as a com b i n a t ion of CO 2geo l og i c al stor a ge and en h anced re c ov e ry of coal-bed meth a ne (CO 2-ECBM). The meth a ne con t ent of a coal de p osit de p ends on the pro c ess of coalification and the over a ll geo l og i -cal his t ory of the de p osit. The amount of stored gas that can be

ex t racted is a func t ion of the in t rin s ic fea t ures of the res e r v oir,such as wa t er sat u r a t ion, frac t ional per m e a bil i ty, pres s ure, and the spe c ific fea t ures of the coal, i.e. sorp t ion equilibrium,permeability, microstructure, and so on.

The Up p er Silesian Ba s in (USB) may rep r e s ent a suit a ble op t ion for CO 2 stor a ge in coal seams. Other coal bas i ns, not dis c ussed above, are too shal l ow (e.g., the brown-coal bas i ns in north e rn Bo h e m ia) or too sparsely ex p lored (the Cen t ral Bo -he m ian Paleozoic bas i ns). The to t al ef f ec t ive stor a ge ca p ac i ty of 40 blocks se l ected in the USB has been es t i m ated at 797 Mt CO 2. The re s erves of CBM that might be re c ov e red by ap p ly i ng CO 2-ECBMR tech n ol o gy have been as s essed at about 14 Bcm in the Czech Re p ub l ic and 118 Bcm in Po l and. This ap p roach could sig n if i c antly in c rease do m es t ic CBM production in these countries.

How e ver, it should be taken into con s id e r a tion that the tech -nol o gy of CO 2 stor a ge in coal seams is still im m a t ure. It is com -mer c ially ap p lied only in the San Juan sed i m en t ary ba s in in the USA, where the use of CO 2 for en h anced re c ov e ry of meth a ne is re l ated to ex c ep t ion a lly good res e r v oir prop e r t ies of coal, e.g.per m e a bil i ty ex c eed i ng 10 mD. The Eu r o p ean coal fields, in -clud i ng the coun t ries stud i ed, usu a lly have worse prop e r t ies that will re q uire de v el o p m ent of more ad v anced tech n iques for en h anc i ng the recovery of methane using carbon dioxide.

CONCLUSIONS

The six coun t ries stud i ed are char a c t er i zed by very dif f er e nt geo l og i c al con d i t ions. Slovakia and the Czech Re p ub l ic pos -sess a num b er of small sed i m en t ary bas i ns, whereas Po l and and the Bal t ic coun t ries in c lude the large Mid-Pol i sh and Bal t ic bas i ns. Four coun t ries have pro s pec t ive CO 2 stor a ge po t en t ial;a very low ca p ac i ty has been; how e ver, as s essed for Lith u a n ia,while in Es t o n ia there are no pros p ects of in-site stor a ge. The larg e st ca p ac i t ies are es t i m ated for deep sa l ine aqui f ers. The aqui f er ca p ac i ty was cal c u l ated as be i ng able to ac c om m o d ate up to 9, 10 and 75 years of an n ual CO 2 emis s ions from large point sources in Po l and, the Czech Re p ub l ic and Slovakia re -spec t ively, while Lat v ia has po t en t ial for about 200 years of emis s ion. The to t al stor a ge po t en t ial of all coun t ries stud i ed is 5950 Mt CO 2 (Ta b le 1). It should be noted that pre c i s ion of stor -age ca p ac i ty es t i m ates for in d i v id u al coun t ries is dif f er e nt, de -pend i ng on the avail a bil i ty of geo l og i c al and geo p hys i c al data.Meth o d o l o g ies sug g ested by CSLF (2007) and US DOE (2007) were ap p lied for cal c u l a t ions. Re a l i s t ic (prac t i c al) stor a ge ca -pac i ty was as s essed for Lat v ia, Lith u a n ia and Po l and that are con s trained by de t ailed drill i ng and geo p hys i c al frame w orks,while less pre c ise ef f ec t ive ca p ac i ty was es t i m ated for Slovakia and the Czech Re p ub l ic.

De p leted and de p let i ng hy d ro c ar b on fields of Lith u a n ia, Po -land and the Czech Re p ub l ic have small po t en t ial, in the range of sev e ral years of CO 2 emis s ions (from 0.4 to 4 years), while no suit a ble HC fields were iden t i f ied in Slovakia, Lat v ia and Es t o -nia. Coal beds have even less po t en t ial. Ca p ac i ty es t i m ate in Po l and and the Czech Re p ub l ic is only 2.2 and 0.7 years re -spec t ively of the coun t ries’ emis s ions from large point sources.

CO 2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States

229

Fig.8.Stor a ge ca p ac i t ies of pro s pec t ive struc t ures

Ex p la n a t ions as in Fig u re 6

Sa l ine aqui f ers

HC fields Coal beds CO 2 emis s ions from large sources

4677

804

469

309

T a b l e 1

To t al stor a ge ca p ac i ty of geo l og i c al sinks and sta t ion a ry emis s ion rates of large sources (>0.1 Mt/y)

of cen t ral Eu r o p ean coun t ries [Mt CO 2]

The em p loy m ent of HC and coal fields is con s id e red as a pro -spec t ive op t ion if in com b i n a t ion with enhanced HC and methane recovery.

From prac t i c al point of view, stor a ge of CO2 in deep sa l ine aqui f ers and de p leted HC fields is con s id e red as the near-fu -ture so l u t ion for re d uc i ng CO2 emis s ions, while more ad v anced tech n iques should be de v el o ped for uti l i s a t ion of coal seams.

The pres e nt study shows that Po l and, the Czech Re p ub l ic and Slovakia can use geo l og i c al for m a t ions for stor a ge of CO2 emit t ed from key point sources lo c ated close to po t en t ial traps, whereas Lat v ia can use deep aqui f ers for stor i ng all CO2 emit -ted from ma j or sources of that coun t ry. More o ver, it can pro v ide stor a ge space for neigh b our i ng Lith u a n ia and Es t o n ia, that do not have suit a ble geo l og i c al stor a ge con d i t ions. It is there f ore con c luded that geo l og i c al stor a ge of CO2can con t rib u te sig n if i-cantly to the port f o l io of emis s ion re d uc t ion mea s ures, pro v id i ng thus the time re q uired for development of more advanced, low-carbon technologies.

Ac k nowl e dg m ents. This re s earch was funded by the EU GeoCapacity pro j ect within the 6th Frame w ork Programme of the EU (pro j ect No FP6-518318); the pub l i c a t ion was sup p orted by the CGS Eu r ope pro j ect No FP7-256725 of the 7th Frame -work Programme. The pa p er bene f ited greatly from com m ents of the re v iew e rs P. Krzywiec and N. Poulsen.

REFERENCES

An d re L.,Audigane P., Azaroual M., Menjoz A.(2007)Nu m er i c al mod e l i ng of fluid-rock chem i c al in t er a c t ions at the super c riti c al CO2-liq u id in t er f ace dur i ng CO2in j ec t ion into a car b on a te res e r-voir, the Dogger aqui f er (Paris Ba s in, France). En e rgy Con v er -sion and Man a ge m ent, 48: 1782–1797.

Bachu S., Ad a ms J.J. (2003)Se q ues t ra t ion of CO2in geo l og i c al me d ia in re s ponse to cli m ate change: ca p ac i ty of deep sa l ine aqui f ers to se q ues t er CO2in so l u t ion.En e rgy Con v er s ion and Man a ge m ent,44: 3151–3175.

Bachu S., Gunter W.D., Perkins E.H. (1994) Aqui f er dis p osal of CO2:hy d ro d y n amic and min e ral trap p ing.En e rgy Con v er s ion and Man a ge m ent,35: 269–279.

Blunt M., Fayers F.J., Orr F.M. (1993) Car b on di o x i de in en h anced oil re c ov e ry.En e rgy Con v er s ion and Man a ge m ent,34: 1197–1204.

Bradley R.A., Watts E.C., Wil l iams E.R. (1991) Lim i t i ng Net Green h ouse Gas Emis s ions in the U.S. Re p ort to the US Con -gress 1, US DOE.

Brangulis A.P., Kanev S.V., Margulis L.S., Pomerantseva R.A.

(1993)Ge o l o gy and hy d ro c ar b on pros p ects of the Palaeozoic in the Bal t ic re g ion. In: Pe t ro l eum Ge o l o gy of NW Eu r ope. (ed. P J.

Rarker): 651–656. Pro c eed i ngs of the 4th Con f er e nce.

Geological So c i e ty of Lon d on.

Bruant R.G., Guswa A.J., Celia M.A., P e t ers C.A. (2002) Safe stor a ge of CO2in deep sa l ine aqui f ers.En v i r on m en t al Sci e nce and Tech n ol o gy,36 (11): 241–245.

Cook P.J., Rigg A., Bradshaw J. (2000) Putt i ng it back where it came from: is geo l og i c al dis p osal of car b on di o x i de an op t ion for Aus t ra l ia?Aus t ra l ian Pe t ro l eum Pro d uc t ion and Ex p lo r a t ion As-so c i a t ion Jour n al,40 (1): 654–666.

Crawford H.R., Neill G.H., Bucy B.J., Crawford P.B. (1963) Car -bon di o x i de:a mul t i p ur p ose ad d i t ive for ef f ec t ive well stim u l a-tion.Jour n al of Pe t ro l eum Tech n ol o gy,237: 52–64.

CSLF(Car b on Se q ues t ra t ion Lead e r s hip Fo r um) (2007) Phase II Fi n al Re p ort from the Task Force for Re v iew and Iden t i f i c a t ion of Stan d ards for CO2Stor a ge Ca p ac i ty Es t i m a t ion,15June2007, https://www.doczj.com/doc/0c11156574.html,/pub l i c a t ions/doc u m ent/PhaseIIReport-StorageCapacityMeasurementTaskForce.pdf

Dadlez R. (2006) The Pol i sh Ba s in – re l a t ion s hip be t ween crys t al -line,con s ol i d ated and sed i m en t ary crust.Geo l og i c al Quar t erly,

50 (1): 43–58.

Dom?alski J., Górecki W., Mazurek A., My?ko A., Strzetelski W., Szama3ek K. (2004) The pros p ects for pe t ro l eum ex p lo r a t ion in

the east e rn sec t or of South e rn Bal t ic as re v ealed by sea bot t om geo c hem i c al sur v ey cor r e l ated with seis m ic data.Przegl1d Geologiczny,52 (8/2): 792–799.

Ershov A., ?liaupa S. (2000) Litho s phere strength vari a t ions in the Bal t ic ba s in.Geo p hys i c al Jour n al,22 (4): 1–86.

Franko O., Rem?ík A., Fendek M., Fusán O., Král M., Bodi? D., Drozd V., Vika K. (1995) At l as of Geo t her m al En e rgy of Slovakia. GúD?Pub l ish i ng.

Górecki W., ed. (2006) At l as of Geo t her m al Re s ources in the Pol i sh Low l ands–Me s o z oic For m a t ions(in Pol i sh).AGH,Kraków.

Górski M., Trela M., Kunicka-Górska W. (1998) Palaeostructure and palaeo g e o gra p hy from3D seis m ic in t er p re t a t ion;ex a m p les from the Perm i an Ba s in in Po l and. Pe t ro l eum Geoscience, 4 (3): 221–226.

Górski M., Wojtkowiak Z., Radecki S. (1999) Barnówko-M ostno-Buszewo (BMB); the larg e st crude oil de p osit in Po l and.

Pe t ro l eum Geoscience,5: 5–15.

Gunter W.D., Gentzis T., Rottenfusser B.A., Rich a rd s on R.J.H.

(1997) Deep coalbed meth a ne in Al b erta, Can a da: a fuel re -source with the po t en t ial of zero green h ouse emis s ions. En e rgy Con v er s ion and Man a ge m ent,38: 217–222.

Hansen J., John s on D., Lacis A., Lebedeff S., Lee P., Rind D., Rus s ell G. (1981) Cli m ate im p act of in c reas i ng at m o s pheric car b on di o x i de.Sci e nce,213 (4511): 957–966.

Herzog H.J., Drake E.M., Ad a ms E.E. (1997) CO2 Cap t ure, Re u se, and Stor a ge Tech n ol o g ies for Mit i g at i ng Global Cli m ate Change. Fi n al Re p ort, DOE No. DE-AF22-96PC01257.

Hladík V., Kolejka V., Lojka R., Fott P., Vácha D. (2008) CO2 emis -sions and geo l og i c al stor a ge pos s i b il i t ies in the Czech Re p ub l ic.

Slo v ak Geo l og i c al Magazine:29–41.

Holub V., Tásler R. (1978) Fill i ng of the Late Palaeozoic con t i n en t al bas i ns in the Bo h e m ian Mas s if as a re c ord of their palaeo g eo -graphi c al de v el o p m ent.Geologische Rundschau,67(1): 91–109.

Hru?ecky I., ?efara J., Masaryk P., Lintnerová O. (1996) The struc t ural and fa c ies develoment and ex p lo r a t ion po t en t ial of the Slo v ak part of the Dan u be Ba s in. EAGE Spe c ial Pub l i c a t ion,5: 417–429.

IP CC (2005) IPCC Spe c ial Re p ort on Car b on Di o x i de Cap t ure and Stor a ge. Pre p ared by Work i ng Group III of the In t er g ov e rn m en -tal Panel on Cli m ate Change (eds. B. Metz, O. Davidson, H.C.

de Coninck, M. Loos and L. A. Meyer). Cam b ridge Uni v er s ity Press, Cam b ridge, United King d om and New York, NY, USA.

230Saulius ?liaupa et al.

IPCC (2007) Sum m ary for Policymakers. In: Cli m ate Change 2007: The Phys i c al Sci e nce Ba s is. Con t ri b u t ion of Work i ng Group I to the Fourth As s ess m ent Re p ort of the In t er g ov e rn m en t al Panel on Cli m ate Change (eds. S. Sol o m on, D. Qin, M. Man n ing, Z.

Chen, M. Mar q uis, K.B. Averyt, M.Tignor and H.L. Miller). Cam -bridge Uni v er s ity Press, Cam b ridge, United King d om and New York, NY, USA.

Karnkowski P. (1999) Oil and Gas De p os i ts in Po l and. …GEOS”

Pub l i c a t ion,Kraków.

Klibáni L., Nìmec J. (2001) Struèny p?ehled teorie vazeb plynu (metanu) v uhelnych slojích a vysledky vybranych experimentù.

In: Komplex ní zhodnocení programu CBM – MS (ed. P. Müller):

2.1.1–2.1.12.Czech Geo l og i c al Sur v ey.

Kováè M., Kováè P., Marko F., Karoli S., Janoèko J. (1995) The East Slovakian Ba

s in – a com

p le x back-arc ba

s in.

Tectonophysics, 252: 453–466.

Kováè M., Andreyeva-Grigorovich A., Bajraktarevic Z., Brzobo -haty R., Filipescu S., Fodor L., Harzhauser M., Nagymarosi

A., Oszczypko N., P avelic D., R?gl F., Saftic

B., Sliva L.,

Studencka B. (2007) Badenian evo l u t ion of the Cen t ral Paratethys Sea paleogeography, cli m ate and eustatic sea-level changes. Geologica Carpathica, 58 (6): 579–606.

Krzywiec P. (2006) Struc t ural in v er s ion of the Mid-Pol i sh Trough (NW and cen t ral seg m ents) lat e ral vari a t ions in tim i ng struc t ural style.Geo l og i c al Quar t erly,51 (1): 131–168.

Kuchariè L. (2009) Case for CO2 geo l og i c al stor a ge–site Bzovík, Cen t ral Slovakia Vol c a n ic Area.Slo v ak Geo l og i c al Magazin: 73–80.

Lagneau V., Pipart A., Catalette H. (2005) Re a c t ive trans p ort mod -el i ng of CO2 se q ues t ra t ion in deep sa l ine aqui f ers. Oil Gas Sciences Technology, 60 (2): 231–247.

Law D.H.-S., Bachu S. (1996) Hydrogeological and nu m er i c al anal-y s is of CO2 dis p osal in deep aqui f ers in the Al b erta sed i m en t ary ba s in.En e rgy Con v er s ion and Man a ge m ent,37: 1167–1174. Leszczy?ski K. (2012)The in t er n al ge o m e t ry and lithofacies pat -tern of the Up p er Cre t a c eous-Danian se q uence in the Pol i sh Low l ands.Geo l og i c al Quar t erly,56 (2): 363–386.

Lokhorst A., Wildenborg T. (2005) In t ro d uc t ion on CO2geo l og i c al stor a ge, clas s i f i c a t ion of stor a ge op t ions, oil and gas sci e nce and tech n ol o gy.Rev.IFP,60 (3): 513–515.

Mac k en z ie F.T.,Lerman A. (2006) Car b on in the Geobiosphere –Earth’s Outer Shell. Springer.

Malkovsky M. (1987) The Me s o z oic and Ter t iary bas i ns of the Bo -he m ian Mas s if and their evo l u t ion. Tectonophysics, 137 (1–4): 31–42.

Mazzotti M., Pini R., Storti G. (2009) En h anced coalbed meth a ne re c ov e ry.Jour n al of Super c riti c al Flu i ds,47: 619–627. Nehyba S., ?ikula J. (2007) Depositional ar c hi t ec t ure,se q uence stra t ig r a p hy and geodynamic de v el o p m ent of the Carpathian Foredeep (Czech Re p ub l ic). Geologica Carpathica, 58 (1): 53–69.

Oszczypko N. (1998) The west e rn Carpathian foredeep – de v el o p -ment of the fore l and ba s in in front of the accretionary wedge and its burial his t ory (Po l and). Geologica Carpathica, 49 (6): 415–431.

Oszczypko N, Krzywiec P., P opadyuk I., P eryt T. (2006) Carpathian Foredeep Ba s in (Po l and and Ukraine) – its sed i-men t ary,struc t ural and geodynamic evo l u t ion.AAPG Mem o ir, 84: 293–350.

Pashin J.C., McIntyre M.R.(2003)Tem p er a t ure-pres s ure con d i-tions in coalbed meth a ne res e r v oirs of the Black War r ior ba s in: im p li c a t ions for car b on se q ues t ra t ion and en h anced coalbed

meth a ne re c ov e ry.In t er n a t ional Jour n al of Coal Ge o l o gy,54: 167–183.

P e?ek J., Holub V., Maly L., Martínek K., Prouza V., Spudil J., Tásler R. (2001) Geologie a lo?iska svrchnopaleozoickych limnickych pánví èR. Czech Geo l og i c al Sur v ey, Prague, Czech Re p ub l ic.

P e t ers G.P.,Marland G., Le Quéré C., Boden T., Canadell J.G., Raupach M.R. (2011) Rapid growth in CO2 emis s ions af t er the 2008–2009 global fi n an c ial cri s is. Na t ure Cli m ate Change, doi.

10.1038/nclimate1332

Pícha F., Stráník Z., Krejèí O. (2006)Ge o l o gy and hy d ro c ar b on re-sources of the Outer west e rn Carpathians and their fore l and, Czech Re p ub l ic.AAPG Mem o ir, 84: 49–176.

Pikulski L., Karnkowski P.H., Wolnowski T. (2010) Pe t ro l eum ge -ol o gy of the Pol i sh part of the Bal t ic re g ion – an over v iew. Geo -log i c al Quar t erly,54 (2): 131–142.

Piller W.E., Decker K., Haas M. (1996) Sedimentologie und Beckendynamik des Wiener Beckens. Berichte der Geologischen Bundesanstalt, 33: 1–41.

Podhala?ska T., Modli?ski Z. (2010) Out l ine of the li t hol o gy and depositional fea t ures of the lower Pa l eo z oic strata in the Pol i sh part of the Bal t ic re g ion. Geo l og i c al Quar t erly, 54 (2): 109–121. Polak S., Grimstad A.-A. (2009) Res e r v oir sim u l a t ion study of CO2 stor a ge and CO2 -EGR in the Atzbach–Schwanenstadt gas field in Aus t ria. En e rgy Procedia, 1 (1): 2961–2968.

Rasser M.W., Harzhauser M. (2008) Palaeogene and Neo g ene of Cen t ral Eu r ope. In: The Ge o l o gy of Cen t ral Eu r ope, 2: Me s o z oic and Ce n o z oic (ed. T. McCann): 1031–1140. Geo l og i c al So c i e ty of Lon d on.

Royden L.H. (1985) Vi e nna Ba s in: a thin skinned pull-apart ba s in.

SEPM Spe c ial Pub l i c a t ion,37: 319–338.

Shogenova A., liaupa S., Shogenov K., liaupien? R., P omeranceva R., Uibu M., Kuusik R.(2009a)Pos s i b il i t ies for geo l og i c al stor a ge and min e ral trap p ing of in d us t rial CO2 emis -sions in the Bal t ic re g ion. En e rgy Procedia, 1: 2753–2760. Shogenova A., liaupa S., Vaher R., Shogenov K., Pomeranceva R. (2009b) The Bal t ic Ba s in: struc t ure, prop e r t ies of res e r v oir rocks and ca p ac i ty for geo l og i c al stor a ge of CO2.Es t o n ian Jour-nal of Earth Sci e nces, 58: 259–267.

Shogenova A., Shogenov K., Pomeranceva R., Nulle I., Neele F., Hendriks C. (2011) Eco n omic mod e l l ing of the cap t ure-trans -port-sink sce n ario of in d us t rial CO2 emis s ions:the Es t o n ian-Lat-vian cross-bor d er case study. En e rgy Procedia, 4: 2385–2392. liaupa S., La?kovas E., Lazauskien? J., La?kova L., Sidorov V.

(2004) The pe t ro l eum sys t em of the Lith u a n ian off s hore re g ion.

Zeitschrift für Angewandte Geologie, Sonderheft, 2: 41–59.

liaupa S., Satkunas J., liaupien? R. (2005) Pros p ects of CO2 geo l og i c al se q ues t ra t ion in Lith u a n ia.Geologija,51: 20–31.

liaupa S., Shogenova A., Shogenov K., liaupien? R., Zabele

A., Vaher R. (2008) In d us t rial car b on di o x i de emis s ions and po -

ten t ial geo l og i c al sinks in the Bal t ic States. Oil Shale, 25 (4): 465–484.

Stephenson R.A., Dadlez R., Narkiewicz M.(1995)Im p li c a t ions of tec t onic sub s i d ence mod e ls for crustal struc t ure be n eath the Mid-Pol i sh Trough.Studia Geophysica et Geodaetica, 39 (3): 289–297.

Stephenson R.A., Narkiewicz M., Dadlez R., van Wees J.-D., Andriessen P. (2003) Tec t onic sub s i d ence mod e l l ing of the Pol -ish Ba s in in the light of new data on crustal struc t ure and mag n i -tude of in v er s ion.Sed i m en t ary Ge o l o gy,156: 59–70. Tarkowski R., Uliasz-Misiak B., Wójcicki A. (2008) CO2 stor a ge ca p ac i ty of deep aqui f ers and hy d ro c ar b on fields in Po l and – EU GeoCapacity Pro j ect re s ults. En e rgy Procedia, 1: 2671–2677.

CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States231

Teir S., Hetland J., Lindeberg E., Torvanger A., Buhr K., Koljonen T., Gode J., Onarheim K., Tjernshaugen A., Arasto

A., Liljeberg M., Lehtil? A., Kujanp?? L., Nieminen M. (2010)

Po t en t ial for car b on cap t ure and stor a ge (CCS) in the Nordic re -gion. Espoo 2010. VTT Tiedotteita – Re s earch Notes 2556. US DOE (2007) Car b on Se q ues t ra t ion At l as of United States and Can a da. U.S. De p art m ent of En e rgy, Of f ice of Fos s il En e rgy and Na t ional En e rgy Tech n ol o gy Lab o r a t ory.

Van Bergen F., Pagnier H. (2001) CO2 se q ues t ra t ion in coal – a po -ten t ially clean en e rgy cy c le. Green h ouse is s ues, 56: 3–6.

Van den Burgt M.J. (1990) Car b on di o x i de dis p osal from coal based com b ined cy c le power sta t ions in de p leted gas fields in the Neth -er l ands.Min i s t ry of VROM,publicationreeks Lucht, 91.White C.M., Stazisar B.R., Gran i te E.J., Hoffman J.S., Pennline

H.W. (2003) Sep a r a t ion and cap t ure of CO2 from large sta t ion -

ary sources and se q ues t ra t ion in geo l og i c al for m a t ions–coalbeds and deep sa l ine aqui f ers. Jour n al of the Air and Waste Man a ge m ent As s o c i a t ion,53: 645–715.

Willscher B., May F., Tarkowski R., Uliasz-Misiak B., Wójcicki A.

(2007) Das EU-Projekt GeoCapacity – der Weg zu einem europaweiten GIS mit CO2-Emittenden und -Speicherm?glich -keiten. Zeitschrift für Geologische Wissenschaften, 36: 303–320.

Win t er E.M., Berg m an P.D. (1993) Avail a bil i ty of de p leted oil and gas res e r v oirs for dis p osal of car b on di o x i de in the United States.En e rgy Con v er s ion and Man a ge m ent,34: 1177–1118.

232Saulius ?liaupa et al.

相关主题
相关文档 最新文档