当前位置:文档之家› 大学物理复习题集

大学物理复习题集

大学物理复习题集
大学物理复习题集

物理上册复习题集 一、力学习题

1. 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,

加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离.

2. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 - 2 t 3 (SI) .试求:

(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.

3. 在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量

为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为 ( )

(A) k M a /. (B) M k a /.

(C) k M a /2. (D) k

M a /21.

4. 一质点沿半径为R 的圆周运动,在t = 0时经过P 点,此后它的速率v 按Bt A +=v (A ,B 为正的已知常量)变化.则质点沿圆周运动一周再经过P 点时的切向

加速度a t = ___________ ,法向加速度a n = _____________.

k

A

B

m

2

1v

5. 如图,两个用轻弹簧连着的滑块A 和B ,滑块A 的质量为m

21,B 的质量为m ,弹簧的劲度系数为k ,

A 、

B 静止在光滑的水平面上(弹簧为原长).若滑块A 被水平方向射来的质量为m

21、速度为v 的子弹

射中,则在射中后,滑块A 及嵌在其中的子弹共同运动的速度v A =________________,此时刻滑块B 的速

度v B =__________,在以后的运动过程中,滑块B 的最大速度v max =__________.

6. 质量为0.25 kg 的质点,受力i t F = (SI)的作用,式中t 为时间.t = 0时该质点以j 2=v (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是

______________.

7. 质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间, A 的加速度大小a A =_______,B 的加速度的大小a B =_______.

B

m A

C

θ

8.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比

T : T ′=____________________.

9.

θ l m

一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线

夹角θ,则

(1) 摆线的张力T =_______________; (2) 摆锤的速率v=_______________. 10. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:

(1) 子弹射入沙土后,速度随时间变化的函数式;

(2) 子弹进入沙土的最大深度.

11. (1) 试求赤道正上方的地球同步卫星距地面的高度.

(2) 若10年内允许这个卫星从初位置向东或向西漂移10°,求它的轨道半径的误差限度是多少?已知地球半径R =6.37×106 m ,地面上重力加速度g =9.8 m/s 2.

ω

P C

O

12. 一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上

的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .

(C) 17 rad/s (D) 18 rad/s . [ ]

α

m

13. 质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将

(A) 增加. (B) 减少. (C) 不变.

(D) 先是增加,后又减小.压力增减的分界角为α=45°. [ ]

14. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是

(A)

k mg . (B) k g

2 . (C) gk . (D)

gk . [ ]

O

M

m

m

15. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.

(C) 减小. (D) 不能确定. [ ]

A

M

B

F

16. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .

(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]

17. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.

(C) 大于2 β. (D) 等于2 β. [ ]

18. 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们

对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .

(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]

19. 一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为

前者的二倍.啮合后整个系统的角速度ω=__________________.

.

m

O m

l 0v

俯视图

20. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌

在其中.则子弹嵌入

后棒的角速度ω =_____________________. 21. 一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度w =

__________________________.(已知圆柱体绕固定轴的转动惯量J =2

21

MR ) 22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.

23. 两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s

转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度w =

__________________.(已知转台对转轴的转动惯量J =21

MR 2,计算时忽略转台在转轴处的摩擦)

24. 质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定

轴转动,其转动惯量为M l

2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5p rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω = ______________________.

25. 已知一定轴转动体系,在各个时间间隔内的角速度如下: ω=ω0 0≤t ≤5 (SI) ω=ω0+3t -15 5≤t ≤8 (SI)

ω=ω1-3t +24 t ≥8 (SI) 式中ω0=18 rad /s (1) 求上述方程中的ω1.

(2) 根据上述规律,求该体系在什么时刻角速度为零.

26. 一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不

计,砂轮绕轴的转动惯量为21

mR 2,其中m 和R 分别为砂轮的质量和半径).

27. 一定滑轮半径为0.1 m ,相对中心轴的转动惯量为1×10-3

kg ·m 2

.一变力F =0.5t (SI)沿切线方向

作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度.

m 1

m ,r

28. 质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯

量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.

29. 质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s -1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.

一、力学答案

1. 解:设质点的加速度为 a = a 0+ t

∵ t = 时, a =2 a 0 ∴ = a 0 /

即 a = a 0+ a 0 t / , 1分

由 a = d v /d t , 得 d v = a d t

t

t a a

t

d )/(d 0

00

τ??+=v

v

2

002t

a t a τ+

=v 1分

由 v = d s /d t , d s = v d t

t t a t a t s t

t

s

d )2(d d 2

000

τ

+

==???v

3

02062t a t a s τ+=

1分

t = n 时,质点的速度

ττ0)2(21

a n n n +=

v 1分

质点走过的距离

202

)3(61ττa n n s n +=

1分

2. 解:(1) 5.0/-==??t x v m/s 1分

(2) v = d x /d t = 9t - 6t 2 1分

v (2) =-6 m/s 1分 (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分

3. (A )

4. B 2分 (A 2/R )+4 B 3分

5. v 21 2分 0 1分 v

21 2分

6. j

t i t 2323+ (SI)

3分

7. 0 2分 2 g 2分

8. l/cos 2θ 3分 9. θcos /mg 1分

θθ

cos sin gl

2分

10. 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律

t m

K d d v

v =- 3分

??=-=-v

v v v

v

v 0

d d ,d d 0t t m K t m K 1分

m

Kt /0e -=v v 1分

(2) 求最大深度

解法一:

t x

d d =

v

t

x m Kt d e d /0-=v 2分

t

x m Kt t

x

d e d /0

00

-?

?

=v

∴ )

e 1()/(/0m Kt K m x --=v 2分

K m x /0max v = 1分 解法二:

x m t x x m t m K d d )d d )(d d (d d v

v

v v v ===- ∴

v d K m

dx -

= 3分

v v d d 0

00

max

?

?-=K m x x

∴ K m x /0max v =

2分

11. 解: (1) 设同步卫星距地面的高度为h ,距地心的距离r R +h ,

由牛顿定律 2

2/ωmr r GMm = ① 2分

又由 mg R GMm =2/得 2

gR GM =, 1分 代入①式得

3

/122)/(ωgR r = ② 1分 同步卫星的角速度 与地球自转角速度相同,其值为

5

1027.7-?=ω rad/s 1分

解得 =r 71022.4?m , 4

1058.3?=-=R r h km 2分

(2) 由题设可知卫星角速度 的误差限度为

10105.5-?=?ω rad/s 1分

由②式得 223/ωgR r = 取对数

ωln 2ln ln 32-=)(gR r 取微分并令 d r = r, d 且取绝对值

3 r/r =2

∴ r=2r /(3 =213 m 2分

12-16 BBACC

17. (C) 参考解:

挂重物时, mg -T = ma = mR β , TR =Jb

由此解出

J mR mgR +=

2β 而用拉力时, 2mgR = J β' β'=2mgR / J

故有

β'>2b

18. (C)

19. 0

31ω 3分 20. 3v 0 / (2l ) 3分

21. ()R m M m 22+v

3分22. 8 rad ·s 1

3分 23. 3.77 rad ·s -1 3分

24. 0.2 rad ·s 1 3分

25. 解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中 1是匀加速阶段的末角速度,也是匀减速阶段的初角速度,由此可得

t =8 s 时, 1= 0+9=27 rad /s 3分 当 =0时,得 t =( 1+24)/ 3=17s

所以,体系在17s 时角速度为零. 2分

26. 解:R = 0.5 m , 0 = 900 rev/min = 30 rad/s ,

根据转动定律 M = -J ① 1分 这里 M = - NR ② 1分

为摩擦系数,N 为正压力,2

21mR J =. ③ 设在时刻t 砂轮开始停转,则有:

0=+=t t βωω

从而得 = 0 / t ④ 1分

将②、③、④式代入①式,得

)

/(21

02t mR NR ωμ-=- 1分

∴ m =μR 0

/ (2Nt )≈0.5 1分

27. 解:根据转动定律 M =J d / d t 1分

即 d =(M / J ) d t 1分

其中 M =Fr , r =0.1 m , F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得

d =50t d t 1分

则1 s 末的角速度

1

=?1

50t d t =25 rad / s 2分

28.

m 1 m , r β

0v P T a

解:撤去外加力矩后受力分析如图所示. 2分

m 1g -T = m 1a 1分

Tr =J

1分

a =r 1分 a = m 1gr / ( m 1r + J / r )

代入J =221mr , a =

m

m g

m 2111+= 6.32 ms 2 2分 ∵ v 0-at =0 2分

∴ t =v 0 / a =0.095 s 1分

29. 解:由人和转台系统的角动量守恒

J 1w 1 + J 2w 2 = 0 2分

其中 J 1=300 kg ·m 2,w 1=v /r =0.5 rad / s , J 2=3000 kg m 2

∴ w 2=-J 1w 1/J 2=-0.05 rad/s 1分 人相对于转台的角速度 w r =w 1-w 2=0.55 rad/s 1分 ∴ t =2p /r ω=11.4 s 1分

二、静电场习题

1. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽

略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球心为r 的P 点处电场强度的大小与电势分别为:

O

R 1

R 2

P

r Q

(A) E =2

04r Q επ,U =r Q 04επ.

(B) E =2

04r Q

επ,U =

???? ??-πr R Q 11410ε. (C) E =2

04r Q

επ,U =???? ??-π20114R r Q ε. (D) E =0,U =204R Q

επ. [ ]

2.

Q 2 Q 1 O P r R 2 R 1

如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:

(A) r Q Q 0214επ+.

(B) 202

10144R Q R Q εεπ+

π.

(C) 0. (D) 101

4R Q επ.

[ ]

3.

+ + +

+ + + + + +

+

+

+

+

+ + + +

p

在一个带有正电荷的均匀带电球面外,放置一个电偶极子,其电矩p

的方向如图所示.当释放后,

该电偶极子的运动主要是

A) 沿逆时针方向旋转,直至电矩p 沿径向指向球面而停止. B) 沿顺时针方向旋转,直至电矩p 沿径向朝外而停止. C) 沿顺时针方向旋转至电矩p 沿径向朝外,同时沿电场线远离球面移动. D) 沿顺时针方向旋转至电矩p 沿径向朝外,同时逆电场线方向向着球面移动.

[ ]

4. 一个静止的氢离子(H +

)在电场中被加速而获得的速率为一静止的氧离子(O +2

)在同一电场中且

通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍.

(C) 4倍. (D) 42倍. [ ]

5. 一平行板电容器,板间距离为d ,两板间电势差为U 12,一个质量为m 、电荷为-e 的电子,从负

极板由静止开始飞向正极板.它飞行的时间是:

(A) 122eU md

. (B) 122eU md .

(C)

12

2eU m d

(D)

m eU d

212

[ ]

6. O

R r

E

E ∝1/r 2

图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生

的.

(A) 半径为R 的均匀带电球面. (B) 半径为R 的均匀带电球体. (C) 半径为R 、电荷体密度ρ=Ar (A 为常

数)的非均匀带电球体.

(D) 半径为R 、电荷体密度ρ=A/r (A 为常数)的非均匀带电球体.

[ ]

7.

a

a

+q P M

在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为

(A) a q 04επ. (B) a q

08επ.

(C) a q 04επ-. (D) a q

08επ-. [ ]

8.

A b c

d

a

q

如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:

(A) 06εq . (B) 012εq

(C) 024εq . (D) 048εq

. [ ]

9. 有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表

面掠过的点(该点与球中心距离为r ),其电场强度的大小将由 ___________________变为_________________.

10.

O E

r

E /1∝ r

R

图中曲线表示一种轴对称性静电场的场强大小E 的 分布,r 表示离对称轴的距离,这是由______________ ______________________产生的电场.

11. 一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量

Φe =_________________.

12. 一面积为S 的平面,放在场强为E 的均匀电场中,已知 E

与平面间的夹角为

θ(<π/2),则通过该平面的电场强度通量的数值Φe =__________________. 13. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上

电荷),若电荷分布不改变,则挖去小块后球心处电势(设无 穷远处电势为零)为________________.

14. 一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零 点,则该球面上的电势U =____________________.

15. 一半径为R 的绝缘实心球体,非均匀带电,电荷体密度为ρ=ρ 0 r (r 为离球心的距离,ρ0为常

量).设无限远处为电势零点.则球外(r >R )各点的电势分布为

U =_____ r R 04

04ερ _____________.

16.

O E

r

E /1∝ r

R

图中所示曲线表示球对称或轴对称静电场的某一物理

量随径向距离r 成反比关系,该曲线可描述_无限长均匀带电直线______________

的电场的E~r 关系,也可描述___正点电荷

__________ 的电场的U~r 关系.(E 为电场强度的大小,U 为电势)

17.

L

d

q

P

如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.

17. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷

元d q = λd x = q d x / L ,它在P 点的场强:

()

2

04d d x d L q E -+π=

ε()2

04d x d L L x

q -+π=

ε 2分

总场强为 ?+π=L

x d L x L q E 020)(d 4-ε()d L d q

+π=

04ε

3分

方向沿x 轴,即杆的延长线方向.

18. 电荷线密度为λ的 无限长 均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.

19.

y R

x

φ

O

半径为R 的带电细圆环,其电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 20. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.

21.

a O

x

真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求: (1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.

22. 实验表明,在靠近地面处有相当强的电场,电场强度E

垂直于地面向下,大小约为100 N/C ;

在离地面1.5 km 高的地方,E 也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E 都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;

(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产

生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2)

23.

-a +a

O x

电荷面密度分别为+σ和-σ的两块 无限大 均匀带电平行平面,分别与x 轴垂直相交于x 1=a ,x 2=-a 两点.设坐标原点O 处电势为零,试求空间的电势分布表示式并画出其曲线.

24.

q 0

P

有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如

图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.

(D) F / q 0与P 点处场强的数值哪个大无法确定. [ B ]

25.

A B

σ1σ2

一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所

示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:

(A) σ 1 = - σ, σ 2 = + σ.

(B) σ 1 = σ21-, σ 2 =σ

21+.

(C) σ 1 = σ21-, σ 1 = σ

21-.

(D) σ 1 = - σ, σ 2 = 0. [ B ]

26. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为

(A) 3

2r U R . (B) R U 0.

(C) 2

0r RU . (D) r U 0

. [ C ]

27.

d

b

a

h

h

如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:

(A) 0. (B) 02εσ

(C) 0εσh . (D) 02εσh

. [ A ]

28. 关于高斯定理,下列说法中哪一个是正确的?

(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.

(B) 高斯面上处处D

为零,则面内必不存在自由电荷.

(C) 高斯面的D

通量仅与面内自由电荷有关.

(D) 以上说法都不正确. [ C ]

29. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为

(A) ε 0 E . (B) ε 0 ε r E .

(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]

30.

+q

m +Q

-Q

一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,

如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 (A) 保持不动. (B) 向上运动.

(C) 向下运动. (D) 是否运动不能确定. [ B ]

31. 如果某带电体其电荷分布的体密度ρ 增大为原来的2倍,则其电场的能量变为原来的 (A) 2倍. (B) 1/2倍.

(C) 4倍. (D) 1/4倍. [ C ]

32.

q

q

R 1R 2

一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为

(A) 104R q επ . (B) 204R q

επ .

(C) 102R q επ . (D) 20R q

ε2π . [ D ]

33. 一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平

行地插入一厚度为d /3的金属板,则板间电压变成 U ' =________________ .

34.

A B S

S

d

如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电 势差U AB =___________________ ;B 板接地时两板间电势差 ='AB U __________ .

35.

如图所示,将一负电荷从无穷远处移到一个不带电的导体 附近,则导体内的电场强度_不变_____________,导体的电势 ___________减小___.(填增大、不变、减小)

36. 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷

为q 的点电荷,则球壳内表面上的电荷面密度σ =___

)4/(2

1R q π-___________. 37. 空气的击穿电场强度为 2×106

V ·m -1

,直径为0.10 m 的导体球在空气中时

最多能带的电荷为______________.

(真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )

38. 地球表面附近的电场强度为 100 N/C .如果把地球看作半径为6.4×105

m 的

导体球,则地球表面的电荷Q =__ 4.55×105 C _________________. (2

/C m N 10941

290??=πε)

39. 一任意形状的带电导体,其电荷面密度分布为σ (x ,y ,z ),则在导体表面外

附近任意点处的电场强度的大小E (x ,y ,z ) =______________________,其方向 ______________________.

40. 地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上

的电荷都均匀分布在地表面上,则地面带__负___电,电荷面密度σ =__8.85×10-10 C/m 2 ________. (真空介电常量 ε

0 = 8.85×10-12 C 2/(N ·m 2) )

41.

1

2

σ

d

a

b

厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.

41. 解:选坐标如图.由高斯定理,平板内、外的场强分布为:

1

d a

b

x

O

E = 0 (板内) )2/(0εσ±=x E (板外) 2分

1、2两点间电势差

?=-2

1

21d x

E U U x

x

x d b d d d a d 2d 22

/2

/0

2/)2/(0??+-+-+-=εσ

εσ

)(20

a b -=

εσ

42. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8

C ,两球相距很远.若用

细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(2

2/C m N 10941

90??=πε)

43.

O R 2

R 1

r

半径分别为R 1和R 2 (R 2 > R 1 )的两个同心导体薄球壳,分别带有电荷Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q . 43. 解:设导体球带电q ,取无穷远处为电势零点,则

导体球电势:

r q

U 004επ=

2分 内球壳电势:

10114R q Q U επ-=

202

4R Q επ+

2分 二者等电势,即

r q

04επ1014R q Q επ-=2024R Q επ+

2分

解得

)()

(122112r R R Q R Q R r q ++=

2分

44. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均

匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)

45. 两金属球的半径之比为1∶4,带等量的同号电荷.当两者的距离远大于两球半径时,有一定

的电势能.若将两球接触一下再移回原处,则电势能变为原来的多少倍?

46. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所

带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?

二、静电场答案

1-5 CBDBC 6-8 DBC

9. 2

04r q

επ 2分

0 1分 10. 半径为R 的无限长均匀带电圆柱面

11 0 3分 12. ES cos(π/2 -θ) 3分

13.

???

??π?-π20414R S R Q ε 3分 14. R σ / ε0 3分

15.

r R 04

04ερ 3分 16. 无限长均匀带电直线 2分

正点电荷 2分

17. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:

()

2

04d d x d L q E -+π=

ε()2

04d x d L L x

q -+π=

ε 2分

总场强为 ?+π=L

x d L x L q E 02

0)(d 4-ε()d L d q +π=04ε

3分 方向沿x 轴,即杆的延长线方向.

18.

A B

O ∞

x

3E

2E 1E

y

解:以O 点作坐标原点,建立坐标如图所示.

半无限长直线A ∞在O 点产生的场强1E

()j i R E --π=

014ελ

2分

半无限长直线B ∞在O 点产生的场强2E

()j i R E +-π=

024ελ

2分

半圆弧线段在O 点产生的场强3E

i

R E 032ελπ= 2分 由场强叠加原理,O 点合场强为 0

321=++=E E E E

2分

19.

解:在任意角φ 处取微小电量d q =λd l ,它在O 点产生的场强为:

R R l E 002

04d s co 4d d εφ

φλελπ=π= 3分

它沿x 、y 轴上的二个分量为:

d E x =-d E cos φ 1分 d E y =-d E sin φ 1分

对各分量分别求和 ?ππ=202

00d s co 4φφελR E x =R 004ελ

2分

0)d(sin sin 42000

=π=?πφφελR E y 2分

故O 点的场强为: i

R i E E x 004ελ-== 1分

20.

θ d E y y

d l d θ

R

θ

O d E x x

d E

解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为

θ

λλλd d d π=π=l R

取θ位置处的一条,它在轴线上一点产生的场强为

θ

ελ

ελd 22d d 020R R E π=π= 3分

如图所示. 它在x 、y 轴上的二个分量为:

d E x =d E sin θ , d E y =-d E cos θ 2分

对各分量分别积分

R R E x 020

02d s i n 2ελ

θθελππ=π=? 2分 0d c o s 2002=π-=?πθθελ

R E y 2分

场强

i R j E i E E y x

02

ελπ=

+= 1分

21. 解:(1) 一根无限长均匀带电直线在线外离直线距离r处的场强为:

E 1

O x

12a /2-a /2

E 2

E

E =λ / (2πε0r ) 2分

根据上式及场强叠加原理得两直线间的场强为

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理学期末考试复习题精华版

运动学 1.选择题 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( ) (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. 答:(D ) .以下五种运动形式中,a 保持不变的运动是 ( ) (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. 答:(D ) 对于沿曲线运动的物体,以下几种说法中哪一种是正确的: ( ) (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零. 答:(B ) 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) ( ) (A) t d d v . (B) R 2v . (C) R t 2 d d v v . (D) 2 /1242d d R t v v . 答:(D ) 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为 ( ) (A) 2 R /T , 2 R/T . (B) 0 , 2 R /T (C) 0 , 0. (D) 2 R /T , 0. 答:(B ) 一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度2 /2s m a ,则一秒钟后质点的速度 ( ) (A) 等于零. (B) 等于 2 m/s . (C) 等于2 m/s . (D) 不能确定. 答:(D )

最新大学物理复习题(力学部分)

第一章 一、填空题 1、一质点做圆周运动,轨道半径为R=2m,速率为v = 5t2+ m/s,则任意时刻其切向加速度 aτ=________,法向加速度a n=________. 2、一质点做直线运动,速率为v =3t4+2m/s,则任意时刻其加速度a =________,位置矢量x = ________. 3、一个质点的运动方程为r = t3i+8t3j,则其速度矢量为v=_______________;加速度矢量a为 ________________. 4、某质点的运动方程为r=A cosωt i+B sinωt j, 其中A,B,ω为常量.则质点的加速度矢量为 a=_______________________________,轨迹方程为________________________________。 5、质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正的常数,该下落物体的极限速度是_________。 二、选择题 1、下面对质点的描述正确的是 [ ] ①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观粒子; ③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有大量质点的组合;⑤在自然界中,可以找到实际的质点。A.①②③;B.②④⑤;C.①③;D.①②③④。 2、某质点的运动方程为x = 3t-10t3+6 ,则该质点作[ ] A.匀加速直线运动,加速度沿x轴正方向; B.匀加速直线运动,加速度沿x轴负方向; C.变加速直线运动,加速度沿x轴正方向; D.变加速直线运动,加速度沿x轴负方向。 3、下面对运动的描述正确的是 [ ] A.物体走过的路程越长,它的位移也越大; B质点在时刻t和t+?t的速度分别为 "v1和v2,则在时间?t内的平均速度为(v1+v2)/2 ;C.若物体的加速度为恒量(即其大小和方向都不变),则它一定作匀变速直线运动; D.在质点的曲线运动中,加速度的方向和速度的方向总是不一致的。 4、下列说法中,哪一个是正确的[ ] A. 一质点在某时刻的瞬时速度是4m/s,说明它在此后4s内一定要经过16m的路程; B. 斜向上抛的物体,在最高点处的速度最小,加速度最大; C. 物体作曲线运动时,有可能在某时刻的法向加速度为零; D. 物体加速度越大,则速度越大. 5、下述质点运动描述表达式正确的是 [ ]. A. r? = ?r , B. dt dr dt d = r , C. dt dr dt d ≠ r , D. dt dv dt d = v 6、质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为[ ]. A. 8m/s,16m/s2. B. -8m/s, -16m/s2. C. -8m/s, 16m/s2. D. 8m/s, -16m/s2. 7、若某质点的运动方程是r=(t2+t+2)i+(6t2+5t+11)j,则其运动方式和受力状况应为[ ].

大学物理期末考试题(上册)10套附答案

n 3 电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 2006.7 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 位移的大小为___________,在该时间所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=o 与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 215 5.010cos(5t )6x p p -=?m 、211 3.010cos(5t )6 x p p -=?m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm =的薄膜,为 2 1.40n =, 且12n n n >>3,则反射光中 nm ,

波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3 π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。 二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。 (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1m kg =的质点,在平面运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( ) (A) 7j ? ; (B) j ?12- ; (C) j ?6- ; (D) j i ? ?+6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的4 1 时,其动能为振动 总能量的?( ) (A ) 916 (B )1116 (C )1316 (D )1516 4. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) 1.5λ (C) 2λ (D) 3λ 5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.) M M m v + (B). (C). (D).v

大学物理考试复习题

8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1 的正电荷.试求: (1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示 (1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为 20)(d π41d x a x E P -= λε 2220)(d π4d x a x E E l l P P -==??-ελ ] 2121[π40 l a l a + --=ελ )4(π220l a l -= ελ 用15=l cm ,9100.5-?=λ1 m C -?, 5.12=a cm 代入得 21074.6?=P E 1C N -? 方向水平向右 (2)同理 2 220d d π41d +=x x E Q λε 方向如题8-6图所示 由于对称性 ?=l Qx E 0d ,即Q E ? 只有y 分量, ∵ 22 2222 20d d d d π41d + += x x x E Qy λε 2 2π4d d ελ?==l Qy Qy E E ? -+22 2 322 2 )d (d l l x x 22 20d 4π2+= l l ελ 以9100.5-?=λ1 cm C -?, 15=l cm ,5d 2=cm 代入得 21096.14?==Qy Q E E 1 C N -?,方向沿y 轴正向 8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取?Rd dl = 题8-7图

大学物理期末考试试卷(C卷)答案

第三军医大学2011-2012学年二学期 课程考试试卷答案(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 答案部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.C 2.C 3.C 4.D 5.B 6.C 7.D 8.C 9.A 10.B 二、填空题(每题2分,共20分,共10小题) 1.m k d 2 2.20kx ;2021 kx -;2021kx 3.一个均匀带电的球壳产生的电场 4.θ cos mg . 5.θcot g . 6.2s rad 8.0-?=β 1s rad 8.0-?=ω 2s m 51.0-?='a 7.GMR m 8.v v v v ≠=? ?, 9.1P 和2P 两点的位置.10.j i ??22+- 三、计算题(每题10分,共60分,共6小题) 1. (a) m /s;kg 56.111.0?+-j i ρρ (b) N 31222j i ρρ+- . 2. (a) Yes, there is no torque; (b) 202202/])([mu mbu C C ++ 3.(a)m/s 14 (b) 1470 N 4.解 设该圆柱面的横截面的半径为R ,借助于无限长均匀带电直线在距离r 处的场强公式,即r E 0π2ελ=,可推出带电圆柱面上宽度为θd d R l =的无限长均匀带电直线在圆柱

2 轴线上任意点产生的场强为 =E ρd r 0π2ε λ-0R ρ=000π2d cos R R R ρεθθσ- =θθθεθσ)d sin (cos π2cos 0 0j i ρρ+-. 式中用到宽度为dl 的无限长均匀带电直线的电荷线密度θθσσλd cos d 0R l ==,0R ρ为从 原点O 点到无限长带电直线垂直距离方向上的单位矢量,i ρ,j ρ为X ,Y 方向的单位矢量。 因此,圆柱轴线Z 上的总场强为柱面上所有带电直线产生E ρd 的矢量和,即 ??+-==Q j i E E πθθθεθσ2000)d sin (cos π2cos d ρρρρ=i 002εσ- 方向沿X 轴负方向 5.解 设邮件在隧道P 点,如图所示,其在距离地心为r 处所受到的万有引力为 23π34r m r G f ??-=ρ r m G )π34 (ρ-= 式中的负号表示f ρ与r ρ的方向相反,m 为邮件的质量。根据牛顿运动定律,得 22d )π34(dt r m r m G =-ρ

华南农业大学大学物理B复习资料试题

谢谢戴老师分享的一手资料,答案在最后。这些是小题范围,考 试的大题多为老师在课本上划得重点习题 目 录 流体力学 (2) 一、选择题 (2) 二、填空题 (3) 三、判断题 (5) 热学 (6) 一、选择题 (6) 二、填空题 (11) 三、判断题 (14) 静电场 (15) 一、选择题 (15) 二、填空题 (17) 三、判断题 (17) 稳恒磁场 (18) 一、选择题 (18) 二、填空题 (21) 三、判断题 (22) 振动和波动 (23) 一、选择题 (23) 二、填空题 (26) 三、判断题 (27) 波动光学 (27) 一、选择题 (27) 二、填空题 (30) 三、判断题 (31) 物理常数:1231038.1--??=K J k ,1131.8--??=mol K J R ,2/8.9s m g =,电子电量为 C 19106.1-?,真空介电常数2212010858/Nm C .ε-?=,真空磁导率 270104--??=A N πμ,18103-??=s m c 。693.02ln =。

流体力学 一、选择题 1.静止流体内部A ,B 两点,高度分别为A h ,B h ,则两点之间的压强关系为 (A )当A B h h >时,A B P P >; (B )当A B h h > 时,A B P P <; (C )A B P P =; (D )不能确定。 2.一个厚度很薄的圆形肥皂泡,半径为R ,肥皂液的表面张力系数为γ;泡内外都是空气, 则泡内外的压强差是 (A )R γ4; (B )R 2γ; (C )R γ2; (D )R 32γ。 3.如图,半径为R 的球形液膜,内外膜半径近似相等,液体的表面张力系数为γ,设A , B , C 三点压强分别为A P ,B P ,C P ,则下列关系式正确的是 (A )4C A P P R γ-= ; (B )4C B P P R γ-=; (C )4A C P P R γ-=; (D )2B A P P R γ-=-。 4.下列结论正确的是 (A )凸形液膜内外压强差为R P P 2γ=-外内; (B )判断层流与湍流的雷诺数的组合为ηρDv ; (C )在圆形水平管道中最大流速m v 与平均流速v 之间的关系为m v v 2=; (D )表面张力系数γ的大小与温度无关。 5.为测量一种未知液体的表面张力系数,用金属丝弯成一个框,它的一个边cm L 5=可以 滑动。把框浸入待测液体中取出,竖起来,当在边L 中间下坠一砝码g P 5.2=时,恰好可 拉断液膜,则该液体的表面张力系数是 (A )m N /15.0; (B )m N /245.0; (C )m N /35.0; (D )m N /05.0。 6.下列哪个因素与毛细管内液面的上升高度无关:

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

最新大学物理1期末考试复习-试卷原题与答案

大学物理1期末考试复习,试卷原题与答案 力学 质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB 前后的瞬间,绳BC中的张力比T : T′=____________________. 一圆锥摆摆长为l、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则 (1) 摆线的张力T=_____________________; (2) 摆锤的速率v=_____________________. 一光滑的内表面半径为10 cm OC 旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4

cm,则由此可推知碗旋转的角速度约为 (A) 10 rad/s.(B) 13 rad/s. (C) 17 rad/s (D) 18 rad/s.[] 质量为m的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将 (A) 增加(B) 减少.(C) 不变. (D) 先是增加,后又减小.压力增减的分界角为α=45°.[ ] 一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并

且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大.(B) 不变.(C) 减小.(D) 不能确定定.() 如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,则有 (A) βA=βB.(B) βA>βB. (C) βA<βB.(D) 开始时βA=βB,以后βA<βB. 18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则 (A) J A>J B(B) J A<J B. (C) J A =J B.(D) 不能确定J A、J B哪个大. 22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为0.6 m.先让人体以5 rad/s的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m.人体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每

大学物理复习题

8. 真空系统的容积为×10-3m 3,内部压强为×10-3Pa 。为提高真空度,可将容器加热,使附着在器壁的气体分子放出,然后抽出。设从室温(200C )加热到2200C ,容器内压强增为。则从器壁放出的气体分子的数量级为B (A )1016个; (B )1017个; (C )1018个; (D )1019个 13. 一理想气体系统起始温度是T ,体积是V ,由如下三个准静态过程构成一个循环:绝热膨胀2V ,经等体过程回到温度T ,再等温地压缩到体积V 。在些循环中,下述说法正确者是( A )。 (A )气体向外放出热量; (B )气体向外正作功; (C )气体的内能增加; (C )气体的内能减少。 19. 在SI 中,电场强度的量纲是 ( C ) (A )11--MLT I (B )21--MLT I (C )31--MLT I (D )3-IMLT 20. 在带电量为+q 的金属球的电场中,为测量某点的场强E ,在该点放一带电电为 、 的检验电荷,电荷受力大小为F ,则该点电场强度E 的大小满足 ( D ) (A ) (B ) (D ) (D )E 不确定 21. 在场强为E 的匀强电场中,有一个半径为R 的半球面,若电场强度E 的方向与半球面的对称轴平行,则通过这个半球面的电通量的大小为( A ) (A )πR 2E ; (B )2πR 2E ; (C );22 E R π (D ) E R 22 1π。 24. 两个载有相等电流I 的圆线圈,一个处于水平位置,一个处于竖直位置,如图所示。在圆心O 处的磁感强度的大小是 ( C ) (A ) 0 (B ) (C ) (D ) ] 25. 无限长载流直导线在P 处弯成以O 为圆心,R 为半径的圆,如图示。若所通电流为I ,缝P 极窄,则O 处的磁感强度B 的大小为 ( C ) (A ) (B ) (C ) (D ) 26. 如图所示,载流导线在圆 心O 处的磁感强度的大小为 ( D ) 3 q + q F E 3=q F E 3?q F E 3?R I u 20R I u 220R I u 0R I u π0R I u 0R I u 2110? ?? ? ?-πR I u 2110??? ? ?+π

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理上册期末考试题库

质 点 运 动 学 选择题 [ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则点作 A 、匀加速直线运动,加速度沿x 轴正方向. B 、匀加速直线运动,加速度沿x 轴负方向. C 、变加速直线运动,加速度沿x 轴正方向. D 、变加速直线运动,加速度沿x 轴负方向. [ ]2、某物体的运动规律为2v dv k t dt =-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是 A 、0221v kt v += B 、022 1v kt v +-= C 、02211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻 质点的速率) A 、dt dv B 、R v 2 C 、R v dt dv 2+ D 、 242)(R v dt dv + [ ]4、关于曲线运动叙述错误的是 A 、有圆周运动的加速度都指向圆心 B 、圆周运动的速率和角速度之间的关系是ωr v = C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向 D 、速度的方向一定与运动轨迹相切 [ ]5、以r 表示质点的位失, ?S 表示在?t 的时间内所通过的路程,质点在?t 时间内平均速度的大小为 A 、t S ??; B 、t r ?? C 、t r ?? ; D 、t r ?? 填空题 6、已知质点的运动方程为26(34)r t i t j =++ (SI),则该质点的轨道方程 为 ;s t 4=时速度的大小 ;方向 。 7、在xy 平面内有一运动质点,其运动学方程为:j t i t r 5sin 105cos 10+=(SI ), 则t 时刻其速度=v ;其切向加速度的大小t a ;该质 点运动的轨迹是 。 8、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=C t 2 (其中C 为常量),则其速度与时间的关系v= , 运动

大学物理考试常见习题(精简)

大学物理考试常见习题 (精简) https://www.doczj.com/doc/0710274296.html,work Information Technology Company.2020YEAR

2 第一章 质点运动学 练习题: 一、选择: 1、一质点运动,在某瞬时位于矢径(,)r x y 的端点处,其速度大小为:( ) (A) dr dt (B)dr dt (C) d r dt (D)22()()dx dy dt dt + 2、质点的速度21(4)v t m s -=+?作直线运动,沿质点运动直线作OX 轴,并已知3t s =时,质点位于9x m =处,则该质点的运动学 方程为:( ) A 2x t = B 21 42 x t t =+ C 314123x t t =+- D 31 4123 x t t =++ 3、一小球沿斜面向上运动,其运动方程为s=5+4t t 2 (SI), 则小球运动到最高点的时刻是:( ) (A) t=4s. (B) t=2s. (C) t=8s. (D) t=5s. 4、质点做匀速率圆周运动时,其速度和加速度的变化情况为 ( ) (A )速度不变,加速度在变化 (B )加速度不变,速度在变化 (C )二者都在变化 (D )二者都不变 5、质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率) (A) d v/d t . (B) v 2/R . (C) d v/d t + v 2/R . (D) [(d v/d t )2+(v 4/R 2)]1/2 二、填空题 1、质点的运动方程是()cos sin r t R ti R tj ωω=+,式中R 和ω是正的常量。从t π=到2t πω=时间内,该质点的位移是 ;该质点所经过的路程是 。

大学物理复习题

8. 真空系统的容积为5.0×10-3m 3,内部压强为1.33×10-3Pa 。为提高真空度,可将容器加热,使附着在器壁的气体分子放出,然后抽出。设从室温(200C )加热到2200C ,容器内压强增为1.33Pa 。则从器壁放出的气体分子的数量级为B (A )1016个; (B )1017个; (C )1018个; (D )1019个 13. 一理想气体系统起始温度是T ,体积是V ,由如下三个准静态过程构成一个循环:绝热膨胀2V ,经等体过程回到温度T ,再等温地压缩到体积V 。在些循环中,下述说法正确者是( A )。 (A )气体向外放出热量; (B )气体向外正作功; (C )气体的内能增加; (C )气体的内能减少。 19. 在SI 中,电场强度的量纲是 ( C ) (A )11--MLT I (B )21--MLT I (C )31--MLT I (D )3-IMLT 20. 在带电量为+q 的金属球的电场中,为测量某点的场强E ,在该点放一带电电为 的检验电荷,电荷受力大小为F ,则该点电场强度E 的大小满足 ( D ) (A ) (B ) (D ) (D )E 不确定 21. 在场强为E 的匀强电场中,有一个半径为R 的半球面,若电场强度E 的方向与半球面的对称轴平行,则通过这个半球面的电通量的大小为( A ) (A )πR 2E ; (B )2πR 2E ; (C );22 E R π (D ) E R 22 1π。 24. 两个载有相等电流I 的圆线圈,一个处于水平位置,一个处于竖直位置,如图所示。在圆心O 处的磁感强度的大小是 ( C ) (A ) 0 (B ) (C ) (D ) 25. 无限长载流直导线在P 处弯成以O 为圆心,R 为半径的圆,如图示。若所通电流为I ,缝P 极窄,则O 处的磁感强度B 的大小为 ( C ) (A ) (B ) (C ) (D ) 26. 如图所示,载流导线在圆 心O 处的磁感强度的大小为 ( D ) 104(A) R I u 204(B)R I u ???? ??+210114(C)R R I u ??? ? ??-210114(D)R R I u 27. 四条互相平行的载流长直导线中的电流均为I ,如图示放置。正方形的边长为a , 3 q + q F E 3=q F E 3?q F E 3?R I u 20R I u 220R I u 0R I u π0R I u 0R I u 2110? ?? ? ?-πR I u 2110??? ? ?+π

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理复习题目

练习一 质点运动学 一、选择题 1、一质点沿x 轴运动,其速度与时间的关系为2 4t υ=+(SI ),当t=3 s 时,x=9 m,则质点的运动学方程是 ( ) 2、一质点沿X 轴的运动规律是542 +-=t t x (SI),前三秒内它的 ( ) A 位移和路程都是3m ; B 位移和路程都是-3m ; C 位移是-3m ,路程是3m ; D 位移是-3m ,路程是5m 3、一质点在平面上运动,已知质点位置矢量的表示式为22at bt =+r i j (其中a 、b 为常量), 则该质点 作 ( ) A 匀速直线运动 B 匀变速直线运动 C 抛物线运动 D 一般曲线运动 4、一小球沿斜面向上运动,其运动方程245t t s -+= (SI),则小球运动到最高点的时刻 是 ( ) A t=4S; B t=2S C t=8S; D t=5S 5、下列说法中哪一个是正确的 ( ) A 加速度恒定不变时,质点运动方向也不变 B 平均速率等于平均速度的大小 C 当物体的速度为零时,其加速度必为零 D 质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度 6、某质点作直线运动的运动学方程为x =3t-5t 3 + 6 (SI),则该质点作 ( ) A 匀加速直线运动,加速度沿x 轴正方向 B 匀加速直线运动,加速度沿x 轴负方向 C 变加速直线运动,加速度沿x 轴正方向 D 变加速直线运动,加速度沿x 轴负方向 7、一个质点在做匀速率圆周运动时 ( ) A 切向加速度改变,法向加速度也改变 B 切向加速度不变,法向加速度改变 C 切向加速度不变,法向加速度也不变 D 切向加速度改变,法向加速度不变

大学物理考试复习题(1)

大学物理考试复习题 (1) https://www.doczj.com/doc/0710274296.html,work Information Technology Company.2020YEAR

习题十 10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B 垂直.当回路半径以恒定速率t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m ==Φ 感应电动势大小 40.0d d π2)π(d d d d 2==== t r r B r B t t m Φε V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向. 解: 取半圆形cba 法向为i , 题10-2图 则 αΦcos 2π21 B R m = 同理,半圆形adc 法向为j ,则 αΦcos 2 π22 B R m = ∵ B 与i 夹角和B 与j 夹角相等, ∴ ? =45α 则 αΦcos π2 R B m = 221089.8d d cos πd d -?-=-=Φ- =t B R t m αεV 方向与cbadc 相反,即顺时针方向. 题10-3图

*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场 中.B 与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势. 解: 计算抛物线与CD 组成的面积内的磁通量 ? ?=-==a y m y B x x y B S B 0 2 3 2 322d )(2d 2α αΦ ∴ v y B t y y B t m 2 1 212d d d d α αε-=-=Φ-= ∵ ay v 22 = ∴ 2 1 2y a v = 则 α α εa By y a y B i 8222 12 1-=- = i ε实际方向沿ODC . 题10-4图 10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U -. 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ? +-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,

大学物理(上)期末试题(1)

大学物理(上)期末试题(1) 班级 学号 姓名 成绩 一 填空题 (共55分) 请将填空题答案写在卷面指定的划线处。 1(3分)一质点沿x 轴作直线运动,它的运动学方程为x =3+5t +6t 2-t 3 (SI),则 (1) 质点在t =0时刻的速度=0v __________________; (2) 加速度为零时,该质点的速度v =____________________。 2 (4分)两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动。物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间。在下列两种情况下,写出物体B 的动量作为时间函数的表达式: (1) 开始时,若B 静止,则 P B 1=______________________; (2) 开始时,若B 的动量为 – P 0,则P B 2 = _____________。 3 (3分)一根长为l 的细绳的一端固定于光滑水平面上的O 点,另一端系一质量为m 的小球,开始时绳子是松弛的,小球与O 点的距离为h 。使小球以某个初速率沿该光滑水平面上一直线运动,该直线垂直于小球初始位置与O 点的连线。当小球与O 点的距离达到l 时,绳子绷紧从而使小球沿一个以O 点为圆心的圆形轨迹运动,则小球作圆周运动时的动能 E K 与初动能 E K 0的比值 E K / E K 0 =______________________________。 4(4分) 一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。在0到4 s 的时间间隔内, (1) 力F 的冲量大小I =__________________。 (2) 力F 对质点所作的功W =________________。

《大学物理(一)》期末考试试题]

《大学物理(一)》综合复习资料 一.选择题 1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从 (A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来. [ ] 2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 2 2 +=(其中a 、b 为常量)则该质点作 (A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 (A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变 (A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3. [ ] 6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为 (A )4/1E .(B ) 2/1E .(C )12E .(D )14E . [ ] 7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ. [ ] 8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:

相关主题
文本预览
相关文档 最新文档