当前位置:文档之家› 2011立体几何之解答题

2011立体几何之解答题

2011立体几何之解答题
2011立体几何之解答题

2011立体几何之解答题

1.(江苏16)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证:(1)直线EF ∥平面PCD ;

(2)平面BEF ⊥平面PAD

2.(安徽理17)如图,A B C D E F G 为多面体,平面A B E D 与平面A G F D 垂直,点O 在线段A D

上,1,2,OA OD ==△OAB ,,△O AC ,△O D E ,△O D F 都是正三角形。 (Ⅰ)证明直线B C ∥E F ; (II )求棱锥F —OBED 的体积。

A

3.(北京理16) 如图,在四棱锥P A B C D -中,P A ⊥平面A B C D ,底面A B C D 是菱形,

2,60A B B A D =∠=

.

(Ⅰ)求证:B D ⊥平面;PAC (Ⅱ)若,PA AB =求P B 与A C 所成角的余弦值; (Ⅲ)当平面PBC 与平面P D C 垂直时,求P A 的长.

4.(福建理20) 如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB+AD=4,CD=2,?=∠45CDA .

(I )求证:平面PAB ⊥平面PAD ; (II )设AB=AP .

(i )若直线PB 与平面PCD 所成的角为?30,求线段AB 的长;

(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理 由。

5.(广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形,且∠DAB=60?,

PA PD ==

分别是BC,PC 的中点.

(1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

6.(湖北理18) 如图,已知正三棱柱111A B C A B C -的各棱长都是4,E 是B C 的中点,动点

F

在侧棱1C C 上,且不与点C 重合.

(Ⅰ)当C F =1时,求证:E F ⊥1A C ;

(Ⅱ)设二面角C A F E --的大小为θ,求tan θ的最小值.

7.(湖南理19)如图5,在圆锥P O中,已知P O,⊙O的直径2

A B=,C是 AB

的中点,

D为A C的中点.

(Ⅰ)证明:平面P O D⊥平面PAC; (Ⅱ)求二面角B P A C

--的余弦值。

8.(辽宁理18)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1

2PD.

(I)证明:平面PQC⊥平面DCQ;

(II)求二面角Q—BP—C的余弦值.

9.(全国大纲理19) 如图,四棱锥S A B C D -中, AB C D ⊥,BC C D ⊥,侧面SA B 为等边三角形,2,1AB BC CD SD ====.

(Ⅰ)证明:SD SAB ⊥平面;

(Ⅱ)求A B 与平面S B C 所成角的大小.

10.(全国新课标理18) 如图,四棱锥P A B C D -中,底面ABCD 为平行四边形,60D A B ∠=?,

2A B A D

=,P D ⊥底面ABCD .

(I )证明:PA BD ⊥;

(II )若PD=AD ,求二面角A-PB-C 的余弦值.

11.(山东理19) 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;

(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.

12.(陕西理

16) 如图,在A B C

?中,

60,90,ABC BAC AD

∠=∠=

是B C 上的高,沿A D 把

A B C

?折起,使90BCD ∠=

(Ⅰ)证明:平面ADB ⊥平面BDC;

(Ⅱ)设E为BC的中点,求AE

与DB

夹角的余弦值。

13.(上海理21) 已知1111ABC D A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交

点。

(1)设1A B 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β。

求证:tan βα

=

(2)若点C 到平面11A B D 的距离为4

3,求正四棱柱1111ABC D A B C D -的高。

14.(四川理19) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D 是棱CC1上的一P 是AD 的延长线与A1C1的延长线的交点,且PB1∥平面BDA . (I )求证:CD=C1D :

(II )求二面角A-A1D-B 的平面角的余弦值; (Ⅲ)求点C 到平面B1DP 的距离.

D

B

D 1

1

B

15.(天津理17) 如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B

的中心,1AA =1C H ⊥

平面11AA B B

,且1C H =

(Ⅰ)求异面直线AC 与A1B1所成角的余弦值; (Ⅱ)求二面角111A A C B --的正弦值;

(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且M N ⊥平面11A B C ,求线段BM 的长.

16.(浙江理20) 如图,在三棱锥P A B C -中,A B A C =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2 (Ⅰ)证明:AP ⊥BC ;

(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

⊥,17.(重庆理19)如题(19)图,在四面体A B C D中,平面A B C⊥平面A C D,A B B C

=,C A D

∠=30?.

AD C D

=2,求四面体A B C D的体积;

(Ⅰ)若AD=2,A B B C

--为60?,求异面直线A D与B C所成角的余弦值.(Ⅱ)若二面角C A B D

立体几何之解答题答案

1、证明:(1)在△PAD 中,因为E 、F 分别为

AP ,AD 的中点,所以EF//PD. 又因为EF ?平面PCD ,PD ?平面PCD , 所以直线EF//平面PCD.

(2)连结DB ,因为AB=AD ,∠BAD=60°,

所以△ABD 为正三角形,因为F 是AD 的 中点,所以BF ⊥AD.因为平面PAD ⊥平面ABCD ,

BF ?平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD 。又因为 BF ?平面BEF ,所以平面BEF ⊥平面PAD. 2、(I )(综合法)

证明:设G 是线段DA 与EB 延长线的交点. 由于△OAB 与△ODE 都是正三角形,所以

OB

∥DE

2

1,OG=OD=2,

同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O

又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.

在△GED 和△GFD 中,由OB ∥DE

21和OC ∥DF

2

1

,可知B 和C 分别是GE 和GF 的中点,

所以BC 是△GEF 的中位线,故BC ∥EF. (向量法)

过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系.

由条件知).

23,23,0(),0,2

3,23(

),3,0,0(),0,0,3(-

-C B F E

则有

).

3,0,3(),2

3,

0,2

3(-=-

=EF BC

所以,2BC EF =即得BC ∥EF.

=

=

=

=

(II )解:由OB=1,OE=2,

2

3,60=

?=∠EOB S EOB 知,而△OED 是边长为2的正三角形,

故.3=OED S

所以

.

2

33=

+=OED EOB OBED S S S

过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED

的高,且FQ=

3

,所以.

233

1=

?=

-OBED OBED F S FQ V

3、证明:(Ⅰ)因为四边形ABCD 是菱形, 所以AC ⊥BD.

又因为PA ⊥平面ABCD. 所以PA ⊥BD. 所以BD ⊥平面PAC. (Ⅱ)设AC∩BD=O. 因为∠BAD=60°,PA=PB=2, 所以BO=1,AO=CO=3.

如图,以O 为坐标原点,建立空间直角坐标系O —xyz ,则

P (0,—3,2),A (0,—3,0),B (1,0,0),C (0,3,0). 所以).0,32,0(),2,3,1(=-=AC PB

4

63

2226cos =

?=

θ

.

(Ⅲ)由(Ⅱ)知).0,3,1(-=BC 设P (0,-3,t )(t>0), 则),3,1(t BP --=

设平面PBC 的法向量),,(z y x m =, 则0,0=?=?m BP m BC

所以????

?-+--=+-03,

03tz y x y x

,

3=y 则.

6,3t z x =

=

所以

)

6,

3,3(t

m =

同理,平面PDC 的法向量)

6,

3,3(t n -=

因为平面PCB ⊥平面PDC,

所以n m ?=0,即0

3662

=+

-t

解得6

=

t

所以PA=6 4、解法一:

(I )因为P A ⊥平面ABCD ,

A C ?

平面ABCD ,

所以P A A B ⊥,

又,,AB AD PA AD A ⊥= 所以AB ⊥平面PAD 。

又A B ?平面PAB ,所以平面PAB ⊥平面PAD 。

(II )以A 为坐标原点,建立空间直角坐标系

A —xyz (如图)

在平面ABCD 内,作CE//AB 交AD 于点E ,则.C E A D ⊥ 在R t C D E ?中,DE=cos 451C D ??=,

sin 451,CE CD =??=

设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,

所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,

(1,1,0),(0,4,).

C D PD t t =-=--

(i )设平面PCD 的法向量为(,,)n x y z =,

由n CD ⊥ ,n PD ⊥ ,得0,

(4)0.

x y t y tx -+=??

--=?

取x t =,得平面PCD 的一个法向量{,,4}n t t t =-, 又

(,0,)

P B t t =-

,故由直线PB 与平面PCD 所成的角为30?,得

2

1cos 60|

|,,

2

||||

n PB

n PB ??==

? 即

解得

44

5

t t ==或(舍去,因为AD 40t =->),所以

4.

5A B =

(ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等, 设G (0,m ,0)(其中04m t ≤≤-) 则(1,3,0),(0,4,0),(0,,)

G C t m G D t m G P m t =--=--=-

||||

G C G D = 得

222

(4)t m m t

--=+,(2)

由(1)、(2)消去t ,化简得2

340m m -+=(3)

由于方程(3)没有实数根,所以在线段AD 上不存在一个点G , 使得点G 到点P ,C ,D 的距离都相等。 从而,在线段AD 上不存在一个点G , 使得点G 到点P ,B ,C ,D 的距离都相等。

解法二: (I )同解法一。

(II )(i )以A 为坐标原点,建立空间直角坐标系A —xyz (如图)

在平面ABCD 内,作CE//AB 交AD 于E , 则C E AD ⊥。

在平面ABCD 内,作CE//AB 交AD 于点E ,则.C E A D ⊥ 在R t C D E ?中,DE=cos 451C D ??=,

sin 451,CE CD =??=

设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,

所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,

(1,1,0),(0,4,).

C D PD t t =-=--

设平面PCD 的法向量为(,,)n x y z =,

由n CD ⊥ ,n PD ⊥ ,得0,

(4)0.

x y t y tx -+=??

--=?

取x t =,得平面PCD 的一个法向量{,,4}n t t t =-, 又

(,0,)

P B t t =-

,故由直线PB 与平面PCD 所成的角为30?,得

2

1cos 60|

|,,

2

||||

n PB

n PB ??==

? 即

解得

44

5

t t ==或(舍去,因为AD 40t =->),

所以

4.

5

A B =

(ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等, 由GC=CD ,得45G C D G D C ∠=∠=?, 从而90C G D ∠=?,即,CG AD ⊥

∴sin 451,GD CD =??=

设,AB λλ=则AD=4-,

3AG AD G D λ

=-=-,

在R t A B G

?中,

GB ==

1,

=

>

这与GB=GD 矛盾。

所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等, 从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等。 5、法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。

因PA=PD ,有P G A D ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以

AD ⊥

平面PBG ,.AD PB AD GB ?⊥⊥

又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE D E E ?=,所以 AD ⊥平面DEF 。

(2),PG AD BG AD ⊥⊥ ,

P G B ∴∠为二面角

P —AD —B 的平面角,

2

2

2

7,4

R t P A G P G P A A G

?=-=

2

Rt ABG ???中,BG=AB sin60=

222

73

4

cos

27

22

PG BG PB

PG B

PG BG

+-

+-

∴∠===-

?

法二:(1)取AD中点为G,因为,.

PA PD PG AD

=⊥

又,60,

AB AD DAB ABD

=∠=??为等边三角形,因此,B G A D

⊥,

从而AD⊥平面PBG。

延长BG到O且使得PO ⊥OB,又P O?平面PBG,PO ⊥AD,,

AD OB G

?=

所以PO ⊥平面ABCD。

以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为x轴,z轴,平行于AD 的直线为y轴,建立如图所示空间直角坐标系。

11

(0,0,),(,0,0),(,,0),(,,0).

22

P m G n A n D n

-

||||sin60

2

G B AB

=?=

11

(0,0),(0),(,,0),(,).

22222422

n m

B n

C n E n F

∴++++

由于

(0,1,0),0,0),(0,)

2242

n m

AD D E FE

===+-

得0,0,,,

AD D E AD FE AD D E AD FE D E FE E

?=?=⊥⊥?=

AD

∴⊥平面DEF。

(2

1

(,,),(0,)

22

PA n m PB n m =--=+-

22,1,

2

m m n ∴=+===

解之得

取平面ABD的法向量1(0,0,1),

n=-

设平面PAD的法向量2(,,)

n a b c

=

由22

0,0,0,0,

2222

b b

PA n c PD n c ?=--=?=+-=

得由得

取2

(1,

2

n=

12

cos,

7

n n

-

∴<>==-

6、解法1:过E作E N A C

⊥于N,连结EF。

(I)如图1,连结NF、AC1,由直棱柱的性质知,

底面ABC⊥侧面A1C。

又度面ABC 侧面A,C=AC,且E N?底面ABC,

所以E N⊥侧面A1C,NF为EF在侧面A1C内的射影,

在R t C N E

?中,cos60

C N C E

=?=1,

则由1

1

4

C F C N

C C C A

==

,得NF//AC1,

又11,

AC A C

⊥故

1

N F A C

⊥。

由三垂线定理知1.

EF A C

(II)如图2,连结AF,过N作N M A F

⊥于M,连结ME。

由(I)知E N⊥侧面A1C,根据三垂线定理得,

EM AF

所以E M N

∠是二面角C—AF—E的平面角,即E M Nθ

∠=,

在R t C N E ?

中,sin 60N E E C =??= 在,sin 3sin ,Rt AMN MN AN a a ?=?=中

故tan .

3sin N E M N

a

θ=

=

045,0sin 2a α?<≤?∴<≤

故当

sin 452

a α=

=?

即当时,tan θ达到最小值;

tan 3

3

θ=

=

,此时F 与C1重合。

解法2:(I )建立如图3所示的空间直角坐标系,则由已知可得

1(0,0,0),2,0),(0,4,0),(0,0,4),3,0),(0,4,1),

A B C A E F

于是1(0,4,4),(CA EF =-=

则1(0,4,4)(0440,

CA EF ?=-?=-+=

1.

EF A C ⊥

(II )设,(04)CF λλ=<≤,

平面AEF 的一个法向量为(,,)m x y z =, 则由(I )得F (0,4,λ)

3,0),(0,4,)

AE AF λ==

,于是由

,m A E m A F

⊥⊥ 可得

0,30,

40.0,m A E y y z m A F λ??=+=??

+=??=??? 即

取,,4).m λ=-

又由直三棱柱的性质可取侧面AC1的一个法向量为(1,0,0)

n=,

于是由θ为锐角可得

||

cos

||||

m n

m n

θ

?

=

?

sinθ

==

所以

tanθ==

由04

λ

<≤,得

11

4

λ

,即

tan

3

θ≥=

故当4

λ=,即点F与点C1重合时,tanθ

取得最小值3

7、解法1:连结OC,因为,

OA OC D AC

=⊥

是的中点,所以AC OD.

又P O⊥底面⊙O,AC?底面⊙O,所以A C P O

⊥,

因为OD,PO是平面POD内的两条相交直线,所以A C⊥平面POD,

而A C?平面PAC,所以平面POD⊥平面PAC。

(II)在平面POD中,过O作O H PD

⊥于H,由(I)知,平面,

POD PAC

⊥平面

所以O H⊥平面PAC,又PA?面PAC,所以.

P A O H

在平面PAO中,过O作O G P A

⊥于G,

连接HG,

则有P A⊥平面OGH,

从而PA H G

⊥,故O G H

∠为二面角B—PA—C的平面角。

,sin45

2

Rt O D A O D O A

?=??=

,

5

Rt PO D O H

?===

,

3

Rt PO A O G

?===

,sin 5

3

O H Rt O H G O G H O G

?∠=

=

=中

所以

cos 5O G H ∠=

=

=

故二面角B —PA —C

的余弦值为

5

解法2:(I )如图所示,以O 为坐标原点,OB 、OC 、OP 所在直线分别为x 轴、y 轴,z 轴建立空间直角坐标系,则

(0,0,0),(1,0,0),(1,0,0),(0,1,0),(0,0,

O A B C P -,

11

(,,0)22

D -

1111(,,)

n x y z =是平面POD 的一个法向量,

则由110,0n OD n OP ?=?=

,得1

11

1

10,220.x y ?-+=?=

所以111110,,1,(1,1,0).

z x y y n ====取得

2222(,,)

n x y z =是平面PAC 的一个法向量,

则由

220,0

n PA n PC ?=?=

得22220,0.x y ?--=??

+=?

?

所以22222,.1,x y ===取z

得2(n =。

因为12(1,1,0)(0,n n ?=?= 所以

12.

n n ⊥从而平面P O D ⊥平面PAC 。

(II )因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量为3(0,1,0).

n =

由(I )知,平面PAC

的一个法向量为2(n =

设向量

23

n n 和的夹角为θ,则

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2011—2017高考全国卷文科数学立体几何总结

新课标全国卷 文科数学总结 立 体 几 何 一、选择题 【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂 直的半径.若该几何体的体积是 28π 3 ,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π 【2016,11】平面α过正方体1111ABCD A BC D -的顶点 A ,α∥平面11C B D ,α平面ABCD m =, α 平面11ABB A n =,则,m n 所成角的正弦值为( ) A . 2 B .2 C .3 D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问 题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的 正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8 【2015,11】 【2014,8】 【2013,11】 【2012,7】 【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱 【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A .6 B .9 C .12 D .15

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

-2018江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

(完整版)高三数学立体几何历年高考题(2011年-2017年)

高三数学立体几何高考题 1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 2.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π 3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( ) A.81π4 B .16π C .9π D.27π4 7.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )8 9(2016年7)如图,某几何体的三视图是三个半径相等的 圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π 3 , 则它的表面积是 (A )17π (B )18π (C )20π (D )28π 10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面, ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为 (A )32 (B )22 (C )33 (D )1 3 11.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是 12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

高考数学专题:空间向量与立体几何(含解析)

立体几何中的向量方法 1.(2012年高考(重庆理))设四面体的六条棱的长分别为 a ,且长为a 的 ,则a 的取值范围是 ( ) A . B . C . D . [解析] 以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴, 则22cos 4 AO PO AOP R ?∴∠= =,A )0,23 ,21(),22,0,22(R R P R R 42arccos =∠∴AOP , 4 2 arccos ?=∴R P A 2. (2012年高考(陕西理))如图,在空间直角坐标系中有直三棱柱 111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( ) A B C D . 35 解析:不妨设122CA CC CB ===, 11(2,2,1),(0,2,1) AB C B =-=- , 111111cos ,5 AB C B AB C B AB C B ×<>= =-,直线1BC 与直线1AB 夹角为锐角,选A. 3.(2012年高考(天津理))如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄 AD ,AB 丄BC ,0=45ABC ∠,==2PA AD ,=1AC . (Ⅰ)证明PC 丄AD ; (Ⅱ)求二面角A PC D --的正弦值; (Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为0 30,求AE 的长. P

【命题意图】本小题主要考查空间两条直线的位置关系,二面角、异面直线所成的角,直线 与平面垂直等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力. 方法一:(1)以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角左边系A xyz - 则11(2,0,0),(0,1,0),(,,0),(0,0,2)22 D C B P - (0,1,2),(2,0,0)0PC AD PC AD PC AD =-=?=?⊥ (2)(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)n x y z = 则0 202200n PC y z y z x y x z n CD ?=-==????????-===???? 取1(1,2,1)z n =?= (2,0,0)AD =是平面PAC 的法向量 630 cos ,sin ,66 AD n AD n AD n AD n <>= = ?<>= 得:二面角A PC D --的正弦值为 6 (3)设[0,2]AE h =∈;则(0,0,2)AE =,11 (,,),(2,1,0)2 2 BE h CD =-=- cos ,210 10BE CD BE CD h BE CD <>= ? = ?= 即10AE = 方法二:(1)证明,由PA ⊥平面ABCD ,可得PA AD ⊥,又由 ,AD AC PA AC A ⊥?=,故AD ⊥平面 PAC ,又PC ?平面 PAC ,所以PC AD ⊥. (2)解:如图,作AH PC ⊥于点H ,连接DH ,由

高职高考数学课程初步立体几何

第四编 立体几何初步 第九章 立体几何初步 第一节 简单几何体的表面积和体积 1. 圆柱、圆锥、圆台的侧面展开图及侧面积的计算公式如下: 2. 球、柱、锥、台的表面积及体积计算公式: 名 称 表面积S 体积V 棱 柱 底侧S S 2+ h S 底 棱 锥 底侧S S + h S 底3 1 棱 台 下底上底侧S S S ++ h S S S S )(3 1 下底上底下底上底?++ 球 24R π 33 4 R π 圆 柱 )(2r l r +π h r 2π 圆 锥 )(r l r +π h r 23 1π 圆 台 )()(222121r r l r r +++ππ )(3 1 222121r r r r h ++π 第二节 三视图 1. 柱、锥、台、球的结构特征 (1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体. (2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体. (3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分. (4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体. l r r π2r l r π2l ' r r ' 2r πr π2rl s π2=侧rl S π=侧()l r r S '+=π侧

(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体. (6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分. (7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体. 2. 空间几何体的三视图和直观图: (1)三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) (2)画三视图的原则:长对正,高齐平,宽相等. (3)直观图:斜二侧画法. ①在已知图形中取相互垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的'x 轴和'y 轴,两轴相交于点'O ,且使)135(45??='''∠或y O x ,它们确定的平面表示水平面. ②原来与x 轴平行的线段仍然与x 平行且长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 第三节 空间几何体的平行问题 1. 线线平行的判断: ①平行于同一条直线的两条直线互相平行。 ②平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ③如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 和交线平行。 l b a l b l a // //?b a // α b a α α ?b b a //?α //a ? b a a =?βαβα // b a //

相关主题
文本预览
相关文档 最新文档