当前位置:文档之家› 量子力学

量子力学

量子力学
量子力学

黑体辐射

[ C ]1.(基础训练2)下面四个图中,哪一个正确反映黑体单色辐出度M B λ(T )随λ 和T 的变化关系,已知T 2 > T 1. 【提示】(1)根据40()M T T σ=,0()M T 即曲线下的面积,所以随温度的升高而迅速增加。

(2)根据m T b λ=,峰值波长m λ随着T 的升高,向短波移动。

2、(基础训练14)测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =

7:11 .

【提示】11

755

.035.0,

1

22

1=

=

=

∴=m m m T T b T λλλ根据维恩位移定律:

3、(自测提高12)若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的

64 倍.

【提示】64

4)

2(4)2(P P )MS

P 2

4

2

41

24

=??=

==R

T

R T S T ππσ,

(总辐射功率表面积表面积

光电效应

[ D ]4.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:

(A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K .

【提示】设金属逸出功为A ;设频率为2ν 的单色光照射金属时,逸出光电子的最大动能为'K E ;则

k h E A ν=+

,2'k h E A ν=+,两式相减即可得出答案。

[ D ]5.(自测提高2)已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的

红限波长是5400 ?,那么入射光的波长是

(A) 5350 ?. (B) 5000 ?. (C) 4350 ?. (D) 3550 ?.

(A

(B )

(C )

(D

【提示】最大初动能

2

1 1.22

m m v eV =,红限波长0λ= 5400 ? →逸出功00

hc

A h νλ==

根据2

12

m h m v A ν=

+,得

2

12

m hc

hc

m v λ

λ=

+

→ 解出λ= 3550 ?

6、(基础训练12)光子波长为λ,则其能量=

c

h

λ

;动量的大小 =

h

λ

;质量=

h c λ

【提示】光子能量c

E h h

νλ

==,动量2

E E h h

p m c c c

c

c

νλ

==

=

=

=

质量2

2

E h h

m c

c

c νλ

=

=

=

(注意:因为已知波长,所以都必须用波长表示)

氢原子光谱

[ C ]7、(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是

(A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV .

【提示】赖曼系中最长波长的谱线,来自2

1

E

E →的跃迁,所以至少应使基态氢原子先吸收一个

光子的能量h ν跃迁到2E 能级,然后向下跃迁发出谱线。所以有

至少应提供的能量=121112

3313.610.22

4

4

E E E E E eV eV

-=

-=

=

?=

[ B ]8、(自测提高3)具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? (A) 1.51 eV . (B) 1.89 eV . (C) 2.16 eV . (D) 2.40 eV . 【提示】设氢原子吸收光子h ν后从2E 跃迁到m E ,则有1122

2

2

2

1113.62

2

m E E h E E eV m

m

ν=-=

-

=?

-

得m =

通过计算,发现四个选项中,仅当 1.89h eV ν=时,m 为整数(算得m=3),故选择(B ). 9、(基础训练15)欲使氢原子能发射巴耳末系中波长为4861.3 ?的谱线,最少要给基态氢原子提供

12.75__eV 的能量。(里德伯常量R =1.097×107 m -

1 )

【提示】从较高能级到n=2能级的跃迁形成的谱线称为巴耳末系。设4861.3 ?的谱线对应于2n E E →,则11212

2

2

2

112

2

n E E c

h h

E E E n

n

νλ

==-=

-

=?

-

,解得4n

=。所以至少应使基态氢原子获得能量从 E 1

跃迁到E 4,所以有 至少应提供的能量141112

151513.612.754

16

16

E E E E E eV eV =-=

-=

=

?=

10、(自测提高14)氢原子基态的电离能是 13.6 eV .电离能为+0.544 eV 的激发态氢原子,

其电子处在n =

5 的轨道上运动.

【提示】(1)基态电离能E 是指电子从基态激发到自由状态(E ∞=0)所需的能量。

∴E =1

1E E E =-∞=13.6eV

(2)+0.544 eV =n n E E E =-∞=

2

6.13n

eV ,可求出n=5

不确定关系

[

A ]11.(基础训练

8)设粒子运动的波函数图线分别如图

19-4(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?

【提示】根据动量的不确定关系:2

x x p ???≥ ,x ?越大,则x p ?越小,动量的精确度就越高。

康普顿散射

12、(基础训练13)康普顿散射中,当散射光子与入射光子方向成夹角φ = π时,散射光子的频率小得最多;当φ =

0 时,散射光子的频率与入射光子相同.

【提示】2

02sin , 2c c

?

λλλλλν

?=-==

当?π=时,max 2c λλ?=,波长增加最多,即频率小得最多;

当0?=时,m in 0λ?=,0λλ=,0νν=,即散射光子的频率与入射光子相同。

x

x (B

x (C x

(D

德布罗意波长

13、(基础训练18) 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ

=

3λc .

【提示】电子的动能:22k e E m c m c =-,电子的静止能量=2e m c

依题意,22

k

e E

m c m c

=-=2c m e ,2e m m =,即:e e m c v m m 212

=?

?

?

??-=

得:

2

112

=

?

?

? ??-c v ,c v 2

3=

,代入下式即可算出波长:

c e e c

m h

c v v m h mv

h p

h λλ3

33312

=

=

?

?

? ??-=

=

=

电子组态

[ C ]1.(基础训练

10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,

m s )可能取的值为

(A) (2,2,1,2

1-

). (B) (2,0,0,

2

1). (C) (2,1,-1,2

1-

). (D) (2,0,1,

2

1).

【提示】p 电子:l =1,对应的m l 可取-1、0、1, m s 可取2

1

或2

1-

2.(基础训练17)在主量子数n =2,自旋磁量子数2

1=

s m 的量子态中,能够填充的最大电子数是

4 .

【提示】主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如仅考虑自旋磁量子数2

1=

s m 的量子态,则能够填充的电子数为上述值的一半。

3.(自测提高16)有一种原子,在基态时n = 1和n = 2的主壳层都填满电子,3s 次壳层也填满电子,而3p 壳层只填充一半.这种原子的原子序数是 15 ,它在基态的电子组态为1s

2

2s 2 2p 6 3s 2

3p 3 .

4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子中电子的

状态:

(1) n =2,l = 1 ,m l = -1,2

1-

=s

m

(2) (2) n =2,l =0,m l = 0 ,2

1=

s

m

(3) n =2,l =1,m l = 0,m s =1

1 2

2

或-.

【提示】2

1;210;

1210±

±±±-的取值:,,,的取值:)(,,,的取值:S l m l m n l

激光

[ C ]5.(基础训练11)在激光器中利用光学谐振腔

(A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.

(D) 既不能提高激光束的方向性也不能提高其单色性.

6.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:(2)、(3)、

(4)、(5) . (1)自发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔.

电子自旋

[ D ]7.(自测提高7)直接证实了电子自旋存在的最早的实验之一是

(A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验.

隧道效应

[ C ]8.(自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,对

于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有

(A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D )ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. 【提示】隧道效应,三个区域找到粒子的概率都不为零。

x

O

U (x )

U 0

a

三. 计算题

【康普顿散射】14. (基础训练21)波长为λ0 = 0.500 ?的X 射线被静止的自由电子所散射,若散射线的波长变为λ = 0.522 ?,试求反冲电子的动能E K .

解:根据能量守恒:2

2

00

mc

h c

m h +=+νν

∴反冲电子获得动能:

2

02

c m mc

E K -=ννh h -=0λ

λc

h

c

h

-=0

16

1.6810

J

-=?

【氢原子光谱】15. (基础训练22)处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,

问此外来光的频率为多少?(里德伯常量R =1.097×107 m -1)

解:处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,则氢原子吸收该光子后最

高将被激发到3

n

=的能级,从而发出31λ、21λ、32λ三条谱线,于是

13111

2

83

9

E h E E E E ν=-=

-=

=12. 09eV

15

12.09 2.9210eV

v H z h

=

=?

【德布罗意波长】16.(自测提高20)质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少? (电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) 解:考虑相对论效应:

动能=22e m c m c -=12eU (1)

2

2

v

1c

m m e -=

(2)

由(1)、(2)式,可求出

2

c v 1?

?

?

??-和v ,代入下式即可求出波长

2

v 1v v

?

?

? ??-=

=

=

c m h m h p

h e λ=

)

2(2

1212c m eU eU hc

e +=3.71m

12

10

-?

若不用相对论计算:

则动能=21

v 2e m =12eU

v

e m h p

h =

=

'λ=

K

e E 2m h 12

2eU

m h e =

=3.88m

12

10

-?

相对误差:

λ

λλ-'=4.6﹪

【不确定关系】17.(自测提高25)一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s ) 解:(1)根据不确定关系式:2

???t E

得:t

E ?≥

?2 348

6.6310

2210

π--?=

??J 27

10

276.5-?=eV

8

10

297.3-?=

(2)根据光子能量与波长的关系λ

νc

h

h E ==,得波长为E

c h

=λ=3.67m 710-?;

由E

hc =λ,求导得:

2

d h c dE

E

λ=-

所以,波长的最小不确定量为

2

hc E E

λ?=

?()

34

827

15

2

19

6.6310

310

5.27610

3.56710

()

3.39 1.610m ----???=

??=???

【一维无限深势阱】9.(自测提高22)已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为 a x

n a x n π=

s i n 2

)(ψ , n = 1, 2, 3, … 试计算n = 1时,在 x 1 = a /4 →x 2 = 3a /4区间找到粒子的概率。

解:n = 1时,粒子在一维无限深方势阱中运动(势阱宽度为a )的波函数为

()s i n x

x a

ψπ=

( 0 < x < a ), 则:在 x 1 = a /4 →x 2 = 3a /4区间找到粒子的概率为:

2

3

2

4

4

2

sin()0.818

a

a

x x

dx dx

a a a

ππ

==

?

【氢原子径向概率分布】10.(自测提高24)已知氢原子的核外电子在1s态时其定态波函数为

a

r

a

/

3

100

e

π

1

-

=

ψ

式中

2

2

e

m

h

a

e

π

=

ε

.试求沿径向找到电子的概率为最大时的位置坐标值.

解:氢原子1s态的定态波函数为球对称的,在径向r r dr

→+区间找到电子的概率为:

22

100

4

=

w r dr

ψπ

2

2

-

r

a

w r e

即:

沿径向对w求极大值,

令:

22

2

2

2

()(2)0

--

==-=

r r

a a

dw d r

r e r e

dr dr a

得:

2

10

2

0.52910()

-

=?

e

h

r=a=m

m e

ε

π

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录 第三版序言 我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。 这里涉及到科学上的继承和创新的关系。“继往”中是一种手段,而目的只能是“开来”。 讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。 要真正贯彻启发式教学,教师有必要进行教学与科学研究。而教学研究既有教学法的研究,便更实质性的是教学内容的研究。从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。 量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观 从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18; 人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18; 康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21; 在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21; 微观粒子波粒二象性的准确含义:P29; 电子的双缝衍射实验对理解电子波为几率波的作用:P31 在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32; 经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32; 波函数归一化不影响概率分布:P32 多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。例如,两个粒子的体系,波函数刻画的是六维位形空间中的概率波。这个六维空间,只不过是标志一个具有6个自由度体系的坐标的抽象空间而已。 动量分布概率: 1 波包的频谱分析 具有一定波长的平面波可表示为: ()e x p ()k x i k x ψ= (A1.1) 波长2/k λπ=,其特点是是波幅(或强度)为常数.严格的平面波是不存在的,实际问题中碰到的都是波包,它们的强度只在空间有限区域不为0.例如,高斯波包 221()exp()2x a x ψ=- (A1.2) 其强度分布222()exp()x a x ψ=-,如图A.1所示.可以看出,波包主要集中在1 x a < 区域中. 所以波包宽度可近似估计为:

常州大学量子力学名词解释

1.黑体:一个物体能全部吸收投射在他上面的辐射而无反射,就称为黑体。 2.普朗克假设(黑体辐射提出的假设):黑体以hv为能量单位不连续的发射和吸收频率为v的辐射,而不是像经典理论所要求的那样可以连续地发射和吸收辐射能量。 3.三个实验说明了什么问题:黑体辐射,平衡时辐射能量密度按波长分布的曲线,其形状和能量只与黑体的绝对温度有关,而与空腔的形状与组成的物质无关。光电效应,证明了光的波动性。康普顿效应,证明了光的粒子性。 4.玻尔假设:定态假设,频率假设,量子化条件。 5.态叠加原理:设是体系的可能状态,那么这些态的线性叠加,也是体系的一个可能状态。 6.波函数的三个条件:有限性,连续新,导致可测量的单值性。 7.算符:是指作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 8.对易:有组成完全系的共同本征态。 9.表象:量子力学中态和力学量的具体表示方式。 10.弹性碰撞:一个粒子与另一个粒子碰撞过程中,有动能的交换,粒子内部状态并无改变。非弹性碰撞:碰撞中粒子内部状态有所改变(原子被激发或电离)。 11.泡利不相容原理:全同费米子体系中不可能有两个或两个以上的粒子同时处于完全相同的状态。 12.玻色子:由光子(自旋为1)、处于基态的氦原子(自旋为0)、a 粒子(自旋为0)以及其他自旋为0或为h的整数倍的粒子所组成的全同粒子体系的波函数是对称的,这类粒子服从玻色-爱因斯坦统计,被称为玻色子。费米子:由电子、质子、中子这些自旋为h/2的粒子以及其他自旋为h/2的奇数倍的粒子组成的全同粒子体系的波函数 是反对称的,这类粒子服从费米-狄拉克统计,被称为费米子。 13.塞曼效应:氢原子和类氢原子在外磁场中,其光谱线发生分裂的现象。 14.全同粒子:称质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。全同性原理:全同粒子所组成的体系中,两全同粒子相互代换不引起物质状态的改变。 15.厄米算符的性质:本征值为实数;量子力学中表示力学量的算符都是厄米算符;对于两任意函数和,如果算符满足,则称为厄米算符;如果为厄米算符。 16.薛定谔方程满足的条件:含时;线性的;不含有状态参量。

量子力学数学形式表述的由来和特点

量子力学数学形式表述的由来和特点 量子力学是用数学语言来调和两种对立的经典概念波和粒子应用到原子现象上描写同一微观客体的佯谬(表观矛盾)的。波概念的用场在于通过波动的各部分振幅的(线性)叠加引起加强削弱的所谓干涉效应来说明原子现象在空间时间上的强弱分布;粒子概念的用场在于说明原子过程的单个性特色。 尽管这两者在表观上是矛盾的,事实表明,两种概仿可借助作用量量子充当调停者的角色对应起来,写出如下两种等式: 普朗克(1900)——爱因斯坦(1905)——玻尔(1913)关系: 能量/h=频率; 爱因斯坦(1909)——德布罗意(1923)——薛定谔(1926)关系: 动量/h=波数 两式的左边由粒子概念组成,右边由波概念组成。象玻恩所说,等式本身就完全不合理。何以有这种对应到今仍是个谜。但是玻恩也认为,如果放弃物理学一向接受的决定论原理,这种等式就通过量子力学的建立而合理化了。 可以认为,为了解释原子现象在表观上的二得性,物理学家面临的问题是要把经典物理学作一个合理的推广,以便把作用量量子以合理的方式合并进去。这一困难任务终于通过引进合适的数学抽象完成了。完成的过程及其特点大致如下: 推导量子论的数学结构,不管用粒子图景还是用波图景,都靠两个来源:经验事实和玻尔的对应原理。但是,这种推导并不是数学意义上的推导,因为所得各方程本身就是所建立理论的假定。虽然这些假定看来很合理,最后的证明还得看它们的预言和实验符合得怎样。 (一)矩阵力学 1925——26年海森堡发起,随后经玻恩和约旦协助,从粒子类似出发,在“试图解开原子谜,必须只考虑可观察的数量”这个观念指导下,试图推出量子力学的数学结构。出发点仍是经典力学的数学结构,即哈密顿的正则运动方程。根据原子物理学中公认的经验事实(里德堡——里兹原子光谱线并合规则,分立的原子能量值的存在,玻尔频率关系),在对应原理的指引下,他们发出原子稳定态的理论要求电子坐标、动量及其函数都可用(厄米)矩阵来表示。这个稳定态理论构成量子力学的初始阶段,在其中分立能量值的存在是通过把多周期性振动这个经典运动固定下来而得到的。 他们不考虑原子内部是否有观察不到的电子轨道的存在,离开在空间时间上的客观过程这个观念,只用和光谱线联系的频率和振幅这两种直接可观测的数值来组成原子内部电子运动的力学量的表示,从而找到了能综合原子光谱线经验事实、确定原子稳定态的量子条件。这个条件相当于位置矩阵q和动量矩阵p的乘积次序不能随意对调的一个神秘方程,即所谓的对易关系: qp= - pq i 这个计算规则被认为反映着与q、p相应的测量操作的不可对易性。接受这个规则,稳定态力学性质,包括能量确定值和其他量的平均值,以及两稳定态之间量子跃迁过程发生的几率(相对次数)就都能推算出来,而不带任何任意性。这就是矩阵力学的功效。

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

量子力学引发的哲学争论

量子力学引发的哲学争论 哲学史上唯物论和唯心论的斗争,大都集中在关于物质的概念和物质与意识的关系这两个问题上。在20世纪的中叶,随着量子力学的兴起和发展,哲学上关于物质概念的问题的争论也随之变得激烈和尖锐,而这场哲学争论正是由量子力学的不确性定原理引出的。 不确定性原理是量子力学的一个基本原理。若通过位置和动量来确定物质的运动,在宏观世界中,根据经典力学,一个质点的位置和动量是可以同时确定的。而在微观世界里,根据量子力学的不确定性原理,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式 若进行实验测量,如果精确地测定粒子在某一时刻所处的位置,那么运动就会遭到破坏,以至于以后不可能重新找到该粒子。反之如果精确地测出其速度,那么它的位置图像就会模糊不清。除了坐标和动量,方位角和角动量,能量和时间等也都是成对的不确定量。 不确定性原理对于哲学上关于物质概念的思考和研究无疑是一次冲击和挑战。面对微观物质,当我们不能精确地描述出它的运动时,通过宏观世界所得出的物质概念是否还适用呢? 物理学家海森堡在提出不确定性原理后,又用哲学观点对这种现象进行了解释。他认为:量子论的出发点是将世界区分为“研究对象和世界的其余部分;这“世界的其余部分”,物质是客观存在的,而作为“研究对象”的部分(即微观客体的部分)的运动特性,主要依赖于科学仪器的作用,依赖于观察者的作用,由此,他提出了主客观不可分的哲学命题。 第一流物理学家的这种哲学观,在哲学界引起了轩然大波。许多学派纷纷发表了与海森堡相类似的哲学观点,其中最具代表性的是“物质的非物质化”的哲学观。美国哲学家汉生在《物质的非物质化》一文中认为:量子力学的理论表明“物质已经非物质化了”,牛顿可以通过精确测定的状态、点的形式、绝对固体性等,表示物质的性质,而电子并没有这种性质。量子理论排除了构成一个电子的粒子状态的协和概念的绝对可能性。对于电子,我们不能同时精确地说出它的位置和动量,这是“物质的非物质化”的证据。 辨证唯物主义哲学家们和物理学家中的唯物主义者们,对于这一争论自然不会袖手旁观。物理学家冯劳厄对“物质的非物质化”论有过严厉的批评,他认为,不仅是原子,甚至基本粒子也同外在世界的其他事物一样,具有完全的实在性。这场争论在日本的哲学界,反响也十分强烈。为了批判“物质的非物质化”这种唯心主义的哲学观,现代日本物理学界名流武谷三男通过发表《量子力学的观测问题》等文章,指出:“哲学家把在量子力学的观测中主观作用于客观的情况说成是引起不确定的原因是对这种情况的曲解。”武谷三男认为,引起不确定性原理的原因不在于“我”,而依然在于“客体的物”,他从如下两个方面对这种哲学观点进行了批判: 一、不确定性原理所描述的情况是客观存在的粒子本身所具有的特性在科学仪器 中的反映。 武谷三男认为,“不确定性原理所描述的关于电子的位置和速度不可能同时精 确地加以测量的情况,是电子本身具有波粒二象性这一客观存在的特征的一种 放映。在经典力学中,像太阳系行星的运动那样只要给出某一个物体处于某一 位置和朝着某一方向运动作为初始条件,就能够唯一地确定它以后的运动。然 而,当测量电子时,要说明它处于某一位置,由于电子是波动的,必须用波动 来表述所处的位置情况,为此就要把各种各样的波叠加起来,使波的振幅在某 一位置变大,而在其他位置则趋于零。这样一来,由于所叠加的各种波的运动 方向和运动速度各不相同,所以确定了它处于某一位置,同时便无法确定它的

(完整word版)量子力学名词解释全集

1.波粒二象性 : 一切微观粒子均具有波粒二象性(2分),满足νh E =(1分),λh P =(1分),其中E 为能量,ν为 频率,P 为动量,λ为波长(1分)。 2、测不准原理 : 微观粒子的波粒二象性决定了粒子的位置与动量不能同时准确测量(2分),其可表达为:2/P x x η≥??,2 /P y y η≥??,2/P z z η≥??(2分),式中η(或h )是决定何时使用量子力学处理问题的判据(1 分)。 3、定态波函数 : 在量子力学中,一类基本的问题是哈密顿算符不是时间的函数(2分),此时,波函数)t ,r (ρψ可写成r ρ函数和t 函数的乘积,称为定态波函数(3分)。 4、算符 使问题从一种状态变化为另一种状态的手段称为操作符或算符(2分),操作符可为走步、过程、规则、数学算子、运算符号或逻辑符号等(1分),简言之,算符是各种数学运算的集合(2分)。 5、隧道效应 在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒(3分),实际也正是如此(1分),这种现象称为隧道效应(1分)。 6、宇称 宇称是描述粒子在空间反演下变换性质的相乘性量子数,它只有两个值 +1和-1 (1分)。如果描述某一粒子的波函数在空间反演变换(r→-r)下改变符号,该粒子具有奇宇称(P =-1 )(1分),如果波函数在空间反演下保持不变,该粒子具有偶宇称(P =+1) (1分),简言之,波函数的奇偶性即宇称(2分)。 7、Pauli 不相容原理 自旋为半整数的粒子(费米子)所遵从的一条原理,简称泡利原理(1分)。它可表述为全同费米子体系中不可能有两个或两个以上的粒子同时处于相同的单粒子态(1分)。泡利原理又可表述为原子内不可能有两个或两个以上的电子具有完全相同的4个量子数n 、l 、ml 、ms ,该原理指出在原子中不能容纳运动状态完全相同的电子,即一个原子中不可能有电子层、电子亚层、电子云伸展方向和自旋方向完全相同的两个电子(3分)。 8、全同性原理: 全同粒子的不可区分性(1分)使得其组成的体系中,两全同粒子相互代换不引起物理状态的改变(4分)。 9、输运过程: 扩散(1分)、热传导(1分)、导电(1分)、粘滞现象(1分)(系统内有宏观相对运动,动量从高速区域向低速区域的传递过程)统称为输运过程,这是一个不可逆过程(1分) 10、选择定则: 偶极跃迁中角量子数与磁量子数(1分)需满足的选择定则为1±=?l (2分), 1 ,0±=?m (2分) 11、微扰理论 在量子力学中求近似解(1分)的一种方法,核心是先求解薛定谔方程(2分),再引入微小附加项来修正

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

量子力学名词解释

一、名词解释 1.波粒二象性 : 一切微观粒子均具有波粒二象性(2分),满足νh E =(1分),λh P =(1分),其中E 为能量,ν为频率,P 为动量,λ为波长(1分)。 2、测不准原理 : 微观粒子的波粒二象性决定了粒子的位置与动量不能同时准确测量(2分),其可表达为:2/P x x η≥??,2/P y y η≥??,2/P z z η≥??(2分),式中η(或h )是决定何时使用量子力学处理问题的判据(1分)。 3、定态波函数 : 在量子力学中,一类基本的问题是哈密顿算符不是时间的函数(2分),此时,波函数)t ,r (ρψ可写成r ρ 函数和t 函数的乘积,称为定态波函数(3分)。 4、算符 使问题从一种状态变化为另一种状态的手段称为操作符或算符(2分),操作符可为走步、过程、规则、数学算子、运算符号或逻辑符号等(1分),简言之,算符是各种数学运算的集合(2分)。 5、隧道效应 在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒(3分),实际也正是如此(1分),这种现象称为隧道效应(1分)。 6、宇称 宇称是描述粒子在空间反演下变换性质的相乘性量子数,它只有两个值 +1和-1 (1分)。如果描述某一粒子的波函数在空间反演变换(r→-r)下改变符号,该粒子具有奇宇称(P =-1 )(1分),如果波函数在空间反演下保持不变,该粒子具有偶宇称(P =+1) (1分),简言之,波函数的奇偶性即宇称(2分)。 7、Pauli 不相容原理 自旋为半整数的粒子(费米子)所遵从的一条原理,简称泡利原理(1分)。它可表述为全同费米子体系中不可能有两个或两个以上的粒子同时处于相同的单粒子态(1分)。泡利原理又可表述为原子内不可能有两个或两个以上的电子具有完全相同的4个量子数n 、l 、ml 、ms ,该原理指出在原子中不能容纳运动状态完全相同的电子,即一个原子中不可能有电子层、电子亚层、电子云伸展方向和自旋方向完全相同的两个电子(3分)。 8、全同性原理: 全同粒子的不可区分性(1分)使得其组成的体系中,两全同粒子相互代换不引起物理状态的改变(4分)。 9、输运过程: 扩散(1分)、热传导(1分)、导电(1分)、粘滞现象(1分)(系统内有宏观相对运动,动量从高速区域向低速区域的传递过程)统称为输运过程,这是一个不可逆过程(1分) 10、选择定则: 偶极跃迁中角量子数与磁量子数(1分)需满足的选择定则为1±=?l (2分),1 ,0±=?m (2分) 11、微扰理论 在量子力学中求近似解(1分)的一种方法,核心是先求解薛定谔方程(2分),再引入微小附加项来修正(2分)

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

戏剧名词解释

名词解释 1三一律——"三一律"是古典主义戏剧的艺术法则,要求戏剧创作在时间、地点和情节三者之间保持一致性,即要求一出戏所叙述的故事发生在一天(一昼夜)之内,地点在一个场景,情节服从于一个主题。莫里哀的喜剧《伪君子》就是按"三一律"写成的,全剧五幕,单线发展,情节发生在一个地点,即奥尔恭的家里;所描写的全部事件都在一昼夜之内发生;主题集中在揭露答尔丢失的伪善面目这一点上。古典主义戏剧艺术的实践表明,"三一律"在政治上符合君主专制政体的要求,在艺术上既体现了时间和空间方面高度简练、紧凑、集中等优点,但又存在人物性格单一化、类型化,戏剧结构上绝对化、程式化等弱点,最终束缚了戏剧艺术的发展,为后人所摒弃。 2 3 4 另有值 最大、 5. ???” 、“危机”, 还是“发现” 6 (1 (2 7 8 变与创造性的变有机结合起来所形成的规范。为所有演员遵循,也为观众所接受、熟悉 9梅兰芳(1894-1961)? 梅兰芳的艺术成就成为了中国戏曲艺术体系的代表和标志。他在唱、念、做、舞、化妆、服饰等方面进行创新,使中国古老戏曲在歌、舞、剧三结合形成了梅派艺术独创风格。把青衣、花旦、闺门旦、贴旦、刀马旦等旦角各行的唱腔和表演艺术全面地,有机地结合起来。创造了花旦这一新的行当,大大丰富了旦角唱腔的优美旋律,形成一个具有独特风采的艺术流派,世称梅派。他与程砚秋、尚小云、荀慧生并称“四大名旦”。 10斯坦尼斯拉夫斯基?? 1898年与聂米罗维奇-丹钦科创立莫斯科艺术剧院,他们联合执导的契诃夫名剧 《海鸥》获得轰动性成功,标志着一个新的现实主义戏剧流派的诞生。1922?~1924?年他写作了自传《我的艺术生活》,首次对自己的戏剧体系作了理论与实践相结合的研讨。1928年10月心脏病

量子力学基本原理

量子力学基本原理 量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。 状态函数 物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。(一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。 根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。 状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。 于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

量子力学练习题

量子力学练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为 λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量 E=kT 23 (k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n = ,相应的波函数 =)(x n ψ()a x a x n a n <<= 0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6 .132-=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() () +-'+'+∑≠0 020m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+∑≠000 2 0m m n n m mn n E E H ψψ, 其中微扰矩阵元 'mn H =()() ?'τψψd H n m 00?; 而 'nn H 表示的物理意义是 。该方法的适用条 件是 本征值, 。

量子力学的产生与发展

量子力学的产生与发展 量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。 量子的诞生 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。1900年德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hV为最小单位,一份一份交换的。普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式。量子论就这样随着二十世纪开始由伟大的物理学家普朗克把它带到我们这个世界来。虽然在围绕原子论的争论过程中,玻尔兹曼(1844—1966年)在反驳唯能论时说过“怎么能说能量就不像原子那样分立存在呢?”这样的话,马赫(1838—1916年)曾经表明化学运动不连续性的观点,但真正把能量不连续的概念引入物理学的是普朗克。因为能量不连续的概念与古典物理学格格不入,物理学界对它最初的反映是冷淡的。物理学家们只承认普朗克公式是同实验一致的经验公式,不承认他的理论性的量子假说。普朗克本人也惴惴不安,因为他的量子假设是迫不得已的“孤注一掷的举动”。他本想在最后的结果中令h→0,但却发现根本办不到。他其后多年试图把量子假说纳入古典物理学框架之内,取消能量的不连续性,但从未成功。只有爱因斯坦最早认识到普朗克能量子概念在物理学中的革命意义。

著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 量子的青年时代 杂乱的数字以及有趣的台阶想法 从光谱学中,我们知道任何元素都产生特定的唯一谱线。这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了:ν=R(1/2^2 - 1/n^2) 1913年丹麦物理学家玻尔疑惑于卢瑟福原子行星模型的不稳定,建了一所“诺贝尔奖幼儿园”的卢瑟福向他推荐了这个公式。在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。一个大胆的想法在玻尔的脑中浮现出来:如同具有一定势能的人从某一层台阶上跳下来一样。台阶数“必须”是整数,就是我们的量子化条件。原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定

第2套量子力学自测题

量子力学自测题(2) 一、填空题(本题20分) 1.在量子力学中,体系的量子态用Hilbert 空间中的 来描述,而力学量用 描述。力学量算符必为 算符,以保证其 为实数。当对体系进行某一力学量的测量时,测量结果一般来说是不确定的。测量结果的不确定性来源于 。 2.在量子力学中,一个力学量是否是守恒量只决定于 的性质,也就是说,决定于该力学量是否与体系的 对易,而与体系的 无关。一个力学量是否具有确定值,只决定于体系的 ,也就是说,决定于体系是否处于该力学量的 ,无论该力学量是否守恒量。 二、(本题15分) 1.设全同二粒子的体系的Hamilton 量为H ?(1,2,),波函数为ψ(1,2,),试证明 交换算符12 ?P 是一个守恒量。 2.设U ?是一个幺正算符,求证+?=U dt U d i H ??? 是厄米算符。 3.设y σ为Pauli 矩阵, (1)求证:θσθθσsin cos y i i e y += (2)试求:y i Tre θσ 三、(本题10分) 求证:z y x xyz ++=)(ψ是角动量平方算符2?l 的本征值为2 2 的本征函数。 四、(本题15分) 设一量子体系处于用波函数)cos sin (41 ),(θθπ?θψ?+=i e 所描述的量子态。 求:(1)在该态下,z l ?的可能测值和各个值出现的几率。 (2)z l ?的平均值。 如有必要可利用, θπcos 4310=Y ,?θπ i e Y ±±=sin 8311 。

五、(本题20分) 已知,在一维无限深方势阱中运动粒子的能量本征值和本征函数分别为 22 222m a n E n π=,a x n a n πψsin 2=, (n=1,2,3…) 设粒子受到微扰: ???????-='),(2,2)(?x a a k x a k x H a x a a x <<<<220 求基态(n=1)能量的一级近似值。 如有必要,可利用积分公式? +=y y y ydy y sin cos cos 。 六、(本题20分) 设),3,2,1( =n n 表示一维谐振子的能量本征态,且已知 ??????-+++= 121211n n n n n x α, ωαm = (1)求矩阵元n x m 2。 (2)设该谐振子在t=0时处于基态0,从t>0开始受微扰kt e x H 22-='的作用。 求:经充分长时时)(∞→t 以后体系跃迁到2态的几率。

相关主题
文本预览
相关文档 最新文档