当前位置:文档之家› 高中物理奥赛讲义(恒定电流)doc - 第一讲 基本知识介绍

高中物理奥赛讲义(恒定电流)doc - 第一讲 基本知识介绍

高中物理奥赛讲义(恒定电流)doc - 第一讲 基本知识介绍
高中物理奥赛讲义(恒定电流)doc - 第一讲 基本知识介绍

第恒定电流

第一讲基本知识介绍

第九部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。

应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。

一、欧姆定律

1、电阻定律

l

a、电阻定律R = ρ

S

b、金属的电阻率ρ = ρ0(1 + αt)

2、欧姆定律

a、外电路欧姆定律U = IR ,顺着电流方向电势降落

b、含源电路欧姆定律

在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电

流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系

U A? IR ?ε? Ir = U B

这就是含源电路欧姆定律。

c、闭合电路欧姆定律

在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为

U A + IR ?ε + Ir = U B = U A

ε

即ε = IR + Ir ,或I =

R+

r

这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;

③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。

二、复杂电路的计算

1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立

源为零值

...时的等效电阻。

2、基尔霍夫(克希科夫)定律

a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的

总和,等于从该点流出的电流强度的总和。

例如,在图8-2中,针对节点P ,有

I2 + I3 = I1

基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。

对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。

b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。

例如,在图8-2中,针对闭合回路① ,有 ε3 ? ε2 = I 3 ( r 3 + R 2 + r 2 ) ? I 2R 2

基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 U P = … = U P 得到和上面完全相同的式子)。

3、Y ?Δ变换

在难以看清串、并联关系的电路中,进行“Y 型?Δ

型”的相互转换常常是必要的。在图8-3

所示的电路中

☆同学们可以证明Δ→ Y 的结论… R c = 3213

1R R R R R ++

R b = 3213

2R R R R R ++

R a =

3

212

1R R R R R ++

Y →Δ的变换稍稍复杂一些,但我们仍然可以得到 R 1 = b a

c c b b a R R R R R R R ++

R 2 = c a

c c b b a R R R R R R R ++

R 3 =

a

a

c c b b a R R R R R R R ++

三、电功和电功率

1、电源

使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。

电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同

电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。

例如,电动势、内阻分别为ε1 、r 1和ε2 、r 2的电源并联,构成的新电源的电动势ε和内阻r 分别为(☆师生共同推导…)

ε = 211

221r r r r +ε+ε r =

2

12

1r r r r + 2、电功、电功率

电流通过电路时,电场力对电荷作的功叫做电功W 。单位时间内电场力所作的功叫做电功率P 。

计算时,只有W = UIt 和P = UI 是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I 2Rt =

R U 2t 和P = I 2R =R

U 2

。 对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。 四、物质的导电性

在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。 1、金属中的电流

即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。 2、液体导电

能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分

子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu 2+和硫酸根离子S -

24O ,它们在电场

力的作用下定向移动形成电流)。

在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。

液体导电遵从法拉第电解定律——

法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt

=KQ (式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克

M,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol 。

原子量)和它的化合价n的比值,即K =

Fn

M Q 。

将两个定律联立可得:m =

Fn

3、气体导电

气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——

a、被激放电

在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有

b、自激放电

但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。

常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。

4、超导现象

据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。

超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为

了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。

5、半导体

半导体的电阻率界于导体和绝缘体之间,且ρ值随温度的变化呈现“反常”规律。

组成半导体的纯净物质这些物质的化学键一般都是共价键,其稳固程度界于离子键和金属键之间,这样,价电子从外界获得能量后,比较容易克服共价键的束缚而成为自由电子。当有外电场存在时,价电子移动,同时造成“空穴”(正电)的反向移动,我们通常说,半导体导电时,存在两种载流子。只是在常态下,半导体中的载流子浓度非常低。

半导体一般是四价的,如果在半导体掺入三价元素,共价键中将形成电子缺乏的局面,使“空穴”载流子显著增多,形成P型半导体。典型的P型半导体是硅中掺入微量的硼。如果掺入五价元素,共价键中将形成电子多余的局面,使电子载流子显著增多,形成N型半导体。典型的N型半导体是硅中掺入微量的磷。

如果将P型半导体和N型半导体烧结,由于它们导电的载流子类型不同,将会随着组合形式的不同而出现一些非常独特的物理性质,如二极管的单向导电性和三极管的放大性。

第二讲重要模型和专题

一、纯电阻电路的简化和等效

1、等势缩点法

将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析——

【物理情形1】在图8-4甲所示的电路中,R1 = R2 = R3 = R4 = R5 = R ,试求A、B两端的等效电阻R AB。

【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A、D缩为一点A后,成为图8-4乙图

对于图8-4的乙图,求R AB 就容易了。 【答案】R AB =

8

3

R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。

【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系?

☆学员判断…→结论:相等。

因此,将C 、D 缩为一点C 后,电路等效为图8-5乙

对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足21R R =4

3

R R 的关系,我们把桥式电路称为“平衡电桥”。 【答案】R AB =

4

15

Ω 。

〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电

流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有

系统误差,历史上称之为“惠斯登电桥”。

请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺

读出的)。

☆学员思考、计算… 【答案】R x =

AC

CB

L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。

不难求出,R 1B = 14

5

R ,而R AB = 2R 1B 。 【答案】R AB =

7

5

R 。

2、△→Y 型变换

【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。

根据前面介绍的定式,有 R a = 5

3131R R R R R ++ = 103232++? = 52

Ω

R b = 5

3151R R R R R ++ = 1032102++? = 34Ω

R c =

5

3153R R R R R ++ = 1032103++? = 2Ω

再求R AB 就容易了。 【答案】R AB = 145

618

Ω 。 3、电流注入法

【物理情形】对图8-9所示无限网络,求A 、B 两点间的电阻R

AB 。 【模型分析】显然,等势缩点和△→Y 型变换均不适用这种网络的计算。这里介绍“电流注入法”的应用。

应用电流注入法的依据是:对于任何一个等效电阻R ,欧姆定律都是适用的,

而且,对于每一段导体,欧姆定律也是适用的。

现在,当我们将无穷远接地,A 点接电源正极,从A 点注入电流I 时,AB 小段导体的电流必为I/3 ; 当我们将无穷远接地,B 点接电源负极,从B 点抽出电流I 时,AB 小段导体的电流必为I/3 ; 那么,当上面“注入”和“抽出”的过程同时进行时,AB 小段导体的电流必为2I/3 。 最后,分别对导体和整个网络应用欧姆定律,即不难求出R AB 。 【答案】R AB =3

2

R 。

〖相关介绍〗事实上,电流注入法是一个解复杂电路的基本工

具,而不是仅仅可以适用于无限网络。下面介绍用电流注入法解图

8-8中桥式电路(不平衡)的R AB 。

从A 端注入电流I ,并设流过R 1和R 2的电流分别为I 1和I 2 ,则根据基尔霍夫第一定律,其它三个电阻的电流可以表示为如图8-10

所示。

然后对左边回路用基尔霍夫第二定律,有 I 1R 1 + (I 1 ? I 2)R 5 ? (I ? I 1)R 3 = 0 即 2I 1 + 10(I 1 ? I 2) ? 3(I ? I 1) = 0

整理后得 15I 1 ? 10I 2 = 3I ① 对左边回路用基尔霍夫第二定律,有 I 2R 2 ? (I ? I 2)R 4 ? (I 1 ? I 2)R 5 = 0 即 4I 2 ? 12(I ? I 2) ? 10(I 1 ? I 2) = 0

整理后得 ?5I 1 + 13I 2 = 6I ② 解①②两式,得 I 1 =

14599I ,I 2 = 29

21

I 很显然 U A ? I 1R 1 ? I 2R 2 = U B

即 U AB = 2×

14599I + 4×2921I = 145

618

I 最后对整块电路用欧姆定律,有 R AB = I

U AB = 145618

Ω 。

4、添加等效法

【物理情形】在图8-11甲所示无限网络中,每个电阻的阻值均为R ,试求A 、B 两点间的电阻R AB 。

【模型分析】解这类问题,我们要用到一种数学思想,那就是:无穷大和有限数的和仍为无穷大。在此模型中,我们可以将“并联一个R 再串联一个R ”作为电路的一级,总电路是这样无穷级的叠加。在图8-11乙图中,虚线部分右边可以看成原有无限网络,当它添加一级后,仍为无限网络,即

R AB ∥R + R = R AB

解这个方程就得出了R AB 的值。 【答案】R AB =

2

5

1 R 。

〖学员思考〗本题是否可以用“电流注入法”求解? 〖解说〗可以,在A 端注入电流I 后,设第一级的并联电阻分流为I 1 ,则结合基尔霍夫第一定律和应有的比例关系,可以得出相应的电流

值如图8-12所示

对图中的中间回路,应用基尔霍夫第二定律,有 (I ? I 1)R + (I ? I 1)

I

I 1

R ? I 1R = 0

解得 I 1 =

2

1

5-I 很显然 U A ? IR ? I 1R = U B 即 U AB = IR + 2

1

5-IR = 251+I R

最后,R AB =

I U AB = 2

5

1+R 。 【综合应用】在图8-13甲所示的三维无限网络中,每两个节点之间的导体电阻均为R ,试求A 、B 两点间的等效电阻R AB 。

【解说】当A 、B 两端接入电源时,根据“对称等势”的思想可知,C 、D 、E …各点的电势是彼此相等的,电势相等的点可以缩为一点,它们之间的电阻也可以看成不存在。这里取后一中思想,将CD 间的导体、DE 间的导体…取走后,电路可以等效为图8-13乙所示的二维无限网络。

对于这个二维无限网络,不难求出 R ′= 3

21

3+R 显然,R AB = R ′∥3

R

2∥R ′ 【答案】R AB =

21

2R 。

二、含源电路的简化和计算

1、戴维南定理的应用

【物理情形】在如图8-14甲所示电路中,电源ε = 1.4V ,内阻不计,R 1 = R 4 = 2Ω,R 2 = R 3 = R 5 = 1Ω,试用戴维南定理解流过电阻R 5的电流。

【模型分析】用戴维南定理的目的是将电源系统或与电源相关联的部分电路等效为一个电源,然后方便直接应用闭合电路欧姆定律。此电路中的电源只有一个,我们可以援用后一种思路,将除R 5之外的电阻均看成“与电源相关联的”部分,于是——

将电路做“拓扑”变换,成图8-14乙图。这时候,P 、Q 两点可看成“新电源”的两极,设新电源的电动势为ε′,内阻为r ′,则

r ′= R 1∥R 2 + R 3∥R 4 =

3

4Ω ε′为P 、Q 开路时的电压。开路时,R 1的电流I 1和R 3的电流I 3相等,I 1 = I 3 = )

R R ()R R 4321++ε

(21?

= 15

7A ,令“老电源”的负极接地,则U P = I 1R 2 =

157V ,U Q = I 3R 4 = 1514V ,所以 ε′= U QP = 15

7

V 最后电路演化成图8-14丙时,R 5的电流就好求了。 【答案】R 5上电流大小为0.20A ,方向(在甲图中)向上。 2、基尔霍夫定律的应用

基尔霍夫定律的内容已经介绍,而且在(不含源)部分电路中已经做过了应用。但是在比较复杂的电路中,基尔霍夫第一定律和第二定律的独立方程究竟有几个?这里需要补充一个法则,那就是——

基尔霍夫第一定律的独立方程个数为节点总数减一;

基尔霍夫第二定律的独立方程个数则为独立回路的个数。而且,独立回路的个数m 应该这样计算 m = p ? n + 1

其中p为支路数目(不同电流值的数目),n为节点个数。譬如,在图8-15所示的三个电路中,m应该这样计算

甲图,p = 3 ,n = 2 ,m = 3 ?2 + 1 = 2

乙图,p = 6 ,n = 4 ,m = 6 ?4 + 1 = 3

丙图,p = 8 ,n = 5 ,m = 8 ?5 + 1 = 4

以上的数目也就是三个电路中基尔霍夫第二定律的独立方程个数。

思考启发:学员观察上面三个电路中m的结论和电路的外部特征,能得到什么结果?

☆学员:m事实上就是“不重叠”的回路个数!(可在丙图的基础上添加一支路验证…)

【物理情形1】在图8-16所示的电路中,ε1 = 32V,ε2 = 24V,两电源的内阻均不计,R1 = 5Ω,R2 = 6Ω,R3 = 54Ω,求各支路的电流。

【模型分析】这是一个基尔霍夫定律的基本应用,第一定律的方程个数为n ? 1 =

2 ,第二方程的个数为p ? n + 1 = 2

由第一定律,有I3 = I1 + I2

由第二定律,左回路有ε1?ε2 = I1R1? I2R2

左回路有ε2 = I2R2 + I3R3

代入数字后,从这三个方程不难解出

I1 = 1.0A ,I2 = ?0.5A ,I3 = 0.5A

这里I2的负号表明实际电流方向和假定方向相反。

【答案】R1的电流大小为1.0A,方向向上,R2的电流大小为0.5A,方向向下,R3的电流大小为0.5A,方向向下。

【物理情形2】用基尔霍夫定律解图8-14甲所示电路中R5的电

流(所有已知条件不变)。

【模型分析】此电路p = 6 ,n = 4 ,故基尔霍夫第一定律方程个数为3 ,第二定律方程个数为3 。

为了方便,将独立回路编号为Ⅰ、Ⅱ和Ⅲ,电流只设了三个未知量I1、I2和I3,其它三个电流则直接用三个第一定律方程表达出来,见图8-17 。这样,我们只要解三个基尔霍夫第二定律方程就可以了。

对Ⅰ回路,有I2R1 + I1R5? I3R3 = 0

即2I2 + 1I1? 1I3 = 0 ①

对Ⅱ回路,有(I2? I1)R2? (I1 + I3)R4? I1R5 = 0

即1(I2? I1) ? 2(I1 + I3) ? 1I1 = 0 ②

对Ⅲ回路,有ε = I3R3 + (I1 + I3)R4

即1.4 = 1I3 + 2(I1 + I3) ③

解①②③式不难得出I1 = ?0.2A 。(I2 = 0.4A ,I3 = 0.6A)

【答案】略。

【物理情形3】求解图8-18所示电路中流过30Ω电阻的电流。

【模型分析】基尔霍夫第一定律方程2个,已在图中体现

基尔霍夫第二定律方程3个,分别为——

对Ⅰ回路,有100 = (I2? I1) + I2·10 ①

对Ⅱ回路,有40 = I2·10 + I1·30 ? I3·10 ②

对Ⅲ回路,有 100 = I 3·10 + (I 1 + I 3) ·10 ③ 解①②③式不难得出 I 1 = 1.0A 。(I 2 = 5.5A ,I 3 = 4.5A ) 【答案】大小为1.0A ,方向向左。

〖小结〗解含源电路我们引进了戴维南定理和基尔霍夫定律两个工具。原则上,对任何一个问题,两种方法都可以用。但是,当我们面临的只是求某一条支路的电流,则用戴维南定理较好,如果要求求出多个(或所有)支路的电流,则用基尔霍夫定律较好。而且我们还必须看到,随着独立回路个数的增多,基尔霍夫第二定律的方程随之增多,解题的麻烦程度随之增大。

三、液体导电及其它

【物理情形】已知法拉第恒量 F = 9.65×104C/mol ,金的摩尔质量

0.1972kg/mol ,金的化合价为 3 ,要想在电解池中析出1g 金,需要通过多少电量?金是在电解池的正极板还是在负极板析

出?

【解说】法拉第电解定律(综合形式)的按部就班应用,即 Q = M

mFn

,代入相关数据(其中m = 1.0×10?3kg ,n = 3)即可。

【答案】需要1.47×103C 电量,金在负极板析出。

【相关应用】在图8-19所示的装置中,如果在120分钟内淀积3.0×1022个银原子,银的化合价为1 。在电流表中显示的示数是多少?若将阿弗伽德罗常数视

为已知量,试求法拉第恒量。

【解说】第一问根据电流定义即可求得; 第二问 F =

mn

QM

= M

1002.6100.3M 106.1100.323

221922?????-

【答案】0.667A ;9.63×104C/mol 。

四、问题补遗——欧姆表

图8-20展示了欧姆表的基本原理图(未包括换档电路),虚线方框内是欧姆表的内部结构,它包含表头G 、直流电源ε(常用干电池)及电阻R Ω 。

当被测电阻R x 接入电路时,表头G 电流 I =

x

g R R r R +++ε

Ω

可以看出,对给定的欧姆表,I 与R x 有一一对应的关系,所以由表头指针的位置可以知道R x 的大小。为了读数方便,事先在刻度盘上直接标出欧姆

值。

考查I (R x )函数,不难得出欧姆表的刻度特点有三:①大值在左边、小值在右边;②不均匀,小值区域稀疏、大值区域密集;③没有明确的量程,

最右边为零,最左边为∞ 。

欧姆表虽然没有明确的量程,并不以为着测量任何电阻都是准确的,因为大值区域的刻度线太密,难以读出准确读数。这里就有一个档位选择问题。欧姆表上备有“×1”、“×10”、“×100”、“×1k ”不同档位,它们的意义是:表盘的读数乘以这个倍数就是最后的测量结果。比如,一个待测电阻阻值越20k Ω,选择“×10”档,指针将指在2k 附近(密集区),不准,选择“×1k ”档,指针将指在20附近(稀疏区),读数就准确了。

不同的档位是因为欧姆表的中值电阻可以选择造成的。当R x =(R g + r + R Ω)时,表头电流I =

2

1

I g ,指针指在表盘的几何中心,故称此时的R x ——即(R g + r + R Ω)——为中值电阻,它就是表盘正中刻度的那个数字乘以档位倍数。很显然,对于一个给定的欧姆档,中值电阻(简称R 中)应该是固定不变的。

由于欧姆表必须保证R x = 0时,指针指到最右边(0Ω刻度),即

Ω

++ε

R r R g = I g

这个式子当中,只有R g 和I g 是一成不变的,ε 、r 均会随着电池的用旧而改变(ε↓、r ↑),为了保证方程继续成立,有必要调整R Ω的值,这就是欧姆表在使用时的一个必不可少的步骤:欧姆调零,即将两表笔短接,观察指针指

到最右边(0Ω刻度)即可。

所以,在使用欧姆表时,选档和调零是必不可少的步骤,而且换档后,必须重新调零。

【相关问题1】当欧姆表的电池用旧了之后,在操作规范的前提下,它的测值会 (填“偏大”、“偏小”或“继续准确”)。

【解说】这里的操作规范是指档位选择合适、已正确调零。电池用旧后,ε↓、r ↑,但调零时,务必要使R Ω↓,但R g + r + R Ω = R 中 =

g

I ↓

ε,故R 中↓,形成系统误差是必然的。 设新电池状态下电源电动势为ε 、中值电阻为R 中 ,用旧状态下电源电动势为ε′、中值电阻为R 中′,则针对同一个R x ,有

新电池状态 I =

x

R R +ε

中 = x g R I +εε = ε+x g g 1I

旧电池状态 I ′=

x

R R +''

ε中 = x g R I +'ε'ε = '

ε+x g g R I 1I

两式比较后,不难得出 I ′< I ,而表盘的刻度没有改变,故欧姆示数增大。 【答案】偏大。

【相关问题2】用万用表之欧姆档测某二极管极性时,发现指针偏转极小,则与红表笔相连接的应为二极管的 极。

【解说】欧姆档指针偏转极小,表明电阻示数很大;欧姆表的红表笔是和内部电源的负极相连的。 【答案】正 。

高中物理奥赛经典讲义全套资料

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场 (33) 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。 第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组织委员会由承办决赛的省、自治区、直辖市物理学会与有关方面协商组成,负责决赛期间各项活动的筹备与组织

高中物理高考专题练习恒定电流(word含答案)

恒定电流提高篇 1.如图所示是一实验电路图,在滑动触头由a 端滑向b 端的过程中,下列表述正确的是 A .路端电压变小 B .电流表的示数变大 C .电源内阻消耗的功率变小 D .电路的总电阻变大 2.电源的效率定义为外电路电阻消耗的功率与电源的总功率之比.在测电源电动势和内电阻的实验中得到的实验图线如图所示,图中U 为路端电压,I 为干路电流,a 、b 为图线上的两点,相应状态下电源的效率分别为、.由图可知、的值分别为 A 、 、 B 、、 C 、、 D 、、 3.在右图的闭合电路中,当滑片向右移动时,两电表读数的变化是 (A )○A 变大, ○V 变大 (B )○A 变小,○V 变大(C )○A 变大, ○V 变小 (D )○A 变小,○V 变小 4.电动势为E 、内阻为r 的电源与定值电阻R 1、R 2及滑动变阻器R 连接成如图所示的电路,当滑动变阻器的触头由中点滑向b 端时,下列说法正确的是 ( ) A.电压表和电流表读数都增大 B.电压表和电流表读数都减小 C.电压表读数增大,电流表读数减小 D.电压表读数减小,电流表读数增大 ηa ηb ηa ηb η3414132312122313 P

5.如图所示,M 、N 是平行板电容器的两个极板,R 0为定值电阻,R 1、R 2为可调电阻,用绝缘细线将质量为、带正电的小球悬于电容器内部。闭合电键S ,小球静止时受到悬线的拉力为F 。调节R 1、R 2,关于F 的大小判断正确的是 A .保持R 1不变,缓慢增大R 2时,F 将变大 B .保持R 1不变,缓慢增大R 2时,F 将变小 C .保持R 2不变,缓慢增大R 1时,F 将变大 D .保持R 2不变,缓慢增大R 1时,F 将变小 6.如图所示,电动势为E 、内阻不计的电源与三个灯泡和三个电阻相接。只合上开关S 1,三个灯泡都能正常工作。如果再合上S 2,则下列表述正确的是 A .电源输出功率减小 B .L 1上消耗的功率增大 C .通过R 1上的电流增大 D .通过R 3上的电流增大 7.如图甲所示,理想变压器原、副线圈的匝数比为10:1,R 1=20 ,R 2=30 ,C 为电容器。已知通过R 1的正弦交流电如图乙所示,则 A.交流电的频率为0.02 Hz B.原线圈输入电压的最大值为200 V C.电阻R 2的电功率约为6.67 W D.通过R 3的电流始终为零 8.如图所示电路中,三只灯泡原来都正常发光,当滑动变阻器的滑动触头P 向右移动时,下面判断正确的是( ) A .L 1和L 3变暗,L 2变亮 B .L I 变暗,L 2变亮,L 3亮度不变 C .L 1中电流变化值大于L 3中电流变化值 D .L l 上电压变化值小于L 2上的电压变化值 m ΩΩ2E S R 0 R 1 R 2 M N

信息技术基础题库(含答案)

附件4 敖汉旗信息技术基础知识题库 一、选择题 1.在计算机内部,数据是以( B )形式加工、处理和传送的。 A. 十六进制码 B. 二进制码 C. 八进制码 D. 十进制码 2.当一个文件夹被重命名后,文件夹内的文件或文件夹将( D )。 A. 无任何变化 B. 也被重命名 C. 全部丢失 D. 文件夹被重命名,文件不会被重命名 3.在Windows默认环境中,下列4组键中,系统默认的中英文输入切换键是( C )。 A. Ctrl+Alt B. Ctrl+空格 C. Ctrl+Shift D. Shift+空格 4.在多媒体计算机中,( B )是用来播放、录制音乐的硬件设备。 A. 图形卡 B. 声卡 C. 网卡 D. 多功卡 5.在Windows的"资源管理器"窗口中,如果想一次选定多个分散的文件或文件夹,正确的操作是( D )。 A. 按住Ctrl键,用鼠标右键逐个选取 B. 按住Shift键,用鼠标右键逐个选取 C. 按住Shift键,用鼠标左键逐个选取 D. 按住Ctrl键,用鼠标左键逐个选取 6.在Windows操作系统中,要实现粘贴操作,可以按( B )。 A. Ctrl+P B. Ctrl+V C. Ctrl+C D. Ctrl+X 7.下列哪项不属于电视类媒体( C A.投影机 B.视频展示平台 C.幻灯机 D.影碟机 8.在启动程序或打开文档时,如果记不清某个文件或文件夹位于何处,则可以使用Windows7操作系统提供的( C )功能。 A. 帮助 B. 设置 C. 搜索 D. 浏览 9.在鸿合交互电子白板软件中能自动识别二维图形的是以下哪支笔?( D ) A.纹理笔 B.手势笔 C.智能笔 D.激光笔

高中物理奥赛必看讲义——静电场

静电场 第一讲基本知识介绍 在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。 如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。 一、电场强度 1、实验定律 a、库仑定律 内容; 条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b、电荷守恒定律 c、叠加原理 2、电场强度 a、电场强度的定义 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b、不同电场中场强的计算 决定电场强弱的因素有两个:场源(带电量和带电体

的形状)和空间位置。这可以从不同电场的场强决定式看出—— ⑴点电荷:E = k 2 r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P :E = 2 322 ) R r (k Qr +,其中r 和R 的意义见图7-1。 ⑶均匀带电球壳 内部:E 内 = 0 外部:E 外 = k 2 r Q ,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1 <r <R 2): E = 2 3 1 3r R r k 34-πρ ,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3 433-πρ即为图7-2中虚线以内部分的总电量…〕。 ⑷无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 二、电势 1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即 U = q W 参考点即电势为零的点,通常取无穷远或大地为参考点。 和场强一样,电势是属于场本身的物理量。W 则为电荷的电势能。 2、典型电场的电势 a 、点电荷 以无穷远为参考点,U = k r Q b 、均匀带电球壳 以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加 由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式

高中物理奥赛讲义热学doc热学

热 学 热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。 一、分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3 kg/mol ,密度为2.2×103 kg/m 3 ,阿伏加德罗常数为6.0×1023 mol -1 ,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v = A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3 , 即 a 3 = A m ol N 2V = A m ol N 2/M ,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10 m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81 ×8个离子 = 2 1 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102 m/s )。 无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b 、剧烈程度和温度相关。

高中物理恒定电流知识点及例题详解

学习必备欢迎下载 第十一章恒定电流 第一单元基本概念和定律 知识目标 一、电流、电阻和电阻定律 1.电流:电荷的定向移动形成电流. (1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差. (2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。 ①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev. ②表示电流的强弱,是标量.但有方向,规定正电荷定向移动的方向为电流的方向. ③单位是:安、毫安、微安1A=103mA=106μA 2.电阻、电阻定律 (1)电阻:加在导体两端的电压与通过导体的电流强度的比值. R=U/I,导体的电阻是由导体本身的性质决定的,与U.I无关. (2)电阻定律:导体的电阻R与它的长度L成正比,与它的横截面积S成反比. R=ρL/S (3)电阻率:电阻率ρ是反映材料导电性能的物理量,由材料决定,但受温度的影响. ①电阻率在数值上等于这种材料制成的长为1m,横截面积为1m2的柱形导体的电阻. ②单位是:Ω·m. 3.半导体与超导体 (1)半导体的导电特性介于导体与绝缘体之间,电阻率约为10-5Ω·m ~106Ω·m (2)半导体的应用: ①热敏电阻:能够将温度的变化转成电信号,测量这种电信号,就可以知道温度的变化. ②光敏电阻:光敏电阻在需要对光照有灵敏反应的自动控制设备中起到自动开关的作用. ③晶体二极管、晶体三极管、电容等电子元件可连成集成电路. ④半导体可制成半导体激光器、半导体太阳能电池等. (3)超导体 ①超导现象:某些物质在温度降到绝对零度附近时,电阻率突然降到几乎为零的现象. ②转变温度(T C):材料由正常状态转变为超导状态的温度 ③应用:超导电磁铁、超导电机等 二、部分电路欧姆定律 1、导体中的电流I跟导体两端的电压成正比,跟它的电阻R成反比。I=U/R 2、适用于金属导电体、电解液导体,不适用于空气导体和某些半导体器件. 3、导体的伏安特性曲线:研究部分电路欧姆定律时,常画成I~U或U~I图象,对于线性元件 伏安特性曲线是直线,对于非线性元件,伏安特性曲线是非线性的. 注意:①我们处理问题时,一般认为电阻为定值,不可由R=U/I认为电阻R随电压大而大,随电流大而小. ②I、U、R必须是对应关系.即I 是过电阻的电流,U是电阻两端的电压.

(完整版)高中物理恒定电流经典习题20道-带答案

选择题(共20小题) 1、如图所示,电解槽内有一价的电解溶液,ts内通过溶液内横截面S的正离子数是n1,负离子数是n2,设元电荷的电量为e,以下解释正确的是() A.正离子定向移动形成电流,方向从A到B,负离子定向移动形成电流方向从B到A B.溶液内正负离子沿相反方向运动,电流相互抵消 C. 溶液内电流方向从A到B,电流I= D. 溶液内电流方向从A到B,电流I= 2、某电解池,如果在1s钟内共有5×1018个二价正离子和1.0×1019个一价负离子通过某截面,那么通过这个截面的电流是() A.0A B.0.8A C.1.6A D.3.2A 3、图中的甲、乙两个电路,都是由一个灵敏电流计G和一个变阻器R组成,它们之中一个是测电压的电压表,另一个是测电流的电流表,那么以下结论中正确的是() A.甲表是电流表,R增大时量程增大 B.甲表是电流表,R增大时量程减小 C.乙表是电压表,R增大时量程减小 D.上述说法都不对 4、将两个相同的灵敏电流计表头,分别改装成一只较大量程电流表和一只较大量程电压表,一个同学在做实验时误将这两个表串联起来,则() A.两表头指针都不偏转 B.两表头指针偏角相同 C.改装成电流表的表头指针有偏转,改装成电压表的表头指针几乎不偏转 D.改装成电压表的表头指针有偏转,改装成电流表的表头指针几乎不偏转 5、如图,虚线框内为改装好的电表,M、N为新电表的接线柱,其中灵敏电流计G的满偏电流为200μA,已测得它的内阻为495.0Ω.图中电阻箱读数为5.0Ω.现将MN接入某电路,发现灵敏电流计G刚好满偏,则根据以上数据计算可知()

A.M、N两端的电压为1mV B.M、N两端的电压为100mV C.流过M、N的电流为2μA D.流过M、N的电流为20mA 6、一伏特表有电流表G与电阻R串联而成,如图所示,若在使用中发现此伏特计的读数总比准确值稍小一些,采用下列哪种措施可能加以改进() A.在R上串联一比R小得多的电阻 B.在R上串联一比R大得多的电阻 C.在R上并联一比R小得多的电阻 D.在R上并联一比R大得多的电阻 7、电流表的内阻是R g=200Ω,满偏电流值是I g=500μA,现在欲把这电流表改装成量程为1.0V的电压表,正确的方法是() A.应串联一个0.1Ω的电阻B.应并联一个0.1Ω的电阻 C.应串联一个1800Ω的电阻D.应并联一个1800Ω的电阻 8、相同的电流表分别改装成两个电流表A1、A2和两个电压表V1、V2,A1的量程大于A2的量程,V1的量程大于V2的量程,把它们接入图所示的电路,闭合开关后() A.A1的读数比A2的读数大 B.A1指针偏转角度比A2指针偏转角度大 C.V1的读数比V2的读数大 D.V1指针偏转角度比V2指针偏转角度大 9、如图所示是一个双量程电压表,表头是一个内阻R g=500Ω,满刻度电流为I g=1mA的毫安表,现接成量程分别为10V和100V的两个量程,则所串联的电阻R1和R2分别为() A.9500Ω,9.95×104ΩB.9500Ω,9×104Ω C.1.0×103Ω,9×104ΩD.1.0×103Ω,9.95×104Ω 10、用图所示的电路测量待测电阻R X的阻值时,下列关于由电表产生误差的说法中,正确的是() A.电压表的内电阻越小,测量越精确 B.电流表的内电阻越小,测量越精确 C.电压表的读数大于R X两端真实电压,R X的测量值大于真实值 D.由于电流表的分流作用,使R X的测量值小于真实值

高中物理奥赛必看讲义 直线运动

第一部分:直线运动 一、复习基础知识点 一、 考点内容 1.机械运动,参考系,质点,位移和路程。 2.匀速直线运动:速度,位移公式vt =x ,t x -图以及t v -图。 3.匀变速直线运动,加速度,平均速度,瞬时速度,速度公式at v v +=0,位移公式 202 1at t v x +=,推广式ax v v 22 2=-,t v -图。 二、 知识结构 ????????????? ??????? ???????? ? ? ? ?? ? ? ?=?????????=-+= -=? ??+=+== ?? ?? ? ???????? ?? ?????→ ??t v x ax v v t v v x at vt x at t v x at v v vt x 非匀变速匀变速匀速规律非匀变速直线运动匀减速直线运动匀加速直线运动 匀变速直线运动匀速直线运动种类竖直上抛运动自由落体运动匀变速直线运动匀速直线运动物理过程质点研究对象理想模型物理量参考系运动 名词概念直线运动2221212 0202200 三、 复习思路 本课时重点是瞬时速度和加速度概念,以及匀变速直线运动的规律,难点是加速度的理解。而匀变速直线运动规律与体育竞技、交通运输以及航空航天相结合是高考考查的热点。对匀变速直线运动规律要熟练掌握,同时学习研究物理的基本方法,如从简单问题入手的方法、运用图象研究物理问题和用数学公式表达物理规律的方法、实验的方法等等。 匀变速直线运动是高中阶段物理学习的重点内容之一,对匀变速直线运动的学习与研究要注意两方面的内容:一是如何描述物体的运动,匀变速直线运动的特点是什么;二是匀变速直线运动的基本规律是什么。在这一单元中,我们仅仅研究物体的运动规律而不涉及力与运动的关系,能否清楚正确的分析物体的运动过程是本单元要求的一个重要能力,分析运动过程是求解力学问题的主要环节,是正确运用各种知识的前提条件。能否正确运

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高二物理恒定电流公式大全

高二物理恒定电流公式大全 方向不随时间而改变的电流叫直流,方向和大小都不随时间改变的电流,恒定电流属于直流电。 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横 载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U 外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流 (A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导 体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU, η=P出/P总 {I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与 R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成(2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R 中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法:电流表外接法: 电压表示数:U=UR+UA电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值 =U/I=UR/(IR+IV)=RVRx/(RV+R) 选用电路条件Rx>>RA[或Rx>(RARV)1/2]选用电路条件Rx< 12.滑动变阻器在电路中的限流接法与分压接法 限流接法 电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp>Rx便于调节电压的选择条件Rp

C++入门培训讲义

武平一中信息学奥林匹克竞赛校本课程 C++编程 第一课时:认识C++程序和DEV-C++集成开发环境 一.学习目标: 1.认识C++程序结构; 2.掌握编程基本步骤; 3.记住“保存”、“编译”和“运行”的快捷键(ctrl+s、F9、F10) 二.学习内容与步骤: 1.双击桌面图标,启动DEV-C++集成开发环境,单击“文件”菜单下的“新建——>源代码”命令,在程序编辑区输入下面程序: #include #include using namespace std; int main() { cout<<"hello"; system("pause"); return 0; } 2.输入完毕,单击“文件”菜单下的保存命令。在弹出的“保存文件”对话框中保存位置选择“桌面”,文件名为“ex1”,文件类型为c++不必修改,单击保存。 3.单击“运行”菜单下的“编译”命令,窗口出现红色条时说明程序有错误,请对照修改,直到正确为止。 4.单击“运行”菜单下的“运行”命令;弹出新窗口,观察新窗口中内容,按一下键盘任意键(通常按空格键),返回编辑界面。 5.单击“文件”菜单“退出”命令,结束。 6.观察桌面的ex1.cpp和ex1.exe两个文件,双击“ex1.exe”试试,ex1.cpp 称为源程序,ex1.exe称为可执行程序,虽然这个程序简单了一点,但是电脑中的程序就是这样设计出来的。 7.参考以上步骤,输入下面这个程序: #include using namespace std; int main() { int a,b,c;

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

高中物理恒定电流知识点总结

恒定电流 1.电流: 1)定义:电荷的定向运动。 2)形成条件: a)导体中有能自由移动的电荷 导体提供大量的自由电荷。金属导体中的自由电荷是自由电子,电解液中的自由电 荷是正、负离子。 b)导体两端有电压。 3)电流的大小——电流强度——简称电流 I q a)宏观定义: t b)微观定义: I nqsv c)国际单位:安培 A d)电流的方向:规定为正电荷定向运动的方向相同(电流是标量) e)电流的分类:方向不随时间变化的电流叫直流,方向随时间变化的电流叫交流, 大小方向都不随时间变化的电流叫做稳恒电流。 2.电阻 1)物理意义:反映了导体的导电性能,即导体对电流的阻碍作用。 U R 2)定义式:I 国际单位Ω(R既不与U成正比,也不与I 成反比) L R 3)决定式(电阻定律):S 3.电阻率: 1)意义:反映了材料的导电性能。 RS 2)定义: L 3)与温度的关系 金属:ρ随 T ↑而↑ 半导体:ρ随 T ↑而↓有 些合金:几乎不受温度影响

4. 串并联电路 1) 欧姆定律: a) 内容:通过导体的电流跟导体两端的电压成正比,跟导体的电阻成反比。 U U I IR 或 R b) 表达式: R 或 U I c) 适用条件:金属或电解液导电(纯电子电路) 。 2) 串联电路 a) 电路中各处电流相同. I=I 1=I 2=I 3=?? b) 串联电路两端的电压等于各电阻两端电压之和.U=U 1+U 2 +U 3?? c) 串联电路的总电阻等于各个导体的电阻之和,即 R=R +R +?+ R 12 n U 1 U 2 L U n I R 1 R 2 R n d) 串联电路中各个电阻两端的电压跟它的阻值成正比,即 P 1 P 2 L P I 2 n e) 串联电路中各个电阻消耗的功率跟它的阻值成正比,即 R 1 R 2 R n 3) 并联电路 a) 并联电路中各支路两端的电压相同.U=U 1=U 2=U 3?? b) 并联电路子路中的电流等于各支路的电流之和 I=I 1+ I 2+ I 3=?? 1 1 1 c) 并联电路总电阻的倒数等于各个导体的电阻的倒数之和。 R = R 1 + R 2 +? + 1 R n 4) 伏安特性曲线: a) 定义:导体的电流随电压变化的关系曲线叫做伏安特性曲线。 b) 意义:斜率的倒数表示电阻。 c) 对于金属、电解液在不考虑温度的影响时其伏安特性曲线是过原点的倾斜的直线,这样的导体叫线性导体,否则为非线性导体。 金属 非金属 一些合金

信息学奥赛课外活动经验交流

有效开展课外活动促进学生个性特长发展 ——信息学奥赛课外活动经验交流 树人国际学校建立已有8年,在这8年里树人学校由弱变强、由名不经传变为南京市较有名气的学校,这一切成绩的获得来自附中集团及我校领导的正确办学理念和卓有成效的办学方法,也来自全体老师的努力。在这8年的办学过程中,校领导全面推进素质教育,开展多种形式的教育、教学活动,从而不仅促进学生的全面发展,而且也发展了学生的个性特长,实现了“让平凡者不平凡,让优秀者更优秀”的教育思想与理念。学校的学科课外活动正是这种教育理念的实践体现。下面就如何开展信息技术课外活动谈一点个人体会。 一、校领导的重视、支持使得课外活动能够顺利开展 我校领导秉承附中的教育理念,开展全面的素质教育,让每个学生在树人这块土地上能够得到卓越的全面的发展。在这样的教育理念指导下,学校开展多种形式的教育、教学活动,学生的个性、特长得到很好的发展。 校领导每年的教学计划中,都将教学活动的多样化提到非常重要的地位,在制定的教学计划中除了正常教学外,还提出开展选修课、竞赛辅导课、学科活动课的计划及实施方案,并规划各学科的课外活动时间,全面地贯彻素质教育的思想与理念,为学生的全面发展提供了良好的环境、时间与空间。 校领导常抽出时间去亲临课外活动的教学现场,了解教学情况,并能够将学生、家长对课外活动意见及时反馈给任课老师,以提高课外活动的质量。在当前这样的升学重压之下,附中——树人学校能够这样积极开展课外活动实属不多见的,学校为老师们发挥才能搭建了舞台。 除了校领导的重视、支持外,多种形式的教学活动还得到各级领导支持、班主任老师的理解、支持与协助,正是由于大家的相互理解与支持、团结协作才使得树人的课外活动开展得有声有色、形式多样,并取得斐然成果。 二、热爱事业,甘于寂寞,潜心钻研,促进课外活动开展 领导的重视与支持是课外活动正常开展的必要条件,要想课外活动开展卓有成效还需要靠老师的自身努力与辛勤耕耘。树人老师把教育当作自己的事业,他们热爱事业、热爱学生。正是由这些热爱自己的事业的人辛勤耕耘,才使我们的课外活动开展如此丰富多彩,成效卓著。 课外活动内容是课堂教学的拓展与延伸,是学生创新思维发展的重要学习基地,老师对课外活动备课量、备课的深度要远远高于课堂教学,其教学内容要靠老师寻找、挖掘、拓展,承担课外活动的老师更需要甘于寂寞、潜心钻研去搜集、研究课外活动的教学内容,撰写教材或讲义,解决一道道的问题。象信息技术课外活动还需要老师静下心来编写、调试一道道程序,潜心研究问题解决的各种算法。

高二物理知识点:恒定电流

高二物理知识点:恒定电流 为了帮助同学们更加有效的学习,今天小编给大家整理了一下高中物理知识点高二物理知识点:恒定电流,希望能对同学们的物理学习有所帮助。 高二物理知识点:恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+ 电流关系I总=I1=I2=I3I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成(2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法:电压表示数:U=UR+UA 电流表外接法:电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真; Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R) 选用电路条件Rx>RA[或Rx>(RARV)1/2] 选用电路条件Rx 12.滑动变阻器在电路中的限流接法与分压接法 限流接法:电压调节范围小,电路简单,功耗小 便于调节电压的选择条件Rp>Rx 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp 注:

应用基础801-850题-信息技术知识竞赛(应用基础)题库

在大纲视图窗格中输入演示文稿的标题时,可以( )在幻灯片的大标题后面输入小标题。· A、单击工具栏中的“升级”按钮 · B、单击工具栏中的“降级”按钮 · C、单击工具栏中的“上移”按钮 · D、单击工具兰中的“下移”按钮 正确答案: B 2 在大纲视图中输入演示文稿标题时,可( )在幻灯片的大标题后面输入小标题。 · A、按键盘上的回车键 · B、按键盘上的向下方向键 · C、按键盘上的TAB键 · D、按键盘上的Shift+TAB组合键 正确答案: C 3 在当前演示文稿中要删除一张幻灯片,采用( )方式是错误的。 · A、在幻灯片视图,选择要删除的幻灯片,单击“文件|删除幻灯片”命令 · B、在幻灯片浏览视图,选中要删除的幻灯片,按Del键 · C、在大纲视图,选中要删除的幻灯片,按Del键 · D、在幻灯片视图,选择要删除的幻灯片,单击“编辑|剪切”命令 正确答案: D

4 在地理上局限在较小范围,属于一个部门或单位组建的网络属于()。 · A、WAN · B、LAN · C、MAN · D、Internet 正确答案: B 5 在电子邮件中,声音与图象文件一般不与邮件正文内容一同显示出来,而是通过( )来发送。· A、标题 · B、发件人 · C、正文 · D、附件 正确答案: D 6 在电子邮件中所包含的信息( )。 · A、只能是文字 · B、只能是文字与图形图象信息 · C、只能是文字与声音信息 · D、可以是文字、声音和图形图像信息

正确答案: D 7 在电子邮件中用户( )。 · A、只可以传送文本信息 · B、可以传送任意大小的多媒体文件 · C、可以同时传送文本和多媒体信息 · D、不能附加任何文件 正确答案: C 8 在发送新邮件时,除了发件人之外,只有( )是必须要填写的。 · A、主题 · B、附件 · C、收件人地址 · D、抄送 正确答案: C 9 在工作表Sheet1中,若A1为“20”,B1为“40”,A2为“15”,B2为“30”,在C1输入公式“=A1+B1”,将公式从C1复制到C2,再将公式复制到D2,则D2的值为( ) · A、35 · B、45 · C、75

相关主题
文本预览
相关文档 最新文档