当前位置:文档之家› 1分子动力学绪论

1分子动力学绪论

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

分子动力学概述

分子动力学 分子动力学方法是一种计算机模拟实验方法,是研究凝聚态系统的有力工具。该技术不仅可以得到原子的运动轨迹,还可以观察到原子运动过程中各种微观细节。它是对理论计算和实验的有力补充。 分子动力学总是假定原子的运动服从某种确定的描述,这种描叙可以牛顿方程、拉格朗日方程或哈密顿方程所确定的描述,也就是说原子的运动和确定的轨迹联系在一起。在忽略核子的量子效应和Born-Oppenheimer绝热近似下,分子动力学的这一种假设是可行的[1]。所谓绝热近似也就是要求在分子动力学过程中的每一瞬间电子都处于原子结构的基态。要进行分子动力学模拟就必须知道原子间的相互作用势。在分子动力学模拟中,我们一般采用经验势来代替原子间的相互作用势,如Lennard-Jones势、Mores势、EAM原子嵌入势、F-S多体势。然而采用经验势必然丢失了局域电子结构之间存在的强相关作用信息,即不能得到原子动力学过程中的电子性质[1]。 事实上,分子动力学就是模拟原子系统的趋衡过程。实际上,分子动力学方法就是确定某一描述与初始条件、边值关系的数值解。我们假定系统经过M步长之后达到稳定,而这

一稳定状态正是我们所求的。 1、分子动力学的算法分析 首先,我们假定我们研究的系统服从 Newton 方程所确定的描述,即: )(1 )(.. t F m t r = (1) 式中r(t)表征原子在t 时刻的位置矢量 F(t)表征原子在t 时刻所受到的力,它与所有原子的位置矢有关 m 表征原子的质量。 如果我们给定初始条件,即方程(1)的定解条件r(0)和v(0),那么方程(1)的解就可以确定。60年代中期发展了大量的分子动力学算法,如两步差分算法[2]、预测-校正算法 [3] 、中心差分算法[4]、蛙跳算法[5]等等。为了方便导出它们, 我们以Euler 一步法[6] 来讨论之。我们令)()(.. t r t v =(表征粒子 的速度),则有: ) ()()(1 )()(... . t v t r t F m t r t v === (2) 记??? ? ??????=? ? ? ???=)()(1)()()()(. t v t F m t f t r t v t w (3)

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学

第五章 分子动力学 第一节 Verlet 算法 牛顿方程 i i i m f dt r d 2 2 记 N r r r R ,,21 N N m f m f m f G ,,221 1 方程写为 2 d R G dt v v 三点公式 2 42 111122n n n n n n n R R R G R R v v v v v v v r 如果给出初始条件0R 和1R ,可求解方程,但常常给出的初 始条件是00,v R , 那么 02 0012 G v R R (为什么? 因为dv G dt r ,所以,0000 ()'(')t v t v dt G t v t G r r v ;, 所以,210000000 '(')R R dt v t G R v G r r r r r ;) 方法的优点: 保持时间反演不变性,即令 n n , 方程形式 不变 (尽管误差会破坏这一对称性)

如果问题与v 无关,计算精度相当高 方法的缺点: n v v 必须用到1n R v (为什么是缺点?) 另一方案 2 221112! ()2 n n n n n n n n R R v G v v G G v v v v v 缺点:失去时间反演不变性 第二节 多体问题的基本方法 (阅读材料) 全同粒子,概率分布为 N r r r W R W 21, 物理量平均值 1i i A A R W R dR dR dr Z Z W R dR v v v v v v v 分子动力学 1 lim dt t A A n 个粒子处于 n r r ,1的分布密度函数 N n n n r d r d R W n N N Z r r r 121!!1, !! n N N 来自N 个粒子中取n 个的组合数 例如:N n 是1

从头计算分子动力学基本理论和高级方法

从头计算分子动力学基本理论和高级方法 Dominik Marx Ab Initio Molecular Dynamics Basic Theory and Advanced Methods 2009;584pp Hardback ISBN9780521898638 D. Marx等著 从头计算分子动力学方法或称为第一原理分子动力学,是对分子作经典与量子混合处理的一种方法,其基本思想最早是由Paul Enrenfest 提出来的,他把原子核视为经典粒子而把电子仍作为量子对象,实质是一种平均场理论。其后,发展成著名的Born?Oppenheimo "绝热分子动力学",广泛地应用于量子化学和一些少体问题的研究工作。1985年R.Car 和M. Parrinello 把两者的优点以优化的方法结合起来,极大地提高了这一方法的应用能力和使用范围,因而受到普遍的重视。 从头计算分子动力学通过统一处理分子动力学和电子

结构理论把密度泛函理论和分子动力学方法有机地结合,使复杂分子体系和过程,包括化学反应以及电子的极化效应和化学键的本质等实际的计算机模拟领域发生了革命性改变。 本书第一次提供了这一快速增长领域涉及的方法及其 广泛的应用范围,从基础理论直到先进的方法给出了协调一致的阐述,堪称是对研究生和研究人员的一部极具吸引力的教材。它包含了各种从头分子动力学技术的系统推导,使读者能理解常用的方法,评估它们的优点和缺点。本书还讨论了广泛使用的Car?Parrinello方法的特点,纠正了目前在研究文献中发现的各种错误。 此外,本书还详细地介绍了一些用于典型平面波的电子结构编码和程序设计的、使该领域的初学者容易理解并普遍使用的程序包,并使开发人员能够方便地改进它们的代码及添加新的功能。 除了前言和第1章开场白“为什么需要从头计算分子动力学”之外,本书的内容分为三大部分共10章,第一部分基本技巧,含第2-4章,2. 入门:统一MD和电子结构;3. 实现:使用平面波的基;4. 用平面波处理原子:精确的赝势。第二部分高级技巧,含第5-8章,5.超出标准的从头计算分子动力学;6. 超越保模赝势;7. 计算性能;8. 并行计算。第三部分应用,含第9-11章,9. 从材料到生物分子;10. 来自于从头模拟的一些性能;11. 展望。

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

分子动力学模拟-经验谈

分子动力学攻略 此文为dddc_redsnow发表于biolover上的关于分子动力学的系列原创文章,相当经典与精彩,特此将系列文章整合,一起转载,望学习动力学的新手们共同学习,提高进步,在此特向dddc_redsnow本人表示感谢。 动力学系列之一(gromacs,重发) 在老何的鼓励下,发一下我的gromacs上手手册(我带人时用的,基本半天可以学会gromcas) ###################################################### # Process protein files step by step # ###################################################### pdb2gmx -f 2th_cap.pdb -o 2th_cap.gro -p 2th_cap.top -ignh -ter nedit 2th_cap.top editconf -f 2th_cap.gro -o 2th_cap_box.gro -d 1.5 genbox -cp 2th_cap_box.gro -cs -p 2th_cap.top -o 2th_cap_water.gro make_ndx -f 2th_cap_water.gro -o 2th_cap.ndx genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_All.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_M.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_C.itp nedit Flavo.itp grompp -f em.mdp -c 2th_cap_water.gro -p 2th_cap.top -o prepare.tpr genion -s prepare.tpr -o 2th_cap_water_ion.gro -np 1 -pq 1 ##################################################### # Minimize step by step # # 1. minimization fixing whole protein # # 2. minimization fixing maincharin of protein # # 3. minimization fixing Ca of protein # # 4. minimization without fix # ##################################################### grompp -np 4 -f em.mdp -c 2th_cap_water_ion.gro -p 2th_cap.top -o minimize_water.tpr mpirun -np 4 mdrun -nice 0 -s minimize_water.tpr -o minimize_water.trr -c minimize_water.gro -e minimize_water.edr -g minimize_water.log & grompp -np 4 -f em.mdp -c minimize_water.gro -p 2th_cap.top -o minimize_sidechain.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain.tpr -o minimize_sidechain.trr -c minimize_sidechain.gro -e minimize_sidechain.edr -g minimize_sidechain.log & grompp -np 4 -f em.mdp -c minimize_sidechain.gro -p 2th_cap.top -o minimize_sidechain_ex.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain_ex.tpr -o minimize_sidechain_ex.trr -c minimize_sidechain_ex.gro -e minimize_sidechain_ex.edr minimize_sidechain_ex.log & grompp -np 4 -f em.mdp -c minimize_sidechain_ex.gro -p 2th_cap.top -o minimize_all.tpr mpirun -np 4 mdrun -nice 0 -s minimize_all.tpr -o minimize_all.trr -c minimize_all.gro -e minimize_allx.edr -g minimize_all.log&

第四章 分子动力学

分子动力学与分子力学不同,它求解的是随时间变化的分子的状态、行为和过程。分子动力学将原子看作为一连串的弹性球,原子在某一时刻由于运动而发生坐标变化。在运动的任一瞬间,通过计算每个原子上的作用力和加速度,来测定它们的位置和运动速度。由于一个原子的位置相对于其他原子的位置不断变化着,同时力也在变化,可用适当的力场方法,通过评价体系的能量,计算出任一特定原子的力。分子动力学模拟可作瞬时的、通常为皮秒级(10-12s)的分析,由此模拟计算而获得以一定位置和速度存在的原子的运动轨迹。计算中根据分子体系的大小、特点和要求来决定模拟时间的长短。 分子动力学方法是一通用的全局优化低能构象的方法。用分子动力学模拟可使分子构象跨越较大的能垒,因此可以通过升温搜寻构象空间,势能的波动对应着分子构象的变化,当总能量出现最小值时,在常温下(300K)平衡,即可求得低能构象。在常温下的分子动力学模拟需要很长的时间来克服能量势垒,因此分子动力学对分子构象空间的取样相当缓慢。提高分子体系的温度,可加大样本分子构型空间的取样效率。 分子动力学计算中,常使用蒙特卡洛算法和模拟退火算法。 蒙特卡洛算法:是一种统计抽样方法。其基本思想是在求解的空间中随机采样并计算目标函数,以在足够多的采样点中找到一个较高质量的最优解作为最终解。在动力学计算全局优化低能构象时,以经验势函数随机抽样,不断抽取体系构象,使其逐渐趋于热力学平衡。该方法需要大量采样才能得到较精确的结果,因此收敛速度较慢。 模拟退火算法:退火是将金属或其他固体材料加热至熔化后,再非常缓慢地冷却的过程。缓慢冷却是为了凝固成规则的处于最稳态的坚硬晶体状态。模拟退火算法用于分子动力学计算时,可有效地求得分子的全局优势构象。过程为:先使体系升温,在高温下进行分子动力学模拟,使分子体系有足够的能量,克服柔性分子中存在的各种旋转能垒和顺反异构能垒,搜寻全部构象空间,在构象空间中选出一些能量相对极小的构象;然后逐渐降温,再进行分子动力学模拟,此时较高的能垒已无法越过,在极小化后去除能量较高的构象,最后可以得到相应的能量最小的优势构象。模拟退火法的优点在于它能够翻越通常分子动力学条件下不能翻越的能垒;取舍构象时既考虑能量下降的变化,同时也接受部分能量上升的变化,因而能寻找到能量最低点。此外该方法不依赖于起始构象,消除了人为直觉的偏差。 量子化学:应用量子力学的原理和方法研究研究分子的微观结构,是研究分子结构和性质的最重要的方法之一。在20年代,科学家用量子力学方法来处理氢分子,奠定了量子化学的基础。随着量化计算方法的不断发展,计算量及计算速度不断提高,所计算的体系越来越复杂,现在可以计算有机分子甚至较大分子量的生物分子。运用量化方法借助于计算机可以计算出分子的各种参数,比如分子结构、电子结构、系统总能量和各个轨道的分子信息。 量化计算方法主要分为从头计算法和半经验量化计算。 从头计算法:根据量子力学的基本原理,利用Planck常量、电子质量和电量这三个基本的物理常数以及元素的原子序数,不借助于任何经验参数,计算体系全部电子的分子积分,求解薛定谔方程。从头算计算结果精度高,可靠性大,但是计算量极大,消耗机时太多,只适用于中等大小的分子体系,对于一些复杂的体系难以处理。

vasp做分子动力学

vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT和NVE。 下面我将对主要参数进行介绍! 一般做分子动力学的时候都需要较多原子,一般都超过100个。 当原子数多的时候,k点实际就需要较少了。有的时候用一个k点就行,不过这都需要严格的测试。通常超过200个原子的时候,用一个k点,即Gamma点就可以了。 INCAR: EDIFF 一般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。 IBRION=0 分子动力学模拟 IALGO=48 一般用48,对于原子数较多,这个优化方式较好。 NSW=1000 多少个时间步长。 POTIM=3 时间步长,单位fs,通常1到3. ISIF=2 计算外界的压力. NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK个步长写一次XDATCAR. ISMEAR=-1 费米迪拉克分布. SIGMA =0.05 单位:电子伏 NELMIN=8 一般用6到8,最小的电子scf数.太少的话,收敛的不好. LREAL=A APACO=10 径向分布函数距离,单位是埃. NPACO=200 径向分布函数插的点数. LCHARG=F 尽量不写电荷密度,否则CHG文件太大. TEBEG=300 初始温度. TEEND=300 终态温度。不设的话,等于TEBEG. SMASS -3 NVE ensemble;-1 用来做模拟退火;大于0 NVT 系综。 ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// 1)收敛判据的选择 结构弛豫的判据一般有两种选择:能量和力。这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。 到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量

分子动力学模拟

分子动力学模拟 The Standardization Office was revised on the afternoon of December 13, 2020

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

分子动力学在材料科学中的应用

分子动力学在材料科学中的应用 摘要:本文综述了几种常见条件下的分子动力学模拟方法以及分子动力学模拟的最新发展趋势.介绍用分子动力学模拟方法研究固休的休相结构,表面问题,界面问题以及薄膜形成过程等方面的研究成果。 关键词:分子动力学; 计算机模拟; 材料科学 1引言 分子动力学(Molecular Dyanmica,简称MD)用于计算以固体、液体、气体为模型的单个分子运动,它是探索各种现象本质和某些新规律的一种强有力的计算机模拟方法,具有沟通宏观特性与微观结构的作用,对于许多在理论分析和实验观察上难以理解的现象可以做出一定的解释[1]。MD方法不要求模型过分简化,可以基于分子(原子、离子)的排列和运动的模拟结果直接计算求和以实现宏观现象中的数值估算。可以直接模拟许多宏观现象,取得和实验相符合或可以比较的结果,还可以提供微观结构、运动以及它们和体系宏观性质之间关系的极其明确的图象[2]。MD以其不带近似、跟踪粒子轨迹、模拟结果准确[3],而倍受研究者的关注,在物理、化学、材料、摩擦学等学科及纳米机械加工中得到广泛而成功的应用。本文主要评述MD方法在材料科学中的应用. 目前在材料微观结构的研究中,由于实验条件的限制,使得许多重要的微观结构的信息难以得到,如,对于由液态金属快速凝固的非晶转变过程,其微观结构的瞬时变化根本无法用实验仪器去测量。理论分析、实验测定及模拟计算已成为现代材料科学研究的3种主要方法[2]。20世纪90年代以来,由于计算机科学和技术的飞速发展,模拟计算的地位日渐突显。计算机模拟可以提供实验上尚无法获得或很难获得的信息。虽然计算机模拟不能完全取代实验,但可以用来指导

分子动力学作业

分子动力学(MD) 1 分子动力学(MD)基础 1.1 MD分类 1.2 MD简介 1.3 MD适用范围 2 分子动力学运动方程数值求解 2.1 基础知识 2.1.1 运动方程 2.1.2 空间描述 2.1.3 最小作用量原理 2.1.4 拉格朗日(Lagrange)方程 2.1.5 哈密顿(Hamilton)方程 2.2 粒子运动方程的数值解法 2.2.1 Verlet算法 2.2.2 欧拉(Euler)预测—矫正公式 2.2.3 Gear预测—矫正方法 3 分子动力学原胞与边界条件 3.1 分子动力学原胞 3.2 边界条件 3.2.1 自由表面边界 3.2.2 固定边界 3.2.3 柔性边界 3.2.4 周期性边界 4 势函数与分子力场 4.1 势函数 4.1.1 两体势 4.1.2 多体势 4.2 分子力场 4.2.1 分子力场函数的构成

4.2.2 常用力场函数和分类 5 分子动力学模拟的基本步骤 5.1 设定模拟所采用的模型 5.2 给定初始条件 5.3 趋于平衡计算 5.4 宏观物理量的计算 6 平衡态分子动力学模拟 6.1 系综 6.2 微正则系综的分子动力学模拟6.3 正则系综的分子动力学模拟

1 分子动力学(MD)基础 1.1MD分类 微正则系综(VNE) 正则系综(VNP) 平衡态MD 等温等压系综(NPT) 经典MD 等焓等压系综(NPH) 巨正则系综(VTμ) 非平衡态MD 量子MD 1.2分子动力学(MD)简介 分子动力学是在原子、分子水平上求解多体问题的重要的计算机模拟方法。分子动力学方法为确定性模拟方法,广泛地用于研究经典的多粒子体系的研究中,是按该体系内部的内禀动力学规律来计算并确定位形的转变。 分子动力学方法是通过建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性, 从而得到系统的宏观性质。 在分子动力学中,粒子的运动行为是通过经典的Newton运动方程所描述。系统的所有粒子服从经典力学的运动规律,它的动力学方程就是从经典力学的运动方程——拉格朗日(lagrange)方程和哈密顿(Hamilton)方程导出。 1.3适用范围 原则上,分子动力学方法所适用的微观物理体系并无什么限制。这个方法适用的体系既可以是少体系统,也可以是多体系统;既可以是点粒子体系,也可以是具有内部结构的体系;处理的微观客体既可以是分子,也可以是其它的微观粒子。 实际上,分子动力学模拟方法和随机模拟方法一样都面临着两个基本限制:

分子动力学介绍

1、分子动力学简介: 分子动力学方法是一种计算机模拟的实验方法,是研究凝聚态系统的有力工具。该技术不仅可以得到原子的运动轨迹,还可以观察到原子运动过程中各种微观细节。它是对理论计算和实验的有力补充。广泛应用于材料科学、生物物理和药物设计等。经典MD模拟,其系统规模在一般的计算机上也可达到数万个原子,模拟时间为纳秒量级。 分子动力学总是假定原子的运动服从某种确定的描述,这种描叙可以牛顿方程、拉格朗日方程或哈密顿方程所确定的描述,也就是说原子的运动和确定的轨迹联系在一起。在忽略核子的量子效应和绝热近似(Born-Oppenheimer)下,分子动力学的这一种假设是可行的。所谓绝热近似也就是要求在分子动力学过程中的每一瞬间电子都处于原子结构的基态。要进行分子动力学模拟就必须知道原子间的相互作用势。 在分子动力学模拟中,我们一般采用经验势来代替原子间的相互作用势,如Lennard-Jones势、Mores势、EAM原子嵌入势、F-S多体势。然而采用经验势必然丢失了局域电子结构之间存在的强相互作用的信息,即不能得到原子动力学过程中的电子性质。

2、分子模拟的三步法和大致分类 三步法: 第一步:建模。包括几何建模,物理建模,化学建模,力学建模。初始条件的设定,这里要从微观和宏观两个方面进行考虑。 第二步:过程。这里就是体现所谓分子动力学特点的地方。包括对运动方程的积分的有效算法。对实际的过程的模拟算法。关键是分清楚平衡和非平衡,静态和动态以及准静态情况。 第三步:分析。这里是做学问的关键。你需要从以上的计算的结果中提取年需要的特征,说明你的问题的实质和结果。因此关键是统计、平均、定义、计算。比如温度、体积、压力、应力等宏观量和微观过程量是怎么联系的。 大致分类: 2.1电子模拟(量化计算,DFT) 量子化学计算 一般处理几个到几十个原子 常见软件:GAUSSIAN,NWCHEM等 密度泛函(DFT) 可以算到上百个原子 常见软件:V ASP 2.2分子模拟(分子动力学,蒙特卡洛) 2.2.1分子级别的模拟 以分子的运动为主要模拟对象。采用经验性的分子间作用函数

分子动力学模拟位错和界面的相互作用

分子动力学模拟位错和界面的相互作用

学校代码10530 学号200910081121 分类号密级 硕士学位论文 分子动力学模拟位错和界面的相互作用 学位申请人 周银库 指导教师 陈尚达副教授 学院名称 材料与光电物理学院 学科专业 材料科学与工程 研究方向 金属薄膜的力学性能

二零一二年五月 Molecular dynamics simulations of interaction between dislocations and interfaces Candidate Yinku Zhou Supervisor Shangda Chen (Associate Professor) College Faculty of Materials, Optoelectronics and Physics Program Material Science and Engineering

Specialization Mechanical Properties of metal film Degree Engineering Master University Xiangtan University Date May, 2012

湘潭大学 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权湘潭大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

分子动力学方法

分子动力学方法 一、引言 计算机模拟中的另一类确定性模拟方法,即统计物理中的所谓合于动力学方法(Molecular Dynamics Method)。这种方法是按该体系内部的内禀动力学规律来计算并确定位形的转变。它首先需要建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性,从而得到系统的宏观性质。在这样的处理过程中我们可以看出:MD方法中不存在任何随机因素。在MD方法处理过程中方程组的建立是通过对物理体系的微观数学描述给出的。在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学。每个分子运动的内禀动力学是用理论力学上的哈密顿量或者拉格朗日量来描述,也可以直接用牛顿运动方程来描述。确定性方法是实现Boltzman的统计力学途径。这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。但是使用该方法的程序较复杂,讨算量大,占内存也多、本节将介绍分子动力学方法及其应用。 原则上,MD方法所适用的微观物理体系并无什么限制。这个方法适用的体系既可以是少体系统,也可以是多体系统;既可以是点粒子体系,也可以是具有内部结构的体系;处理的微观客体既可以是分子,也可以是其他的微观粒子。 实际上,MD模拟方法和随机模拟方法一样都面临着两个基本限制:一个是有限观测时间的限制;另一个是有限系统大小的限制。通常人们感兴趣的是体系在热力学极限下(即粒子数日趋于无穷时)的性质。但是计算机模拟允许的体系大小要比热力学极限小得多,因此可能会出现有限尺寸效应。为了减小有限尺寸效应,人们往往引入周期性、全反射、漫反射等边界条件。当然边界条件的引入显然会影响体系的某些性质。 对于MD方法,向然的系综是微正则系综,这时能量是运动常量。然而,当我们想要研究温度和(或)压力是运动常量的系统时,系统不再是封闭的。例如当温度为常量的系统可以认为系统是放置在一个热俗中。当然,在MD方法中我们只是在想像中将系统放入热浴中。实际上,在模拟计算中具体所采取的做法是对一些自由度加以约束。例如在恒温体系的情况下,体系的平均动能是一个不变量。这时我们可以设计一个算法,使平均动能被约束在一个给定值上。由于这个约束,我们并不是在真正处理一个正则系综,而实际上仅仅是复制了这个系综的位形部分。只要这一约束不破坏从一个状态到另一个状态的马尔科夫特性,这种做法就是正确的。不过其动力学性质可能会受到这一约束的影响。 自五十年代中期开始,MD方法得到了广泛的应用。它与蒙特卡洛方法一起已经成为计算机模拟的重要方法。应用MD方法取得了许多重要成果,例如气体或液体的状态方程、相变问题、吸附问题等,以及非平衡过程的研究。其应用已从化学反应、生物学的蛋白质到重离子碰撞等广泛的学科研究领域。 二、分子运动方程的数值求解 采用MD方法时,必须对一组分于运动微分方程做数值求解。从计算数学的角度来看,这个求解是一个初值问题。实际上计算数学为了求解这种问题己经发展了许多的算法,但并不是所有的这些算法都可以用来解决物理问题。下面我们先以一个一维谐振子为例,来看一下如何用计算机数值计算方法求解初值问题。一维谐振子的经典哈密顿量为 (2.1) 这里的哈密顿量(即能量)为守恒量。假定初始条件为x(p)、p(0),则它的哈密顿方程是对时间的一阶微分方程 (2.2) 现在我们要用数值积分方法计算在相空间中的运动轨迹(X(t)、p(t)) 。我们采用有限差分法,将微分方程变为有限差分方程,以便在计算机上做数值求解,并得到空间坐标和动量随时间的演化关系。首先,

第6章-分子动力学方法

第6章分子动力学方法 经典分子动力学方法无疑是材料,尤其是大分子体系和大体系模拟有效的方法之一。分子动力学可以用于NPT,NVE,NVT等不同系综的计算,是一种基于牛顿力学确定论的热力学计算方法。与蒙特卡罗法相比在宏观性质计算上具有更高的准确度和有效性,可以广泛应用于物理,化学,生物,材料,医学等各个领域。本章在介绍分子动力学的基本概念的基础上,简单介绍了分子动力学的基本思想,势函数分类和基本方程。然后介绍了分子动力学的常用系综和典型的NPT,NVE,NVT系综基本方程。结合材料建模中的基本简化方法和技巧,阐述了边界条件和时间积分的数值处理技巧。最后,利用统计力学的基本概念给出分子动力学的计算信息的解析方式。并且结合Materials Explore软件计算分析了CNT的几何结构稳定性。 6.1引言 分子动力学方法(Molecular Dynamics, MD)方法是一种按该体系部的禀动力学规律来计算并确定位形的变化的确定性模拟方法。首先需要在给定的外界条件下建立一组粒子的运动方程,然后通过直接对系统中的一个个粒子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计力学方法得到多体系统的静态和动态特性,从而获得系统的宏观性质。可以看出,分子动力学方法中不存在任何随机因素,这个也是分子动力学方法和后文要提到的蒙特卡洛方法的区别之一。在分子动力学方法的处理过程中,方程组的建立是通过对物理体系的微观数学描述给出的。在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学定律(或者是拉格朗日方程)。每个分子运动的禀动力学是用理论力学上的哈密顿量或者拉格朗日函数来描述,也可以直接用牛顿运动方程来描述。确定性方法是实现玻尔兹曼的统计力学途径。这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。但是分子动力学方法的计算机程序相对蒙特卡罗较复杂,其计算成本较高。 分子动力学方法发展历史改革经历了近60年,分子动力学方法是20世纪50年代后期由Alder B J 和Wainwright T E创造发展的。Alder和Wainwright在1957年利用分子动力学模拟,发现了“刚性球组成的集合系统会发生由其液相到结晶相的相转变”,后来人们称这种相变为Alder相变。其结果表明,不具有引力的粒子系统也具有凝聚态。到20世纪70年代,产生了刚性体系的动力学方法,成功地被应用于水和氮等分子性溶液体系的处理;1972年,Less A W和 Edwards S F 等发展了该方法并扩展到了存在速度梯度,即处于非平衡状态的系统。之后,此方法被 Ginan M J等推广到了具有温度梯度的非平衡系统,从而构造并形成了所谓的非平衡分子动力学方法体系。进人20世纪80年代之后,出现了在分子部对一部分自由度施加约束条件的新的分子动力学方法,从而使分子动力学方法可适用于类似蛋白质等生物大分子的解析与设计。分子动力学方法真正作为材料科学领域的一个重要研究方法,开始于由Andersen, Parrinello和Rahman等创立恒压分子动力学方法和Nǒse 等完成恒温分子动力学方法的建立及在应用方面的成功。后来,针对势函数模型化比较困难的半导体和金属等,1985 年人们又提出了将基于密度泛函理论的电子论和分子动力学方法有机统一起来的所谓Car-Parrinello 方法,亦即第一性原理分子动力学方法。这样,分子动力学的方法进一步得到发展和完善,它不仅可以处理半导体和金属的间题,同时还可应用

相关主题
文本预览
相关文档 最新文档