当前位置:文档之家› 第三章 污水的二级生物处理

第三章 污水的二级生物处理

第三章  污水的二级生物处理
第三章  污水的二级生物处理

第三章污水的二级生物处理

第一节生物处理

污水经一级处理后,用生物处理法继续去除其中胶体状和溶解性有机物及植物性营养物,将污水中各种复杂有机物氧化分解为简单物质的过程,称为二级处理,又称生物处理或二级生物处理。

一、生物处理的基本原理

在自然水体中,存在着大量依靠有机物生活的微生物。它们不但能分解氧化一般的有机物并将其转化为稳定的化合物,而且还能转化有毒物质。生物处理就是利用微生物分解氧化有机物的这一功能,并采取一定的人工措施,创造有利于微生物的生长、繁殖的环境,使微生物大量增殖,以提高其分解氧化有机物效率的一种污水处理方法。生物法处理污水具有净化能力强、费用低廉、运行可靠等优点,是城市污水和各种工业废水处理的主要方法。

所有的微生物处理过程都是一种生物转化过程,在这一过程中易于生物降解的有机污染物可在数分钟至数小时内进行两种转化:一是变成从液相中溢出的气体,二是使微生物得到增殖成为剩余生物污泥。好氧条件下,微生物将有机污染物中的一部分碳元素转化为CO2,厌氧条件下则将其转化为CH4和CO2。

按照微生物对氧需求程度的不同,生物处理法可分为好氧、缺氧、厌氧等三类。好氧是指污水处理构筑物内的溶解氧含量在1mg/L以上,最好大于2mg/L。厌氧是指污水处理构筑物内基本没有溶解氧,硝态氮含量也很低。一般硝态氮含量小于0.3mg/L,最好小于0.2mg/L。缺氧指污水处理构筑物内BOD5的代谢由硝态氮维持,硝态氮的初始浓度不低于0.4mg/L,溶解氧浓度小于0.7mg/L,最好小于0.4mg/L。

按照微生物的生长方式不同,生物处理法可分为悬浮生长、固着生长、混合生长等三类。悬浮生长型生物处理法的代表是活性污泥法,固着生长型生物处理法的代表是生物膜法,混合生长型生物处理法的代表是接触氧化法。

二、生物处理的基本参数

1、水力停留时间和固体停留时间

水力停留时间HRT是水流在处理构筑物内的平均驻留时间,从直观上看,可以用处理构筑物的容积与处理进水量的比值来表示,HRT的单位一般用h表示。

固体停留时间SRT是生物体(污泥)在处理构筑物内的平均驻留时间,即污泥龄。从

直观上看,可以用处理构筑物内的污泥总量与剩余污泥排放量的比值来表示,SRT的单位一般用d表示。

就生物处理构筑物而言,HRT实质上是为保证微生物完成代谢降解有机物所提供的时间。而SRT实质上是为保证微生物能在生物处理系统内增殖并占优势地位且保持足够的生物量所提供的时间。为保证反应器内有足够的生物量和特定微生物能增殖,生物处理工艺的SRT都比其HRT要长得多,好氧处理在10d左右,而厌氧处理有时在30d以上。

生物处理中微生物为了产生代谢作用而需要与有机污染物有足够的接触时间,所需要的代谢时间与待处理的污水中的有机污染物性质有关。简单的低分子有机物如VFA、单糖和乙醇等要求的代谢时间较短,可以在数分钟内代谢完成;而复杂的大分子有机物如氯代烃类难以生物降解,要求的代谢时间较长,有时需要数小时甚至几天的时间。因此为了将污水中有机污染物含量降低到一个合理的程度,必须使生物处理构筑物具备合理的水力停留时间。处理较易降解的城市污水时,HRT为数小时即可,而处理一些难以生物降解的工业废水时,HRT有时要达到几天。

2、污泥负荷和容积负荷

污泥负荷是指曝气池内单位重量的活性污泥在单位时间内承受的有机质的数量,单位/(kgMLSS?d),一般记为F/M,常用N s表示。容积负荷是指单位有效曝气体积在是kgBOD

5

单位时间内承受的有机质的数量,单位是kgBOD

/(m3?d),一般记为F/V,常用N v表示。

5

如果污泥负荷和容积负荷过低,虽然可以有效降低污水中的有机物含量,但同时会使活性污泥处于过氧化状态、沉降性能也会变差,导致出水悬浮物含量升高。如果污泥负荷和容积负荷过高,又会造成污水中的有机物氧化不彻底,出水水质变差。

3、有机负荷率

有机负荷率可以分为进水负荷和去除负荷两种。

进水负荷是指曝气池内单位重量的活性污泥在单位时间内承受的有机质的数量,或单位有效曝气池容积在单位时间内承受的有机质的数量,即进水有机负荷可以分为污泥负荷N s和容积负荷N v两种。

去除负荷是指曝气池内单位重量的活性污泥在单位时间内去除的有机质的数量,或单位有效曝气池容积在单位时间内去除的有机质的数量。因此,去除负荷可以用进水负荷和去除率两个参数来表示。

4、冲击负荷

冲击负荷指在短时间内污水处理设施的进水负荷超出设计值或正常运行值的情况,可以是水力冲击负荷,也可以是有机冲击负荷。

如果冲击负荷过大,超过了生物处理工艺本身能承受的能力,就会影响处理效果,使出水水质变差,甚至导致处理系统瘫痪。

5、温度

无论好氧处理还是厌氧处理,都要求在一定温度范围内进行,一旦超过此范围,即温度过高或过低都会降低处理效率,甚至造成整个系统的失效。

6、溶解氧

水中保持一定的溶解氧是好氧水生生物得以生存繁殖的基本条件,因而溶解氧指标也污水生物处理系统正常运转的关键指标之一。好氧生物处理装置要求水中溶解氧最好在2mg/L以上,厌氧生物处理装置要求溶解氧在0.5mg/L以下,如果想进入理想的产甲烷阶段则最好检测不到溶解氧。在好氧生物法的二沉池出水合格时,其溶解氧含量一般不低于1mg/L,过低(﹤0.5mg/L)或过高(空气曝气法﹥2mg/L)都会导致出水水质变差、甚至超标。

第二节好氧活性污泥法

一、活性污泥法的基本流程

好氧活性污泥法是以活性污泥为主体,利用活性污泥中悬浮生长型好氧微生物氧化分解污水中的有机物质的污水生物处理技术,是一种应用最广泛的污水好氧生物处理技术。其净化污水的过程可分为吸附、代谢、固液分离三个阶段,由曝气池、曝气系统、回流污泥系统及二次沉淀池等组成。

经过一级预处理的污水与二次沉淀池底部回流的活性污泥同时进入曝气池混合后,在曝气的作用下,混合液得到足够的溶解氧并使活性污泥与污水充分接触,污水中的胶体状和溶解性有机物为活性污泥吸附,并被活性污泥中的微生物氧化分解,从而得以净化。在二次沉淀池中,活性污泥与已被活性污泥净化的污水分离,澄清后的污水作为处理后污水排出系统;活性污泥在泥区进行浓缩后,以较高的浓度回流到曝气池。微生物氧化分解有机物的同时,自身也得以繁殖增长,即活性污泥量会不断增加,为使曝气池混合液中活性污泥浓度保持在一定较为恒定的范围内,需要及时将部分活性污泥作为剩余污泥排出系统。

曝气池是好氧活性污泥法的核心,有时被称为污水处理的反应池,污水处理厂的其他构筑物和设施都是围绕曝气池设置或以曝气池为基础的。比如各种一级处理设施和二沉池、

回流污泥泵房等都是以满足曝气池需要为前提的,各种三级处理或深度处理设施也需要根据曝气池的处理效果而确定工艺流程和处理方式。生物处理系统的曝气池一般单独设置,前有初沉池、后有二沉池,但也有将曝气池和二沉池合建在一起的工艺,比如SBR工艺、一体式氧化沟工艺以及完全混合活性污泥法的合建式曝气池等。

二、活性污泥的性能指标

好氧活性污泥是由好氧菌为主体的微生物群体形成的絮状绒粒,绒粒直径一般为0.2~

0.5mm,含水率一般为99.2%~99.8%,密度因含水率不同而有一些差异,一般为1.002~

1.006g/m3,绒粒状结构使得活性污泥具有较大的比表面积,一般为20~100cm2/mL。成熟的活性污泥呈茶褐色,稍具泥土味,具有良好的凝聚沉淀性能。活性污泥由有机物和无机物两部分组成,组成比例因处理污水的不同而有差异,一般有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在其中的微生物组成,活性污泥上还吸附着微生物的代谢产物及被处理污水中含有的各种有机和无机污染物。

1、污泥沉降比(SV)

污泥沉降比SV又称30分钟沉降比,是曝气池混合液在量筒内静置30分钟后所形成的沉淀污泥容积占原混合液容积的比例,以%表示。一般取混合液样100ml用100ml量筒测量,静置30分钟后泥面的高度恰好是SV的数值。由于SV值的测定简单快速,因此是评定活性污泥浓度和质量的最常用方法。

SV能反映曝气池正常运行时的污泥量和污泥的凝聚、沉降性能,通常SV值越小,污泥的沉降性能越好。可用于控制剩余污泥的排放量,通过SV的变化可以判断和发现污泥膨胀现象的发生。SV值的大小与污泥的种类、絮凝性能和污泥浓度有关,不同污水处理厂的SV 值的差别很大,城市污水处理厂的正常SV值一般在20%~30%之间,而有些工业废水处理场的正常SV值在90%以上。同一污水处理厂的污泥,在丝状菌含量大和污泥过氧化而解絮时的SV值比正常值也要高得多。因此,每座污水处理厂都应该根据自己的运行经验数据确定本厂的最佳SV值。

在正常生产运行中,有时为了能及时调整运行状况,可以测定5min的污泥沉降比来判断污泥的性能。5min测定不仅节约时间,而且沉降性能不同的污泥,此时的体积差异也最大。必要时,可以测定低转速条件下的沉淀效果,并测定污泥界面的沉降速度,更准确地反映沉淀池中的实际状况。

SV值的测定不仅可用于监控曝气池混合液的性能,也可以比较和观察初沉池污泥的性

能,尤其是将二沉池污泥回流到初沉池加强初沉效果并从初沉池排放剩余污泥时,更需要测定进入初沉池污泥的SV值,以控制回流量和保证沉淀效果。

2、污泥浓度(MLSS)

曝气池混合液污泥浓度(MLSS)又称混合液悬浮固体浓度,它表示的是混合液中的活性污泥浓度,即单位容积混合液内所含有的活性污泥固体物的总质量。其单位是mg/L或g/L。MLSS中包含了活性污泥中的所有成分,即由具有代谢功能的微生物群体、微生物代谢氧化的残留物、吸附在微生物上的有机物和无机物等四部分组成。

曝气池混合液挥发性污泥浓度(MLVSS)又称混合液挥发性悬浮固体浓度,表示的是混合液活性污泥中有机性固体物质的浓度,MLVSS扣除了活性污泥中的无机成分,能够比较准确地表示活性污泥中活性成分的数量。其单位也是mg/L或g/L。

对于水质相对稳定的污水生物处理系统,MLVSS/MLSS比值是固定的,比如处理城市污水的活性污泥这一比值一般在0.75~0.85之间,但不同的工业废水,MLVSS/MLSS比值是有差异的。

每一种好氧活性污泥法处理工艺都有其最佳曝气池MLSS,比如普通空气曝气活性污泥法的MLSS最佳值为2g/L左右,而纯氧曝气活性污泥法的MLSS最佳值为5g/L左右,两者差距很大。一般而言,曝气池中的MLSS接近其最佳值时,处理效果最好,而MLSS过低时往往达不到预计的处理效果。如果MLSS或MLVSS超出特定范围或二者比值发生较大改变,必须设法使其恢复正常,否则势必造成生物处理系统出水水质发生变化,甚至导致包括悬浮物在内的各种排放指标超标。另外,通过测定MLSS,还可以监测曝气池混合液的污泥体积指数,从而了解活性污泥及其他生物悬浮液的沉降特性和活性。

当MLSS过高时,泥龄延长,维持这些污泥中微生物正常活动所需的溶解氧数量自然会增加,导致对充氧系统能力的要求增大。同时曝气池混合液的密度会增大,也就会增加机械曝气或鼓风曝气的电耗。也就是说,虽然MLSS偏高时,可以提高曝气池对进水水质变化和冲击负荷的抵抗能力,但在运行上往往是不经济的。而且有时还会导致污泥过度老化,活性下降,最后甚至影响处理效果。在实际运行时,有时需要通过加大剩余污泥排量的方式强制减少曝气池的MLSS值,刺激曝气池混合液中微生物的生长和繁殖,提高活性污泥分解氧化有机物的活性。

3、污泥容积指数(SVI)

污泥容积指数(SVI)是指曝气池出口处混合液经过30min静置沉淀后,每克干污泥所

形成的沉淀污泥所占的容积,单位以mL/g计。计算公式如下:

SVI=(1L混合液经30min静沉后以mL计的污泥容积)/(1L混合液以g计的干污泥量)。

SV值与SVI值的关系如下:

SVI= 10×SV/MLSS(g/L)

SVI值排除了污泥浓度对污泥沉降体积的影响,因而比SV值能更准确地评价和反映活性污泥的凝聚、沉淀性能。一般说来,SVI值过低说明污泥颗粒细小,无机物含量高,缺乏活性;SVI值过高说明污泥沉降性能较差,将要发生或已经发生污泥膨胀。对于高浓度活性污泥系统,即使沉降性能较差,由于其MLSS较高,因此其SVI值也不会很高。

SVI值与污泥负荷有关,污泥负荷过高或过低(对城市污水处理厂而言,污泥负荷﹥0.5kgBOD5/(kgMLSS?d)或﹤0.05kgBOD5/(kgMLSS?d)),活性污泥的代谢性能都会变差,SVI 值也会变的很高,存在出现污泥膨胀的可能。

SV、MLSS、SVI这三个活性污泥性能指标是相互联系的。沉降比的测定比较容易,但所测得的结果受污泥量的限制,不能全面反映污泥性质,也受污泥性质的限制,不能正确反映污泥的数量;污泥浓度可以反映污泥数量;污泥指数则能较全面地反映污泥凝聚和沉降的性能。

4、生物相

和其他测定相比,生物相镜检要简便得多,随时可以了解活性污泥中原生动物种类变化和数量消长情况。但生物相镜检一般只能作为对水质总体状况的估计,是一种定性的检测,不能作为污水处理厂出水水质的控制指标。为了监测微型动物演替变化状况,还需要定时进行记数。对活性污泥或生物膜生物相进行镜检后,其结果记录方式可以参考表3-2-1。

表3-2-1 生物相镜检结果记录表

⑴生物相镜检的方法

生物相镜检可采取低倍镜观察或高倍镜观察两种方法进行。

①低倍镜观察是为了观察生物相的全貌,要注意观察污泥絮粒的大小,污泥结构的松紧程度,菌胶团和丝状菌的比例及其生长状况,并加以记录和作出必要的描述。污泥絮粒按平均直径的大小可以分为三等:污泥絮粒平均直径﹥0.5mm的称为大粒污泥,﹤0.1mm 为小粒污泥,介于0.1mm~0.5mm之间的为中粒污泥。污泥絮粒越大,污泥性能越好。污泥絮粒性状是指污泥絮粒的形状、结构、紧密程度及污泥中丝状菌的数量。镜检时可把近似圆形的污泥絮粒称为圆形絮粒,与圆形截然不同的称为不规则形状絮粒。絮粒中网状空隙与絮粒外面悬液相连的称为开放结构,无开放空隙的称为封闭结构。絮粒中菌胶团细菌排列致密,絮粒边缘与外部悬液界限清楚的称为紧密絮粒,边缘界限不清的称为疏松絮粒。实践证明,圆形、封闭、紧密的絮粒相互间易于凝聚、浓缩,沉降性能良好,反之则沉降性能差。

②用高倍镜观察,可以进一步看清微型动物的结构特征。观察时要注意微型动物的外形和内部结构,例如钟虫体内是否存在食物胞,纤毛虫的摆动情况等。观察菌胶团时,应注意胶质的厚薄和色泽,新生菌胶团出现的比例等。观察丝状菌时,要注意丝状菌体内是否有类脂物质和硫粒积累,同时注意丝状菌体内细胞的排列、形态和运动特征以便初步判断丝状菌的种类(进一步鉴别丝状菌的种类需要使用油镜并将活性污泥样品染色)。

⑵生物相镜检时的注意事项

城市污水处理厂活性污泥中微生物种类很多,比较容易地通过观察微生物种类、形态、数量和运动状态的变化来掌握活性污泥的状态。而工业废水处理场活性污泥中会因为水质的原因,可能观察不到某种微生物,甚至完全没有微型动物,即不同的工业废水处理场的生物相会有很大差异。因此,生物相观察时应注意活性污泥微生物的一些变化和异常。

①微生物种类的变化:污泥中的微生物种类会随水质变化,随运行阶段而变化。污泥培养阶段,随着活性污泥的逐渐形成,出水由浊变清,污泥中的微生物发生有规律的演变。正常运行中,污泥微生物种类的变化也遵循一定的规律,由污泥微生物种类的变化可以推测运行状况的变化。比如污泥结构变得松散时,游动纤毛虫较多,而出水混浊变差时,变形虫和鞭毛虫就会大量出现。

②微生物活动状态的变化:当水质发生变化时,微生物的活动状态也会发生一些变化,甚至微生物的形体也会随污水变化而变化。以钟虫为例,纤毛摆动的快慢、体内积累食物泡的多少、伸缩泡的大小等形态都会随生长环境的改变而变化。当水中溶解氧过高或过低时,钟虫的头部常会突出一个空泡。进水中难降解物质过多或温度过低时,钟虫会变得不

活跃,其体内可见到食物颗粒的积累,最后会导致虫体中毒死亡。pH值突变时,钟虫体上的纤毛会停止摆动。

③微生物数量的变化:活性污泥中的微生物种类很多,但某些微生物数量的变化也能反映出水质的变化。比如丝状菌,在正常运行时适量存在是非常有利的,但其大量出现会导致菌胶团数量的减少、污泥膨胀和出水水质变差。活性污泥中鞭毛虫的出现预示着污泥开始增长繁殖,但鞭毛虫数量增多又往往是处理效果降低的征兆。钟虫的大量出现一般是活性污泥生长成熟的表现,此时处理效果良好,同时可见极少量的轮虫出现。如果活性污泥中轮虫大量出现,则往往意味着污泥的老化或过度氧化,随后就有可能出现污泥解体和出水水质变差。

三、活性污泥的增长规律

把少量活性污泥加入污水中,在温度适宜、溶解氧充足的条件下进行曝气培养时,活性污泥的增长曲线如图3-2-1所示。

图3-2-1 污泥增长曲线示意图

1—适应阶段和对数增长阶段2—减速增长阶段3--内源代谢阶段由图可以看出,在温度适宜、溶解氧含量充足,而且不存在抑制性物质的条件下,控制活性污泥增长的决定因素是食料(污水中的有机物,又称底物)量F和微生物(活性污泥)量M之间的比值F/M,同时受有机底物降解速率、氧利用速率和活性污泥的凝聚、吸附性能等因素的影响。活性污泥的增长过程可分为适应阶段、对数增长阶段、减速增长阶段和内源代谢阶段等四个阶段:

⑴适应阶段:叫调整阶段,这是活性污泥培养的最初阶段,微生物不增殖但在质的方面却开始出现变化。这一段和图3-2-1中增长曲线开始的水平部分相对应,一般持续时间较短。在适应阶段后期,微生物酶系统已经逐渐适应新的环境,个体发育也达到了一定程度,细胞开始分裂,微生物开始增殖。

⑵对数增长阶段:活性污泥生长率上升,F/M比值较大,有机底物充足、活性污泥活性

强,微生物以最高速率摄取有机底物的同时,也以最高速率合成细胞、实现增殖。此时活性污泥去除有机物的能力大,污泥增长不受营养条件所限制,而只与微生物浓度有关。此时污泥凝聚性能差,不易沉淀,处理效果差。

⑶减速增长阶段:活性污泥生长率下降,F/M值持续下降,活性污泥增长受到有机营养的限制,增长速度下降。这是一般活性污泥法所采用的工作阶段,此时,污水中的有机物能基本去除,污泥的凝聚性和沉降性都较好。

⑷内源代谢阶段:营养物质基本耗尽,活性污泥由于得不到充足的营养物质,开始利用体内存储的物质,即处于自身氧化阶段,此时,污泥无机化程度高,沉降性良好,但凝聚性较差,污泥逐渐减少。但由于内源呼吸的残留物多是难于降解的细胞壁和细胞质等物质,因此活性污泥不可能完全消失。

推流式曝气池中有机物和活性污泥在数量上的变化规律与上述活性污泥增长规律相同,只是其变化不单是在时间上进行的,而是从池开始端到末尾端的空间上进行的。在活性污泥法转入正常运行后,曝气池是连续运转的,池中的活性污泥也不是自行成长的,而是从二次沉淀池中回流过来的,它的量是可以控制的。所以,通过控制来水中有机物浓度和回流污泥的数量,可以决定曝气池起始端活性污泥生长所处的状态。而曝气池末端活性污泥生长所处的状态,则决定于曝气时间。因此,曝气池的工作情况,如果用污泥增长曲线来表示,将是其中的一段线段,如图3-2中a~b所示。它在曲线上所处的位置决定于池中有机物与微生物之间的相对数量。因此,在一定范围内,通过控制回流污泥量和曝气时间可以获得不同程度的处理效果。

四、活性污泥净化污水的过程

活性污泥净化污水主要通过三个阶段来完成。

在第一阶段,污水主要通过活性污泥的吸附作用而得到净化。吸附作用进行得十分迅速,一般在30分钟内完成,BOD5的去除率可高达70%。同时还具有部分氧化的作用,但吸附是主要作用。活性污泥具有极大的比表面积,内源呼吸阶段的活性污泥处于“饥饿”状态,其活性和吸附能力最强。吸附达到饱和后,污泥就失去活性,不再具有吸附能力。但通过氧化阶段,除去了所吸附和吸收的大量有机物后,污泥又将重新呈现活性,恢复它的吸附和氧化的能力。

第二阶段,也称氧化阶段,主要是继续分解氧化前阶段被吸附和吸收的有机物,同时继续吸附一些残余的溶解物质。这个阶段进行得相当缓慢。实际上,曝气池的大部分容积

都用在进行有机物的氧化和微生物细胞物质的合成。氧化作用在污泥同有机物开始接触时进行得最快,随着有机物逐渐被消耗掉,氧化速率逐渐降低。因此如果曝气过分,活性污泥进入自身氧化阶段时间过长,回流污泥进入曝气池后初期所具有的吸附去除效果就会降低。

第三阶段是泥水分离阶段,在这一阶段中,活性污泥在二沉池中进行沉淀分离。微生物的合成代谢和分解代谢都能去除污水中的有机污染物,但产物不同。分解代谢的产物是CO2和H2O,可直接消除污染,而合成代谢的产物是新生的微生物细胞,只有将其从混合液中去除才能实现污水的完全净化处理。必须使混合液经过沉淀处理,将活性污泥与净化水进行分离,同时将与合成代谢生成的新微生物细胞等量的原有老化微生物以剩余污泥的方式排出活性污泥处理系统,才能达到彻底净化污水的目的。同时,必须对剩余污泥进行妥善处理,否则可能造成二次污染。

五、活性污泥的微生物组成

好氧活性污泥中的微生物主要由细菌组成,其数量可占污泥中微生物总量的90%~95%左右,在处理某些工业废水的活性污泥中甚至可达100%。此外污泥中还有原生动物和后生动物等微型动物,在处理某些工业废水的活性污泥中还可见到酵母、丝状真菌、放线菌亦及微型藻类。

1、菌胶团

菌胶团是活性污泥的结构和功能中心,是活性污泥的基本组分,一旦菌胶团受到破坏,活性污泥对有机物的去除率将明显下降或丧失。在活性污泥培养的早期,可以看到大量新形成的典型菌胶团,它们可以呈现指状、垂丝状、球状、蘑菇状等多种形式。进入正常运转阶段的活性污泥,具有很强吸附能力和氧化分解有机物能力的菌胶团会把污水中的杂质和游离微生物吸附在其上,形成活性污泥絮凝体。因此,除少数负荷较高、处理污水碳氮比较高的活性污泥外,只能在絮粒边缘偶尔见到典型的新生菌胶团。细菌形成菌胶团后,可以防止被微型动物所吞噬,并在一定程度上免受污水中有毒物质的影响,而且具有很好的沉降性能、有利于混合液在二沉池迅速完成泥水分离。

通过观察菌胶团的颜色、透明度、数量、颗粒大小及结构松紧程度等可以判断和衡量活性污泥的性能。新生菌胶团无色透明、结构紧密,吸附氧化能力强、活性高;老化的菌胶团颜色深、结构松散,吸附氧化能力差、活性低。

2、丝状细菌

丝状细菌同菌胶团细菌一样,是活性污泥的重要组成部分。其长丝状形态有利于其在固相上附着生长,保持一定的细胞密度,防止单个细胞状态时被微型动物吞食;细丝状形态的比表面积大,有利于摄取低浓度底物,在底物浓度相对较低的条件下比胶团菌增殖速度快,在底物浓度较高时则比胶团菌增殖速度慢。丝状细菌增殖速率快、吸附能力强、耐供氧不足能力以及在低基质浓度条件下的生活能力都很强,因此在污水生物处理生态系统中存活的种类多、数量大。

活性污泥中丝状微生物包括丝状细菌、丝状真菌、丝状藻类等细胞相连且形成丝状的菌体,其中以丝状细菌最为常见,它们同菌胶团细菌一起,构成了活性污泥絮体的主要成分。丝状细菌具有很强的氧化分解有机物的能力,但由于丝状细菌的比表面积较大,当污泥中丝状菌超过菌胶团细菌而占优势生长时,丝状菌从絮粒中向外伸展,阻碍絮粒间的凝聚使污泥SV值SVI值升高,严重时会造成污泥膨胀现象。因此,丝状细菌数量是影响污泥沉降性能的最重要因素。

根据活性污泥中丝状菌与菌胶团细菌的比例,可将丝状菌分成五个等级:①0——污泥中几乎无丝状菌;②±级——污泥中存在少量无丝状菌;③+级——污泥中存在中等数量丝状菌,总量少于菌胶团细菌;④++级——污泥中存在大量丝状菌,总量与菌胶团细菌大致相等;⑤+++级——污泥絮粒以丝状菌为骨架,数量明显超过菌胶团细菌而占优势。

3、活性污泥中的微型动物

在处理生活污水的活性污泥中存在着大量的原生动物和部分微型后生动物,其中出现最多的原生动物是以钟虫为代表的纤毛虫类。在处理工业废水的活性污泥中,微型动物的种类和数量往往少得多,有些工业废水处理系统甚至根本看不到微型动物。

在污泥培养初期或污泥发生变化时可以看到大量的鞭毛虫、变形虫。而在系统正常运行期间,活性污泥中微型动物以固着型纤毛虫为主,同时可见游动型纤毛虫类(草履虫、肾形虫、豆形虫、漫游虫等)、匍匐型纤毛虫类(楯纤虫、尖毛虫、棘尾虫等)、吸管虫类(足吸管虫、壳吸管虫、锤吸管虫等)等纤毛虫类。固着型纤毛虫类主要是钟虫类原生动物,这是在活性污泥中数量最多的一类微型动物,常见的有沟钟虫、大口钟虫、小口钟虫、累枝虫、盖纤虫、独缩虫等。可查看有关微生物图谱对性污泥中能见到的原生动物进行种类辨别。除了上述仅有一个细胞构成的原生动物以外,尚有由多个细胞构成的后生动物,较常见的有轮虫(猪吻轮虫、玫瑰旋轮虫等)、线虫和瓢体虫等。线虫在膜生长较厚的生物膜处理系统中会大量出现。

⑴微型动物在活性污泥中所起的作用:

①促进絮凝和沉淀:污水处理系统主要依靠细菌起净化和絮凝作用,原生动物分泌的粘液能促使细菌发生絮凝作用,大部分原生动物如固着型纤毛虫本身具有良好的沉降性能,加上和细菌形成絮体,更提高了在二沉池的泥水分离效果。

②减少剩余污泥:从细菌到原生动物的转换率约为0.5%,因此,只要原生动物捕食细菌就会使生物量减少,减少的部分等于被氧化量。

③改善水质:原生动物除了吞噬游离细菌外,沉降过程中还会粘附和裹带细菌,从而提高细菌的去除率。原生动物本身也可以摄取可溶性有机物,还可以和细菌一起吞噬水中的病毒。这些作用的结果是可以降低二沉池出水的BOD5、COD Cr和SS,提高出水的透明度。

⑵活性污泥中微型动物变化与污水处理运行情况的关系

活性污泥中出现的微型动物种类和数量,往往和污水处理系统的运转情况有着直接或间接的关系,进水水质的变化、充氧量的变化等都可以引起活性污泥组成的变化,微型动物体积比细菌要大很多,比较容易观察和发现其微型动物的变化,因而可以作为污水处理的指示生物。

①如果发现单个钟虫活跃,其体内的食物泡都能清晰地观察到时,说明活性污泥溶解氧充足,污水处理程度高。钟虫不活跃或显得很呆滞时,往往说明曝气池供氧不足。如果出现钟虫等原生动物大量死亡,则说明曝气池内有毒物质进入量过多,造成了活性污泥的中毒。

②当发现在大量钟虫存在的情况下,楯纤虫增多而且越来越活跃,这并不是表示曝气池工作状态良好,而很可能是污泥将要变得越来越松散的前兆。如果进一步观察到钟虫数量递减,而楯纤虫数量递增,则更加说明潜伏着污泥膨胀的可能。

③当发现没有钟虫,却有数量较多的游动型纤毛虫类比如草履虫、肾形虫、豆形虫、漫游虫等,而细菌则以游离细菌为主,此时表明水中有机物还很多,处理程度较低。如果原来水质良好,突然出现固着型纤毛虫类数量减少而游动纤毛虫类数量增加的现象,预示水质将要变差。相反,如果原来水质较差,出现游动纤毛虫类由无到有且数量逐渐增加的现象,则预示水质将向好的方向发展,最后再变为以固着型纤毛虫类为主,则表明水质将会变得很好。

④当发现等枝虫成堆出现且不活跃,而贝氏硫菌和丝硫细菌积硫点十分明显,同时污泥中有肉眼能见的小白点时,则表明曝气池溶解氧很低(传统活性污泥法一般只有0.5mg/L

左右)。正常情况下,固着型纤毛虫类体内有维持水份平衡的伸缩泡定期收缩和舒张,但当污水中溶解氧降低到1mg/L时,伸缩泡就处于舒张状态,不活动,因此可以通过观察伸缩泡的状况来间接推测水中溶解氧的含量。

⑤活性污泥中发现积硫很多的丝硫细菌和游离细菌时,往往是因为曝气时间不足,空气量不够,进水量过大,或者是因为水温太低导致污水处理效果较差。

⑥镜检时发现各类原生动物很少,球衣细菌或丝硫细菌很多时,往往表明活性污泥已经发生膨胀。

⑦二沉池的表面浅水层经常出现许多水蚤,如果其体内血红素低,说明溶解氧含量较高;如果水蚤的颜色很红时,则说明出水中几乎没有溶解氧。

由于每个污水处理厂的进水水质和处理工艺存在差异,以上所述是以城市污水或掺有一定比例的生活污水的工业废水处理系统生物相的表观现象,有些工业废水处理系统的微型动物数量就很少,因此活性污泥的生物相也会有所不同。应该经常进行镜检,掌握活性污泥中出现的微型动物种类和数量与污水处理运行状况之间的关系,为利用生物相观察指导污水处理积累经验。

六、活性污泥的培养驯化

在活性污泥的培养与驯化期间,必须满足微生物生命活动所需的各种条件,而且要尽量理想化。一是保证足够的溶解氧和保持营养平衡,对于缺乏某些营养物质的工业废水,要适量多投加一些营养物质。二是水温、pH值要尽量在最适范围内,且没有大的波动。三是有机负荷要由低而高、循序渐进。培养期间,每隔8小时要对混合液的污泥浓度、污泥指数、溶解氧含量等进行分析化验,同时还要检测进出水的BOD5、COD Cr及悬浮物SS等指标,根据检测结果及时加以调整。

1、间歇培养法

间歇培养法是将污水注满曝气池,然后停止进水,开始闷曝(只曝气而不进水)。闷曝2~3天后,停止曝气,静沉1~1.5小时,然后再进入部分新鲜污水,水量约为曝气池容积的1/5即可。以后循环进行闷曝、静沉、进水三个过程,但每次进水量应比上次有所增加,而每次闷曝的时间应比上次有所减少,即增加进水的次数。

当污水的温度在15~20o C时,采用这种方法经过15天左右,就可使曝气池中的污泥浓度超过1g/L以上,混合液的污泥沉降比(SV)达到15%~20%。此时停止闷曝,连续进水连续曝气,并开始回流污泥。最初的回流比应当小些,可以控制在25%左右,随着污泥浓度的

增高,逐渐将回流比提高到设计值。

2、连续培养法

连续培养法是使污水直接通过活性污泥系统的曝气池和二沉池,连续进水和出水;二沉池不排放剩余污泥,全部回流曝气池,直到混合液的污泥浓度达到设计值为止的方法。具体做法有以下三种:

⑴低负荷连续培养:将曝气池注满污水后,停止进水,闷曝1~2天。然后连续进水连续曝气,进水量控制在设计水量的1/2或更低,不排泥也不回流。等曝气池形成污泥絮体后,开始以低回流比(25%左右)回流污泥。当混合液污泥浓度超过1g/L后,开始以设计回流比回流污泥。当混合液污泥浓度接近设计值时,可根据具体情况适量排放剩余污泥。

⑵高负荷连续培养:将曝气池注满污水后,停止进水,闷曝1~2天。然后按设计流量连续进水连续曝气,等曝气池形成污泥絮体后,开始以低回流比(25%左右)回流污泥。当混合液污泥浓度接近设计值时,再可根据具体情况适量排放剩余污泥。

⑶接种培养:将曝气池注满污水后,投入大量其他污水处理厂的正常污泥(最好是没有经过消化的新鲜脱水剩余污泥),再按高负荷连续培养法培养。接种培养能大大短污泥培养时间,但大型处理场需要的接种量非常大,运输大量污泥往往不太现实,所以此法一般只适用于规模较小的污水处理厂。当污水处理厂改建或扩建时,利用旧曝气池污泥为新曝气池提供接种污泥,是经常见到的做法。当新建污水处理厂有多个系列的曝气池、附近又没有污水处理厂可以提供接种污泥时,可以先在一个系列利用上述方法成功培养污泥后,再向其他系列曝气池提供接种污泥,从而缩短全场的培养时间和降低培养的能耗。

3、活性污泥的驯化

活性污泥的驯化通常是针对含有有毒或难生物降解的有机工业废水而言。一般是预先利用生活污水或粪便水培养活性污泥,再用待处理的污水驯化,使活性污泥适应所处理污水的水质特点。经过长期驯化的活性污泥甚至有可能氧化分解一些有毒有机物,甚至将其变成微生物的营养物质。

驯化的方法可分为异步法和同步法两种,两种驯化法的结果都是全部接纳工业废水。

①异步驯化法是用生活污水或粪便水将活性污泥培养成熟后,再逐步增加工业废水在混合液中的比例。每变化一次配比,污泥浓度和处理效果的下降不应超过10%,并且经过7~10d 运行后,能恢复到最佳值。②同步驯化法是用生活污水或粪便水培养活性污泥的同时,就开始投加少量的工业废水,随后逐渐提高工业废水在混合液中的比例。

对于生化性较好、有毒成分较少、营养也比较全面的工业废水,可以使用同步驯化法同时进行污泥的培养和驯化。否则,必须使用异步驯化法将培养和驯化完全分开。

七、活性污泥法的运行管理

1.活性污泥法的运行控制方法

活性污泥法的控制方法有污泥负荷法、SV法、MLSS法和泥龄法等四种,这些方法之间是相互关联、而不是对立的,往往同时使用,互相校核,以期达到最佳的处理效果。

⑴污泥负荷法

污泥负荷法是污水生物处理系统的主要控制方法,尤其适用于系统运行的初期和水质水量变化较大的生物处理系统。但此法操作复杂,水质水量波动较小的稳定运行城市污水处理厂一般采用其他控制方法,只是定期用污泥负荷法进行核算。污泥负荷控制得过高时,微生物生长繁殖速率加快,尽管代谢分解有机物的能力很强,但由于细菌能量高、趋于游离生长状态,会导致污泥絮体的解絮,二沉池出水变浑浊,处理效果变差。污泥负荷控制得过低时,有可能导致污泥过氧化而引起的解絮现象,二沉池出水水清但含有较多悬浮污

/(kgMLSS?d),对于难泥颗粒。一般活性污泥法的污泥负荷Ns控制范围为0.2~0.3 kgBOD

5

生物降解的工业废水,Ns值应控制得更低一些。

⑵MLSS法

MLSS法是经常测定曝气池内MLSS的变化情况,通过调整排放剩余污泥量来保证曝气池内总是维持最佳MLSS值的控制方法,适用于水质水量比较稳定的生物处理系统。应根据运行经验找出不同季节、不同水质水量条件下的最佳MLSS值,再通过调整排泥量和回流比等运行参数,使曝气池内MLSS维持最佳。一般空气曝气活性污泥法的最佳MLSS 为2~3g/L,纯氧曝气活性污泥法的最佳MLSS在5g/L左右。

⑶SV法

对于水质水量稳定的生物处理系统,SV值能代表活性污泥的絮凝和代谢活性,反映系统的处理效果。运行管理过程中可以分析总结不同条件下的最佳SV值,每日每班测定SV值,再通过调整回流污泥量、排泥量、曝气量等参数,使曝气池混合液SV值维持最佳。SV法操作简单迅速,但SV不能正确反应MLSS具体值,准确性较差,需要配合其他控制方法一起应用。SV值可以通过增减剩余污泥的排放量来加以调节,SV值的变动性较大,而且与进水量有关。因此最好每个运行班都需要测定混合液的SV值,而且要与进水量相对照验证。

⑷泥龄法

泥龄法是通过控制系统的污泥停留时间最佳来使处理系统维持最佳运行效果的方法。泥龄与处理预期目标有直接关系,比如要达到硝化效果泥龄必须很长,而单独去除BOD

5时泥龄可以短得多。宏观上可以通过调整排泥量实现对泥龄的控制,但控制泥龄又必须以维持曝气池混合液一定的MLSS值为前提。

2.活性污泥法日常管理项目

⑴对活性污泥状况的镜检和观察:用肉眼观察活性污泥的颜色是否是正常的茶褐色,同时用鼻子闻活性污泥的气味是否正常(稍具泥土味),并用显微镜观察活性污泥中的生物相。曝气充氧不足时,污泥会发黑发臭;当曝气充氧过度或负荷过低时,污泥色泽会较淡。

⑵观察曝气效果:主要观察曝气池液面的翻腾情况和泡沫的变化情况。成团大气泡上升是曝气系统局部堵塞的表现,而液面翻腾很不均匀往往是存在不曝气死角所致。泡沫增多或颜色变化一般反映进水水质发生了变化或负荷等运行状态发生了变化。

⑶曝气时间:曝气时间指活性污泥微生物氧化分解有机污染物的时间,即污水在曝气池内的平均停留时间HRT。不仅与要处理的污水的水量有关,更与水质和采用的处理方法密切相关,曝气时间应以使处理后的排水达到国家有关标准为依据,通常要根据成功运行经验和实际运行来确定。处理城市污水的传统活性污泥法,曝气时间为4~8小时,而处理高浓度工业废水时,曝气时间可长达50小时以上。可通过增减运行曝气池的间数来调节曝气时间,在一般情况下,应相对稳定,不宜过频。

⑷曝气量(供气量):供气电耗占整个污水处理厂电耗的50%~60%,因此供气量的调整要极其慎重。确定供气量的主要依据是保证曝气池出口处的溶解氧浓度在2mg/L以上,其次要满足混合液混合搅拌的需要。供气量还与曝气池进水水质、温度、曝气时间、MLSS 浓度、溶解氧含量等有关,需要根据一定期限内所取得的运行数据综合确定。处理城市污水的传统活性污泥法的供气量一般为进水量的3~7倍。对于进水水质、水量相对稳定的大型城市污水处理厂,每年春秋各调整一次,即在水温开始上升的4~5月份降低供气量,而在水温开始下降的10~11月份提高供气量。对于水质、水量波动较大的工业废水处理场,要在综合分析各种化验分析数据后,每天对供气量进行确认或调整。

⑸剩余污泥排放:随着累计处理水量的不断增加,曝气池内的活性污泥量也会不断增长,MLSS值和SV值都会升高。为了保证曝气池内MLSS值相对稳定,必须将增加的污泥量及时排出,排放的剩余污泥量应大致等于污泥的增长量,排放量过大或过小都会导致曝气池内MLSS值的波动。剩余污泥排放量与采用的活性污泥法及具体的进水水质有关,在

没有经验的情况下,可大致按进水量的1%左右排放剩余污泥,确切适宜的排放值应根据一定时期的实际运行结果来确定。

⑹回流污泥量:调节回流污泥量的目的也是为了保证曝气池内MLSS值的相对稳定,而污水处理厂的回流量一般也是相对固定的。活性污泥法的回流污泥浓度一般介于7~10g/L,纯氧曝气活性污泥法的回流污泥浓度可超过15g/L,回流污泥沉降比一般在90%左右。因此在进水水质水量比较稳定的情况下,实际上是根据每日测定的SV值为依据、通过调整剩余污泥的排放量来达到维持污泥回流量固定的目的。在进水水量发生大的波动时,就需要调整回流量,以保证曝气池内MLSS值不因进水量的增大或减少而出现大的波动。

⑺观察二沉池:经常观察二沉池泥面的高低、上清液的透明程度及液面和出水中悬浮物的情况。正常运行时二沉池上清液的厚度应不少于0.5~0.7m。如果泥面上升,往往说明污泥沉降性能差;如果上清液混浊,说明进水负荷过高,污水净化效果差;如果上清液透明但带有小污泥絮片,说明污泥解絮;如果液面不连续大块污泥上浮,说明池底局部厌氧或出现反硝化;如果大范围污泥成层上浮,说明污泥可能中毒。

3.活性污泥法日常管理中需要检测和记录的参数

⑴反映处理流量的项目:主要有进水量、回流污泥量和剩余污泥量。

⑵反映处理效果的项目:进、出水的BOD5、COD Cr、SS及其他有毒有害物质的浓度。

⑶反映污泥状况的项目:包括曝气池混合液的各种指标SV、SVI、MLSS、MLVSS及生物相观察等和回流污泥的各种指标RSSS、RSV及生物相观察等。

⑷反映污泥环境条件和营养的项目:水温、pH、溶解氧、氮、磷等。

⑸反映设备运转状况的项目:水泵、泥泵、鼓风机、曝气机等主要工艺设备的运行参数,如压力、流量、电流、电压等。

4.曝气池进水常规监测项目

⑴温度:好氧活性污泥微生物能正常生理活动的最适宜温度范围是15~30o C。一般水温低于10o C或高于35o C时,都会对好氧活性污泥的功能产生不利影响。当温度高于40o C或低于5o C时,甚至会完全停止。

在一定范围内,随着温度的升高,虽然不利于氧向水中的转移,却可以加快生化反应速率,微生物增殖速率也会加快。但温度突升并超过一定限度时,就会产生不可逆破坏。相比之下,温度降低对微生物的影响要小一些,一般不会出现不可逆破坏。如果水温的降低变化缓慢,活性污泥中的微生物可以逐步适应这种变化,通过采取降低负荷、提高溶解

氧浓度、延长曝气时间等措施,仍能取得较好的处理效果。

因此,在实际生产运行中,要重视水温的突然变化,尤其是水温的突然升高。为防止水温过高的工业废水对好氧生物处理产生不利影响,应进行降温处理。

⑵pH值:活性污泥微生物的最适宜的pH值介于6.5~8.5之间。pH值降至4.5以下,活性污泥中原生动物将全部消失,大多数微生物的活动会受到抑制,优势菌种为真菌,活性污泥絮体受到破坏,极易产生污泥膨胀现象。当pH值大于9后,微生物的代谢速率将受极大的不利影响,菌胶团会解体,也会产生污泥膨胀现象。当污水pH值高于10或低于5时,在进入曝气池之前,必须进行酸碱中和调整pH值,使进入曝气池的污水pH值至少在6~9之间。

活性污泥混合液本身对pH值变化具有一定的缓冲作用,因为好氧微生物的代谢活动能改变其活动环境的pH值。比如说好氧微生物对含氮化合物的利用,由于脱氮作用而产生酸,降低环境的pH值;由于脱羧作用而产生碱性胺,又可使pH值上升。因此,经过长时间的驯化,活性污泥法也能处理具有一定酸性或碱性的污水。此外,污水本身所具有的碱度对pH值的下降有一定抑制作用。

但是,污水的pH值发生突变,譬如碱性污水进入已适应酸性环境的活性污泥系统时,将会对其中微生物造成冲击,甚至有可能破坏整个系统的正常运行。因此,酸碱污水是否进行中和处理,要根据实际情况而定,若是进入活性污泥系统的污水pH值变化不大,尤其是只有微酸性水或微碱性水其中之一时,往往不需要中和处理,而pH值变化幅度较大时,应事先进行中和处理调整pH值至中性。

⑶COD Cr和BOD5:无论采用哪种活性污泥法,曝气池所能承受的有机负荷都是有一定限度,超过限度,曝气池的运行效果将难以保证。对于正在运行的曝气池,进水BOD5最高值都是固定的,由于BOD5分析周期较长,实际上多以COD Cr分析结果指导生产。曝气池进水有机负荷一旦超标,就应当立即采取降低进水量、加大污泥回流量、提高充氧效率等措施,以免对整个二级生物处理系统造成冲击和保证出水水质。如果进水COD Cr值偏低,就应当立即采取增加进水量、减少污泥回流量和减少风机运转台数降低表曝机转数等降低充氧效率的措施,以免造成不必要的动力浪费。

⑷氨氮和磷酸盐:理论上,微生物对氮、磷的需要量要按BOD5:N:P=100:5:1来计算,但实际活性污泥法处理系统曝气池进水中的BOD5与氮、磷的比例往往低于此值,系统也能正常运转。氮、磷的含量因处理的工业废水种类不同差别很大,有的污水氮、磷的含量很高,不经过脱磷除氮,二沉池出水氮、磷的含量就会超标。而对于氮、磷的含量很低的污水,

如果不能及时补充一定量的氮、磷,微生物的功能受到限制,二沉池出水的COD Cr和BOD5就难以保证达标。当处理氮、磷的含量很低的工业废水时,对于正在运行的曝气池,曝气池进水中氨氮和磷酸盐的含量分别为10mg/L和5mg/L左右,即可满足混合液微生物对氮、磷的需要。如果曝气池进水中氨氮和磷酸盐的含量长时间低于上述值,就应当及时增加氮、磷的投加量。

⑸有毒物质:对于特定的工业废水,有毒物质的种类一般不变,含量和排水量却难以恒定。除了需要采取均质调节等一级处理措施之外,必须对曝气池进水中有毒物质的含量进行监测和控制。活性污泥驯化结束后,要根据混合液对进水中有毒物质的适应程度,结合运行经验,确定影响生化系统的进水有毒物质最高限值。如果曝气池进水中有毒物质的含量长时间超过限值,就应当采取降低进水量、加大污泥回流量、提高充氧效率等措施,避免因混合液微生物中毒而影响处理效果。

5.曝气池混合液常规监测项目

⑴溶解氧(DO):混合液溶解氧是影响活性污泥微生物最关键的因素,曝气池混合液中必须有足够的溶解氧。溶解氧的调整可通过调节供气量来实现。如果溶解氧浓度过低,好氧微生物正常的代谢活动就会下降,活性污泥会因此发黑发臭,进而使其处理污染物能力受到影响。而且溶解氧浓度过低,易于滋生丝状菌,产生污泥膨胀,影响出水水质。如果溶解氧浓度过高,氧的转移速率降低,活性污泥中的微生物会进入自身氧化阶段,还会增加动力消耗。

对混合液的游离细菌而言,溶解氧保持在0.2~0.3mg/L即可满足要求。但为了使溶解氧扩散到活性污泥絮体的内部,保持活性污泥系统整体具有良好的净化功能,混合液必须维持较高的水平。根据经验,曝气池出口混合液中溶解氧浓度保持在2mg/L,就能使活性污泥具有良好的净化功能。供气耗电量一般要占整个污水处理厂的50%以上,因此,要依据充氧的效果、在保证曝气池出口混合液溶解氧不低于2mg/L的条件下,通过增减鼓风机运转台数或调整鼓风机、表曝机的转速来实现在保证处理效果的前提下尽可能地降低运行费用。

⑵污泥浓度(MLSS):为保证处理效果,曝气池内的污泥浓度应相对稳定。活性污泥法的运行方式不同,污泥浓度也有较大的出入。传统活性污泥法的污泥浓度,一般介于1.5~2.5g/L,而纯氧曝气活性污泥法的污泥浓度,可高达10g/L。活性污泥在处理有机物的同时,自身也得以不断繁殖增长,要将增加的污泥量作为剩余污泥排出系统,才能保证活性污泥总是具有较高的活性。

⑶污泥沉降比(SV):MLSS值测定需时较长,可能延误对曝气池的运行管理,一般以与污泥浓度对应性较好、而且测定简便易行的污泥沉降比SV作为评定MLSS值的指标。SV值可以通过增减剩余污泥的排放量来加以调节,SV值的变动性较大,而且与进水量有关。剩余污泥排放量偏小时,污泥沉降比上升,进水量增大后,污泥沉降比会降低。因此每个运行班都需要测定混合液的SV值,将测定结果与进水量的变化相对照,确认SV值是否在最佳范围内。

⑷污泥容积指数(SVI):污泥容积指数SVI用于判断活性污泥的沉降性能。SVI值过高说明污泥沉降性能不好,即将膨胀或已经膨胀。而SVI值过低则说明污泥颗粒密实细小,活性较低。处理城市污水的活性污泥,SVI值一般介于60~100之间。而处理溶解性有机物含量较高而无机含量偏低的工业废水的活性污泥,SVI值有时可高达200仍能维持活性污泥法正常运转。

⑸生物相镜检:细菌尺寸极小,普通光学显微镜下,只能观察到菌胶团的形状。而原生动物和后生动物的体形比细菌大的多,借助于显微镜很容易将它们区别开来。根据曝气池混合液中出现的原生动物和后生动物种属和数量,可以大体上判断出污水净化的程度和活性污泥的状态。

6.活性污泥法试运行时的注意事项

⑴活性污泥法试运行的主要工作是培养和驯化活性污泥,对于生活污水比例较大的城市污水和混有较大比例生活污水的工业废水,可以使用间歇培养法或连续培养法直接培养,而对于成分主要是难降解有机物的工业废水来说,通常需要接种培养或间接培养,即先用生活污水培养污泥,再逐步排入工业废水对污泥进行驯化。

⑵活性污泥培养初期,由于污泥尚未大量形成,产生的污泥也处于离散状态,因而曝气量一定不能太大,一般控制在设计曝气量的1/2即可,否则不易形成污泥絮体。

⑶试运行时应当随时进行镜检,观察生物相的变化情况,并及时测量SV、MLSS等指标,并根据观测结果随时调整试运行的工况条件。

⑷活性污泥达到设计浓度,并不能说明试运行已经完成,而应当以出水水质连续相当长的时间(6~12个月)达到设计指标为试运行的完成标志。

⑸为提高活性污泥的培养速度,缩短培养时间,污水处理厂一般应避免在冬季试运行。冬季水温较低,不利于微生物的快速繁殖。

⑹试运行的目的是确定最佳的运行工艺条件,如确定最佳的MLSS、鼓风量、污水投

曝气生物滤池在污水处理中的应用

曝气生物滤池在污水处理中的应用 摘要:曝气生物滤池污水处理技术能够对当前我国污水处理以及水资源短缺等方面的问题起到良好的改善作用,本文对该技术的作用原理以及具体的应用方法进行了详细的阐述与分析,希望可以起到参考作用。 关键词:应用污水处理曝气生物滤池 曝气生物滤池技术具有运行成本低、操作简单、占地面积小以及投资少等方面的优点。另外,这种污水处理技术既可以与其他种类的技术结合起来使用,也可以作为一种单独的污水处理方法独立运行。随着现代工业化建设与城镇化建设的不断深入,我国水资源紧缺方面的问题日益严重,在资金有限、技术水平不足等因素的限制下,许多工业污水在向外排放之前没有经过科学有效的处理,对于生态环境造成了十分严重的污染,使水资源短缺方面的问题进一步加重。在这样的大背景下,如何对工业污水与生活污水进行科学有效的处理已经城市市政环保部门十分重要的研究课题之一。 1.曝气生物滤池原理概述 曝气生物滤池在操作方法与应用形式上是多种多样的的,在基本应用原理方面则大同小异。曝气生物滤池主要由曝气装置以及填料床两部分组成,其中填料床内主要由颗粒状的物质所构成,而填料床的附近则设置有许多曝气装置,在氧气与污水底物的作用下,填料物质表面可以生成生物膜,该物质是处理污水的关键物质。在生物膜的作用下,能够有效分解污水中的各种微生物。在生物膜厌氧段与微环境中起到硝化作用,同时也能够对污水中的污染物与杂技起到清除与过滤作用,起到污水净化的效果。采用这种污水处理方法能够将快滤池以及接触氧化技术等方面的优势充分体现出来,集合了截留SS、高滤速以及曝气于一身。处于运行状态下的曝气生物滤池在一个周期内可以分为反冲与过滤两个阶段。在过滤过程中,通过填料物能够有效分解污水中所包含的各种有机物,在滤料絮凝技术的影响下,可以对污水中的SS进行吸附并起到分解作用,分解过程中所生成的生物膜可以在过滤处理过程中被收集在一起,在杂质收集量不断增加的过程中,一定程度上会对填充床造成影响,降低曝气生物滤池的过滤能力,这就需要

污水厌氧处理与好氧处理特点比较

污水厌氧生化处理 厌氧生物处理与好氧生物处理特点比较(优缺点) 厌氧生物处理是在厌氧条件下,由多种微生物共同作用,利用厌氧微生物将污水或污泥中的有机物分解并生成甲烷和二氧化碳等最终产物的过程。在不充氧的条件下,厌氧细菌和兼性(好氧兼厌氧)细菌降解有机污染物,又称厌氧消化或发酵,分解的产物主要是沼气和少量污泥,适用于处理高浓度有机污水和好氧生物处理后的污泥。 1、厌氧生物处理的优点 ⑴容积负荷高,典型工业废水厌氧处理工艺的污泥负荷(F/M)为~(kgMLVSS?d),是好氧工艺污泥负荷~(kgMLVSS?d)的两倍多。在厌氧处理系统中,由于没有氧的转移过程,MLVSS可以达到好氧工艺的5~10倍之多。厌氧生物处理 /(m3?d),而好氧生物处理有机容积负荷只有~有机容积负荷为5~10kgBOD 5 (m3?d),两者相差可达10倍之多。 ⑵与好氧生物处理相比,厌氧生物处理的有机负荷是好氧工艺的5~10倍,而合成的生物量仅为好氧工艺的5%~20%,即剩余污泥产量要少得多。好氧生物处 产生的污泥量为250~600g,而厌氧生物处理系统每处理理系统每处理1kgCOD Cr 产生的污泥量只有20~180g。且浓缩性和脱水性较好,同时厌氧处理过1kgCOD Cr 程可以杀死污水和污泥中的一部分寄生虫卵,即剩余污泥的卫生学指标和化学指标都比好氧法稳定,因而厌氧污泥的处理和处置简单,可以减少污泥处置和处理的费用。 ⑶厌氧微生物对营养物质的需要量较少,仅为好氧工艺的5%~20%,因而处理氮磷缺乏的工业废水时所需投加的营养盐量就很少。而且厌氧微生物的活性比好氧微生物要好维持得多,可以保持数月甚至数年无严重衰退,在停运一段时间后能迅速启动,因此厌氧反应器可以间歇运行,适于处理季节性排放的污水。 因为曝气要耗电~1kWh,而厌氧生物处理 ⑷好氧微生物处理每去除1kgCOD Cr 就没有曝气带来的能耗,且处理含有表面活性剂的污水时不会产生泡沫等问题,不仅如此,每去除1kgCOD 的同时,产生折合能量超过12000kJ的甲烷气。 Cr ⑸好氧处理的曝气过程可以将污水中的挥发性有机物吹脱出来而产生大气污染,厌氧处理不存在这一问题,同时可以降解好氧工艺无法降解的物质,减少氯

污水处理工艺及设备介绍

污水处理工艺及设备介 绍 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

常见的污水处理设备,大致可以分为污水预处理设备、污水生物处理设备、污泥处理设备。下面我们就污水处理设备在生活污水处理方面的工艺原理,给大家详细介绍下。 污水处理设备的工艺原理 YQZ-A0列一体化污水处理设备去除有机污染物及氨氮主要依赖于设备中的A0生物处理工艺。其中工作原理是在A级,由于污水有机物浓度很高,微生物处于缺气状态,此时微生物为兼性微生物,它们将污水中的有机氨转化分解为NH3-N,同时利用有机碳作为电子供体,将N0ˉ2-N、N0ˉ3-N转化为N2,而且还利用部分有机碳源和NH3-N合成新的细胞物质。所以A级池不仅具有一定的有机物去除功能,减轻后续好氧池的有机负荷,还有利于硝化作用的进行,而且依靠原水中存在的较高浓度有机物,完成反硝化作用,最终消除氮的富营养化污染。在0级,由于有机物浓度已大幅度降低,但仍有一定量的有机物及较高的NH3-N存在。为了使有机物得到进一步氧化分解,同时在碳化作用处于完成情况下硝化作用能顺利进行,在0级设置有机负荷较低的好氧生物接触氧化池。在0级池是主要存在好氧微生物及好氧型细菌(硝化菌)。其中好氧微生物将有机物分解成CO2和H2O;自养型细菌(硝化菌)利用有机物分解产生的无机碳或空气中的CO2作为营养源,将污水中的NHˉ3-N转化成Nˉ2-0N、Nˉ3-0N、0级池的出水部分回流到A级池,为A级池提供电子受体,通过反硝化作用最终消除氮污染。 污水处理设备的应用范围 1、处理水量:~h,大于(m3/h)时需另行设计。 2、适用范围:

2021版浅探新型污水处理工艺曝气生物滤池

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021版浅探新型污水处理工艺曝 气生物滤池

2021版浅探新型污水处理工艺曝气生物滤池导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:介绍一种新型生物膜法污水处理工艺——曝气生物滤池,着重该工艺原理、特点、形式、工艺组合流程和存在问题。 关键词:污水处理生物膜法曝气生物滤池BAF 在污水生物处理工艺的发展和应用中,活性污泥法和生物膜法一直占据主导地位。随着新型滤料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜工艺技术得以快速发展,并研究开发出各式各样的生物膜工艺技术,其中曝气生物滤池应用范围最广,最具发展前景。 曝气生物滤池(BiologicalAeratedFilter,简称BAF)是20世纪80年代末在欧美发展来的一种新型的污水处理技术,它是由滴滤池发展而来并借鉴了快滤池形式,在一个反应器内同时完成了生物氧化和固液分离的功能,不需设置二沉池。世界上首座曝气生物滤池于1981年诞生于法国。随着环境对出水水质要求的提高,该技术在全世界城市污水处理中获得了广泛的推广应用,目前,在全球已有数百座大小

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

浅探新型污水处理工艺曝气生物滤池

浅探新型污水处理工艺曝气生物滤池 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅探新型污水处理工艺曝气生物滤池摘要:介绍一种新型生物膜法污水处理工艺——曝气生物滤池,着重该工艺原理、特点、形式、工艺组合流程和存在问题。 关键词:污水处理生物膜法曝气生物滤池 BAF 在污水生物处理工艺的发展和应用中,活性污泥法和生物膜法一直占据主导地位。随着新型滤料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜工艺技术得以快速发展,并研究开发出各式各样的生物膜工艺技术,其中曝气生物滤池应用范围最广,最具发展前景。 曝气生物滤池(Biological Aerated Filter,简称BAF)是20世纪80年代末在欧美发展来的一种新型的污水处理技术,它是由滴滤池发展而来并借鉴了快滤池形式,在一个反应器内同时完成了生物氧化和固液分离的功能,不需设置二沉池。世界上首座曝气生物滤池于1981年诞生于法国。随着环境对出水水质要求的提高,该技术在全世界城市污水处理中获得了广泛的推广应用,目前,在全球已有数百座大小各异的污水处理厂采用了BAF技术,并取得了良好的处理效果。 一、工艺原理

曝气生物滤池是借鉴污水处理接触氧化法和给水快滤池的设计思路,将生物降解与吸附过滤两种处理过程合并在同一单元反应器中,以滤池中填装的粒状填料(如陶粒、焦炭、石英砂、活性炭等)为载体,在滤池内部进行曝气,使滤料表面生长着大量生物膜,当污水流经时,利用滤料表面上所附生物膜中高浓度的活性微生物的强氧化分解作用和滤料粒径较小的特点,充分发挥微生物的生物代谢、生物絮凝、生物膜和填料的物理吸附和截留作用以及反应器内沿水流方向食物链的分级捕食作用,实现污染物的高效清除,同时利用反应器内好氧、缺氧区域的存在,实现脱氮除磷的功能。 二、工艺特点 ①BAF水力负荷高、容积负荷大、水力停留时间短、出水水质好。 ②BAF占地面积小,基建投资省。BAF反应时间短,具有同步去除COD 及SS的功能,可不设二沉淀池。 ③菌群结构合理。传统的活性污泥法微生物的分布相对均匀,而在BAF 中沿污水流程能形成不同的优势生物菌种,可使有机物降解、硝化/反硝化能在同一个池子中发生,简化了工艺流程。在距进水端较近的滤层中,污水中的有机物浓度较高,各种异养菌占优势,主要是去除BOD;在

常见污水处理工艺介绍

常见污水处理工艺介绍 一.物理法: 1.沉淀法:首要去除废水中无机颗粒及SS 2.过滤法:首要去除废水中SS和油类物质等 3.隔油:去除可浮油和涣散油 4.气浮法:油水别离、有用物质的收回及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心别离:细小SS的去除 6.磁力别离:去除沉淀法难以去除的SS和胶体等 二.化学法: 1.混凝沉淀法:去除胶体及纤细SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 三.生物法 1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种办法的总称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气办法来运转的活性污泥

污水处理技能,又称序批式活性污泥法。 工艺流程图: SBR技能的核心,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流体系。 长处: 1)工艺简略,节约费用 2)抱负的推流进程使生化反响推力大、效率高 3)运转办法灵敏,脱氮除磷效果好 4)防治污泥胀大的最好工艺 5)耐冲击负荷、处理才能强 (2)CASS法

CASS法法的改进型,特色是占地小、运转费用低、技能成熟、工艺安稳。 CASS法是在CASS反响池前部设置生物挑选区,后部设置可升降的主动滗水设备。 工艺流程图: (3)AO法 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 工艺流程图:

污水处理厌氧部分

废水厌氧生物处理 生物处理原理 废水生物处理有“好氧生物”处理、“厌氧生物”处理或“好氧生物”加“厌氧生物”处理。“好氧生物处理”是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;“厌氧生物处理“是在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 一、厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。 (一)厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH等)强。 第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。

2、三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类; 上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(一

A_O生物滤池污水处理特点及工艺流程

2013年6月(上) [摘要]我国化工行业通过近几年的发展,其在社会经济发展中的地位是非常重要的。在化工生产过程中的排放出复杂的结构、有毒、有害 和生物难处理有机污染物,其处理难度大,严重污染了环境。本文主要讨论了A/O (前置反硝化作用)生物滤池(BAF )处理工艺相结合的化学工业生产中的应用特点及A/O 生物滤池污水处理工艺流程。[关键词]A/O ;生物滤池;生化处理;BAF A/O 生物滤池污水处理特点及工艺流程 冯瑜 (中山市横栏镇永兴污水处理有限公司,广州中山 528478) 污水处理工艺简介:由于我们的小城镇居民点分散的污水源分布点少,乡镇级规模的污水处理厂是小于10000吨/日。经常使用的污水处理工艺是传统活性污泥法,而A2/O 方法用于中型城市污水处理厂,在小城镇污水处理厂,这些技术将引起的经营成本高昂,无法正常工作。 1A/O 生物滤池污水处理工艺特点 1)SNP 特殊悬浮生物填料,以及系统污泥浓度高,停留时间短。2)氧生物滤池:能耗低,只是活性污泥工艺的十分之一。3)曝气生物滤池停留时间短,确保水质达标。4 )所有设备都可以使用浦罐或组装钢结构,建设周期短、投资少、节约占地、外形美观。5)处理效果好,运行稳定,占地面积小,操作简单及灵活。6)低投资,低运行成本,特别是在2000~10000吨/日规模以下的小城镇污水处理厂。7)维修工作量小,对操作人员的要求相对也较低。 2A/O 生物滤池污水处理工艺流程新建废水处理系统工艺流程如图1所示。 图1化肥氨氮废水处理工艺流程 2.1A/O 污水生化处理 同时把甲醇项目污水和DCC 项目污水送入污水调节池,在调节池调节及均衡池中水质水量,安装有温度、流量、总有机碳(TOC )在线仪表在流入调节池的入口管道上,进行监控进水水质水量。使用2台污水均质泵进行混合搅拌调节池内污水。为了了解池中水质情况,还要安装pH 、COD 在线检测仪表在池中。 用生化进水泵向混合选择池送污水调节池中的污水,在这里与回流污泥进行混合。调节池作为生物选择器对活性污泥有时间来进行调整和适应新鲜污水,为了进行搅拌混合,调节池池中必须装有机械搅拌机,污水与回流污泥混合好后自动流进缺氧池,并与内回流的硝化液在其入口端均匀混合,然后进入调节池池内进行反硝化脱氮反应,且使一部分COD 降解,在反应池内安装溶解氧和氧化还原电位在线仪表,进行监控反应池内的反硝化脱氮。 经过缺氧后,污水混合物进入好氧池,硝化和好氧生物处理在好氧池进行,使污水中的COD 、NH3-N 及其它污染物降解。好氧池的好氧反应所需要的氧气由离心式鼓风机通过微孔曝气设备供应。安装DO 在线监测仪表在好氧池近末端,用来监控混合液中的DO ,并进行风量调节。 混合液在好氧池氧生化反应完成好后,在好氧池的末端的混合液用内回流泵送回缺氧池,回流比根据水质的情况控制在100%~400%;其它混合液的自动流入脱气池,在脱气池一段时间,用机械搅拌机在脱气池中进行缓慢搅拌下,自行释放附着在污泥上的微气泡,这样有利于 后续沉淀池的效果提高。 污水经A/O 生化处理后就从脱气池自动流入二沉池,在这里进行分离泥水。中间的水池有池顶的清液自动流入集泥井收集池底污泥。大多数的污泥用污泥泵返送回到混合选择池,根据A/O 生化处理情况来进行调节污泥回流比,控制回流比在50%~200%。剩余在集泥井中的部分污泥采用剩余污泥泵输送回污泥稳定槽。 2.2曝气生物滤池(BAF )对污水进行处理 用BAF 进水泵使中间水池中的污水提升至BAF 滤池,从上到下通过生物填料层,其中还没被A/O 生化处理降解的COD 、BOD5及NH3-N ,用生物填料层的微生物在池中进行隆解,进一步降低池底出水BOD5、COD 及NH3-N ,实现污水排放达标。自动流入监控池,设置流量检测仪表设置在在每个滤池的进水管上,进行监控曝气生物滤池的运行状况。当进水量减少到设定值时,曝气生物滤池的生物滤料层已经堵塞,需要对曝气生物滤池进行清洗。曝气生物滤池中氧化反应所需要的氧气通过鼓风机单孔膜曝气设施供应。 曝气生物滤池运行长时间后,池中的微生物生长、衰老、死亡和脱落,可能会造成堵塞现象,使微生物的处理能力及效果有所降低,曝气生物滤池需要进行清洗。在冲洗曝气生物滤池时,需要冲洗的曝气生物滤池的正常进水、进气和排水管路必须通过气动开关阀切断,根据已经设定的程序,先后开闭气冲管路控制阀及气冲用鼓风机、冲洗水管阀,冲洗排污阀、冲洗泵。处理联合气水冲洗,一般先气冲3~5分钟,联合空气水冲洗4~6分钟,水清洗3~5分钟,冲洗废水主要含有SS ,从底部到洗涤废水池,再用冲洗废水泵送回混合选择池或污水调节池。 2.3污水的排放 BAF 滤波器处理后的污水排放监测池,用在线检测仪监测池中pH 、COD 和NH3-N 。合格的净化水从废水回收/排出泵排放出去。当检测到净化水COD 和NH3-N 超标时,监测池通过开关阀发送信号,然而通过排水管路的切换阀用泵把不合格废水暂时送到事故池,系统同时发出报警,确保不外排不合格的污水废水。 3结后语 A-O 生物过滤器是一种利用附着在塑料模块填料在微生物降解的污染物在城市污水处理系统。系统处理城市污水CODcr 去除率为75%~85%,SS 去除率为85%~95%,氨氮去除率为20%~40%,水在处理上述指标可以满足要求的二级生物处理、国家排放标准。同时具有简单的流程,方便管理,耐冲击负荷,剩余污泥水等特点。 [参考文献] [1]朱倩倩,成小娟,黄凤,何先勇,徐宏.组合工艺在有机废水处理中的应用[J]. 化学与生物工程,2010. [2]桑军强,王占生.BAF 在微污染源水生物预处理中的应用[J].中国给水排水,2003. [3]杨宏,姚乾,黄春雷,邓建诚,张静慧,张杰.A/O 生物除磷工艺丝状菌膨胀的控制[J].北京工业大学学报,2009. [4]Hiroyuki Sekiguchi,Noriko Tomioka,Tadaatsu Nakahara,Hiroo Uchiyama.A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J],2001. [5]AmandaJ.Haes,DouglasA.Stuart,ShumingNie,RichardP.Van https://www.doczj.com/doc/0910611808.html,ing So-lution-Phase Nanoparticles,Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms[J],2004. 120

污水处理工艺及设备介绍

常见的污水处理设备,大致可以分为污水预处理设备、污水生物处理设备、污泥处理设备。下面我们就污水处理设备在生活污水处理方面的工艺原理,给大家详细介绍下。 污水处理设备的工艺原理 YQZ-A0列一体化污水处理设备去除有机污染物及氨氮主要依赖于设备中的A0生物处理工艺。其中工作原理是在A级,由于污水有机物浓度很高,微生物处于缺气状态,此时微生物为兼性微生物,它们将污水中的有机氨转化分解为NH3-N,同时利用有机碳作为电子供体,将N0ˉ2-N、N0ˉ3-N转化为N2,而且还利用部分有机碳源和NH3-N合成新的细胞物质。所以A级池不仅具有一定的有机物去除功能,减轻后续好氧池的有机负荷,还有利于硝化作用的进行,而且依靠原水中存在的较高浓度有机物,完成反硝化作用,最终消除氮的富营养化污染。在0级,由于有机物浓度已大幅度降低,但仍有一定量的有机物及较高的NH3-N存在。为了使有机物得到进一步氧化分解,同时在碳化作用处于完成情况下硝化作用能顺利进行,在0级设置有机负荷较低的好氧生物接触氧化池。

在0级池是主要存在好氧微生物及好氧型细菌(硝化菌)。其中好氧微生物将有机物分解成CO2和H2O;自养型细菌(硝化菌)利用有机物分解产生的无机碳或空气中的CO2作为营养源,将污水中的NHˉ3-N转化成Nˉ2-0N、Nˉ3-0N、0级池的出水部分回流到A级池,为A级池提供电子受体,通过反硝化作用最终消除氮污染。 污水处理设备的应用范围 1、处理水量:1.0 ~80.0m3/h,大于80.0(m3/h)时需另行设计。 2、适用范围: (1)宾馆、饭店、疗养院、医院; (2)住宅小区、村庄、集镇; (3)车站、飞机场、海港码头、船舶; (4)工厂、矿山、部队、旅游点、风景区; (5)与生活污水类似的各种工业有机废水 以上是关于污水处理工艺及设备的相关介绍。武汉玉泉净水设备有限公司采用国际先进的水处理技术和设备已为多家企事业单位设计安装了数千套的水处理系统,由于其技术先进、设计完善、造价合理、运行平稳、服务周到,深受广大用户和厂家的赞誉。公司还为客户朋友供应质优价廉的水处理设备耗材及零部件,并免费为广大客户朋友提供水处理技术和设备使用的咨询服务。

曝气生物滤池处理污水

污水处理新技术——曝气生物滤池BIOSTYR(r) 几十年来,在污水处理领域,活性污泥法无疑是一种被广泛使用并有良好效果的污水生物处理技术。但是随着社会的不断进步,城市规模扩大以及人类对居住环境的日益重视,活性污泥法的不足越来越突出地显现在人们的眼前。 占地巨大人口的不断膨胀使城市变得拥挤,许多城市土地稀缺,而采用活性污泥法的污水处理厂动辄几公顷,甚至几十公顷的占地无疑成为一种制约。 环境恶劣巨大的污水处理构筑物大面积暴露在大气之中,极易产生臭气污染,周围居民无法忍受。因此,越来越多的居民拒绝与污水处理厂为邻。 性能不稳定由于是一种悬浮状态的微生物胶团,活性污泥的浓度通常在6000毫克/升以下,外界环境(温度,污染物浓度等)极易对处理效果产生影响,甚至造成污泥膨胀,使处理水质恶化。 上世纪八十年代,一种针对以上问题研发出来的新的污水处理技术首先在法国得以运用,这就是“淹没式固定生物膜曝气滤池”。法国OTV公司在淹没式固定生物膜曝气滤池领域拥有近20年的工程设计、建设和运行经验,并且在世界各地建设了100多座类似工艺的污水处理厂,其中一种工艺便是BIOSTYR(r)生物滤池。 BIOSTYR(r)则是一种经过改良的新一代上向流曝气生物滤池。它既可以用于污水的二级处理,也可以用于处理出水需要回用等其它要求的污水深度处理,并且能够达到很高的排放水质标准。

基本结构 BIOSTYR(r)工艺是一种淹没式上向流生物滤池,其滤料为比重小1的球形颗粒并漂浮在水中,我们称之为BIOSTYRENETM。 每个生物滤池单元包括: *进水管和位于滤池底部的配水渠(同时可用于反冲洗水的排除); *两条空气第(管孔管),一条用于工艺曝气,一条用于气反冲洗;在硝化/反硝化反应时用两条管道,在单一硝化反应时曝气和反冲洗为同一条管道; *3~3.5米的滤料层,滤料表面附着大量的微生物; *滤池顶部有混凝土滤板,防止滤料的流失; *滤板上安装有滤头,用于滤池出水。 工艺原理 根据曝气管道位置的不同设置可以控制硝化反应和反硝化反应 的程度,也可以单独进行硝化反应或反硝化反应。 具有硝化和反硝化功能的BIOSTYR生物滤池,其曝气管位于滤床中的经过计算的位置,将滤床分隔为下部厌氧区和上部好氧区,它可以去除所有可降解的污染物,含碳污染物(COD和BOD),悬浮物(SS),氨氮和硝酸盐(即总氮),反冲洗气管位于滤池底部。 对于通常的仅需要进行硝化反应(对氨氮有要求),在曝气和气反冲洗时共用一根位于滤池底部的穿孔管,从而使整个滤床处于好氧状

废水厌氧处理原理介绍

废水厌氧处理原理介绍 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4 和CO2的过程。 一、厌氧生物处理中的基本生物过程 1、三阶段理论 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2 等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类。 (1)水解、发酵阶段; (2)产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2; (3) 产甲烷阶段:产甲烷菌利用乙酸和H2、CO2 产生CH4; 一般认为,在厌氧生物处理过程中约有70%的CH4 产自乙酸的分解,其余的则产自H2和CO2。 2、四阶段理论: 实际上,是在上述三阶段理论的基础上,增加了一类细菌——

同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2 合成为乙酸。但研究表明,实际上这一部分由H2/CO2 合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。 总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。 二、厌氧消化过程中的主要微生物 主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。 1、发酵细菌(产酸细菌): 发酵产酸细菌的主要功能有两种:

①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物; ②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等; 主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时会成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。 2、产氢产乙酸菌: 产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。 主要的产氢产乙酸反应有: 注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低

废水厌氧生物处理原理

废水厌氧生物处理原理 一、厌氧消化过程中的主要微生物 主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。 1、产甲烷菌 产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解。 典型的产甲烷反应: 产甲烷菌有各种不同的形态,常见的有: ①产甲烷丝菌;等等。 产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150~-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达4~6天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤。 ②产甲烷球菌; ③产甲烷杆菌; ④产甲烷八叠球菌; 2、产氢产乙酸菌: 产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。 主要的产氢产乙酸反应有:

注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H2消耗掉。 主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。 3、发酵细菌(产酸细菌): 发酵产酸细菌的主要功能有两种: ①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物; ②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等; 主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时会成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。 二、厌氧生物处理的主要特征 1、厌氧生物处理过程的主要缺点: ①气味较大; ②对温度、pH等环境因素较敏感; ③对氨氮的去除效果不好; ④处理出水水质较差,需进一步利用好氧法进行处理; 2、厌氧生物处理过程的主要优点: ⑤反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程; ⑥厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;

水解――曝气生物滤池污水处理

水解――曝气生物滤池污水处理 1水解——曝气生物滤池污水处理工艺,是一种新的工艺型式,是将污水处理过程中二个污水处理单元(反应器)组合而成的一种新技术。它与传统的好氧生物处理工艺相比较,具有能耗低、水力停留时间短、污泥产量少等特点。特别是水解反应器具有改善污水可生化性的特点,曝气生物滤池具有处理负荷高、出水水质好的优势,两者的结合,更凸现新工艺技术的优势。 污水先经过粗格栅,以去除污水中大块的悬浮物,再流入提升泵房的集水池,由潜污泵提升至旋流沉砂池进水渠上的细格栅,进一步去除细小悬浮物,并经计量后进入旋流沉砂池,以去除污水中的细小砂粒。沉淀下来的砂粒经砂水分离器分离,干砂外运。砂水分离后的污水流入提升泵房集水池。经沉砂池处理后的污水自流入水解酸化池。水解酸化池将截留污水中大部分的悬浮物并将其中的部分有机物进行降解,且可将大分子的有机物水解为小分子的有机物。水解酸化池的出水自流入C/N上向流曝气生物滤池进行有机物的降解和硝化处理。C/N滤池出水进入N滤池进行脱氮处理,N滤池出水进入清水池,至此即可达到排放标准,或排放或回用(若有需要可设消毒池)。 水解工艺 水解工艺属于升流式污泥床反应器技术范畴,水解池按其内介质分区为污泥床区和清水区,待处理污水以及滤池反冲洗时脱落的微生物膜由反应器底部进入池内,并通过布水系统及特殊的池型构造与污泥床快速而均匀的混合。污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质(如有机酸类);同时,生物滤池反冲洗时排出的剩余污泥菌体外多糖粘质层发生水解,使细胞壁打开,使污泥液态化,重新回到污泥处理系统中被好氧菌代谢,达到剩余污泥减容化的目的。由于水解池的污泥龄较长,在污水处理的同时,污泥得以消化。 水解工艺应用于城市污水处理中,具有如下特点: (1)在城市污水处理中,多功能的水解池较功能专一的传统初沉池对各类有机物的去除率高; (2)水解菌世代期短,对污染物的降解过程迅速,其将污水中固体、大分子、难于生物降解的有机物质转化为易于生物降解的小分子有机物质,使得在后续的好氧单元可以用较短的时间和较低的电耗完成净化过程,具有效率高能耗低的特点;

常用生活污水处理工艺介绍及对比

?几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。

由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;污泥龄长,具有脱氮的功能。 设计要点:混合液悬浮固体浓度5000mg/l;生物固体平均停留时间,去除BOD5时,取5~8天,当要求硝化反应时取10~30天;水力停留时间为20、24、36、48h,根据对处理水水质要求而定;BOD—SS负荷(Ns)为0.03~0.07kgBOD/(kgMLSS.d);BOD容积负荷(Nv)为0.1~0.2 kgBOD/(m3.d);污泥回流比为50~150%;混合液在渠内的流速为0.4~0.5m/s;沟底流速为0.3 m/s。 但氧化沟工艺与SBR和普通活性污泥工艺比较,能耗高,且占地面积较大。 2、A/O法 即厌氧—好氧污水处理工艺,流程如下:

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

污水处理工艺比选

常用处理工艺介绍及比选 本工程实施区域位于园区内部,对水处理设备的外观和出水水质的要求都比较高。针对本工程的要求,对以下几种水处理方法进行介绍和比选。 1 人工湿地 人工湿地是通过人工模拟自然湿地的结构和功能而设计和建造的湿地。人工湿地主要由基质、植物和微生物等组成,它充分利用物理、化学和生物的三重协同作用,通过过滤、吸附、沉淀、离子交换、植物吸收和微生物分解等作用来实现对污水的高效净化,是一种经济有效的处理技术。研究表明,在进水浓度较低的情况下,人工湿地对BOD5的去除率可达85%~95%,对COD的去除率可大于80%。 按照废水在湿地中的流程,人工湿地系统主要分为自由表面流人工湿地、水平潜流人工湿地、垂直流人工湿地等类型。湿地流程、植物种类、基质类型及水力负荷是影响人工湿地处理效率的关键因素。 人工湿地以其去污效果好、建造运营成本低廉、操作与管理简便等优点,在世界范围内正越来越多地被用于生活污水的处理。但从实际运行来看,人工湿地在处理生活污水时还存在一些不足,例如: (1)水力负荷偏低,占地面积大,只适用于用地不紧张的农村和城市郊区; (2)基质易堵塞,影响湿地系统的寿命和运行稳定性; (3)受气候温度影响大,难以在气候寒冷地区推广。 因此人工湿地一般适用于气候温暖,地广人稀的地区,且一般设在生物处理之后,作为出水水质的保证。 # 2 SBR SBR是序批式活性污泥法的简称,又称间歇曝气法。其主体构筑物SBR反应池,是由美国Irvine教授在20世纪70年代开发的,是一种集调节池、初沉池、曝气池、二沉池为一池,连续进水、间歇排水,工艺流程简单,布局紧凑合理的好氧微生物污水处理技术。

污水厌氧生物处理讲义全

厌氧生物处理 活性污泥法与生物膜法是在有氧条件下,由好氧微生物降解污水中的有机物,最终产物是水和二氧化碳,作为无害化和高效化的方法被推广应用。但当污水中有机物含量很高时,特别是对于有机物含量大大超过生活污水的工业废水,采用好氧法就显得能耗太多,很不经济了。因此,对于高浓度有机废水一般采用厌氧消化法。即在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气体。厌氧生物处理具有高效低耗的特点,因此比好氧生物处理技术更具优越性。 第一节概述 一、厌氧生物处理中的厌氧微生物厌氧生物处理是以厌氧细菌为主而构成的微生物生态系统。厌氧细菌有两种,一种是只要有氧存在就不能生长繁殖的细菌,称为绝对厌氧菌;另一种是不论有氧存在与否都能增长的细菌,称为兼性厌氧细菌(也称兼性细菌) 。当流入废水的BOD浓度较高,细菌在好氧状 态下增长以后,由于缺氧会使各种厌氧细菌繁殖起来。一般污水散发出恶臭是由于厌氧细菌增长产生了硫化氢、胺等气体所造成的。厌氧生物处理中的厌氧微生物主要有产甲烷细菌和产酸发酵细菌,常见的甲烷菌有四类:既甲烷杆菌、甲烷球菌、甲烷八叠球菌、甲烷螺旋菌;产酸发酵细菌主要有气杆菌属、产碱杆菌属、芽孢杆菌属、梭状芽孢杆菌属、小球菌属、变形杆菌属、链球菌属等。 二、厌氧生物处理技术 厌氧生物处理技术于19 世纪末首先在英国得到应用,到1914 年美国已建立14 座厌氧消化池。 厌氧生物处理利用厌氧微生物的代谢过程,在无需提供氧气的情况下把有机物转化为无机物和少量的细胞物质,这些无机物主要包括大量的生物气和水。此生物气俗称沼气,沼气的主要成分是约2/3 的甲烷和1/3 的二氧化碳,是一种可回收的能源。 厌氧水处理是一种低成本的水处理技术,它又是把水的处理和能源的回收利用相结合的一种技术。 发展中国家面临严重的环境污染问题、能源短缺以及经济发展与环境治理所面临的资金不足等问题,这些国家需要有效、简单又费用低廉的技术;厌氧水处理技术可以作为能源生产和环境保护体系的一个核心部分,其产物可以被燃烧利用而产生经济价值。如处理过的洁净水可用于鱼塘养鱼和农田灌溉;产生的沼气可作为能源;剩余污泥可以作为肥料用于土壤改良。 1、厌氧处理具有下列优点: ( 1)、处理成本低。在废水处理成本上比好氧处理要便宜得多,特别是对中等以上浓度 (COD>1500mg/L的废水更是如此。厌氧法成本的降低主要由于动力的大量节省、营养物添 加费用和污泥脱水费用的减少,即使不计沼气作为能源所带来的收益,厌氧法也仅约为好氧法成本的 1/3 ;如所产沼气能被利用,则费用更会大大降低,甚至带来相当的利润。 (2)、低能耗。厌氧处理不但能源需求很少而且还能产生大量的能源。厌氧法处理污水 可回收沼气。回收的沼气可用于锅炉燃料或家用燃气。当处理水COD在4000~5000mg/L之间,回收沼气的经济效益较好。 (3)、应用范围广。厌氧生物处理技术比好氧生物处理技术对有机物浓度适应性广。好氧生物处理只能处理中、低浓度有机污水,而厌氧生物处理则对高、中、低浓度有机污水均能处理。 ( 4)、污泥负荷高。厌氧反应器容积负荷比好氧法要高得多,单位反应器容积的有机物去除量也因此要高得多,特别是使用新一代的高速厌氧反应器更是如此。因此其反应器负荷高、体积小、占地少。厌氧法可直接处理高浓度有机废水和剩余污泥。 (5) 剩余污泥量少好氧法处理污水,因为微生物繁殖速度快,剩余污泥生成率很高。而厌氧法处理污水, 由于厌氧世代时间很长、微生物增殖缓慢,因而处理同样数量的废水仅产生相当于好氧法 1/10~1/6 的剩余污泥;剩余污泥脱水性能好,脱水时可不使用或少使用絮凝剂,因此剩余污泥

相关主题
文本预览
相关文档 最新文档