当前位置:文档之家› 高速铁路路基沉降控制技术

高速铁路路基沉降控制技术

高速铁路路基沉降控制技术
高速铁路路基沉降控制技术

高速铁路路基沉降控制技术

李燕山

高速铁路路基沉降控制技术

摘要

高速铁路代表了世界铁路现代化发展的大趋势,是21世纪交通运输的重大成果,是人类的共同财富。随着经济的迅猛发展,交通运输需求激增,我国铁路客运专线建设已经进入一个高速发展的时期,由于高速铁路运行速度快、技术标准高、对路基的要求严格,控制路基变形沉降已经成为客运专线路基的最大特点。路基变形最明显、危害最大的问题是路基沉降。路基沉降控制是一个涉及因素较多、具有较大不确定性的工程难题。

路基沉降包括路基施工沉降和工后沉降,工后沉降尤其发生几率大、危害严重。本论文从黄土的性质和特性,路基沉降的原因、危害,控制路基沉降的措施、路基工后沉降的机理,控制路基工后沉降的必要性、步骤、措施、各种措施的特点,路基沉降计算、监测等方面分析了路基沉降。

关键字:黄土路基工后沉降控制方式沉降计算监测

第1章绪论

1.1 铁路路基

铁路路基是经过开挖或填筑形成的直接支撑轨道、满足轨道铺设和运营条件而修建的土工结构物,是铁道工程的重要组成部分。它承受着轨道及机车车辆的静荷载和动荷载,并将荷载向地基深处传递扩散,因此路基应具有足够的强度和稳定型,应能抵抗自然因素的破坏而不至于产生有害变形【1】。

1.1.1 我国铁路路基现状

长期以来,我国新建铁路没有把路基当成土工结构来对待,而普遍冠名为土石方。在“重桥隧,轻路基,重土石方数量,轻质量”的倾向下,路基翻浆冒泥、下沉、边坡坍滑、滑坡等病害经常发生,使新建铁路交付运营多年仍不能达到设计速度与质量,经济效益与社会效益较差。

运营铁路路基技术状态不佳,强度低,稳定性差,严重威胁铁路运输和安全,已成为铁路运输的主要薄弱环节。如今,全国铁路网已相继完成四次提速,开发了一批最高运行速度为140~160KM/h的“快速列车”。运营时速为200KM的秦沈客运专线的建成通车,使我国铁路路基设计施工水平有了较大幅度的提高,极大地促进了路基工程的进步。

1.1.2 国外铁路路基现状

国外铁路发展的方向是重载及高速铁路。发展重载铁路(250~360KN)的国家有美国、加拿大、澳大利亚、俄罗斯等;发展高速铁路的国家有法国、日本、德国等。这些国家制订了较高的路基标准和严格的施工工艺。其特点如下:

(1)结合路基工程规定了详细的岩土分类,要求进行详细地调查,为设计、施工及养护提供必须的依据资料。

(2)加强了轨道基础的路基机床部分,包括路堤、路堑及不填不挖地段,特别是对机床表层的材料(日本新干线要求设置加强机床,很多国家设置基层或防护层、垫层)有严格条件并规定了强度要求。

(3)对路堤各部分的填土规定了相应的填料标准,填土质量标准要求较高。

(4)为控制路基发生过大的下沉,对路堤填土提出了规定及处理要求。

(5)加强路基的排水系统、边坡和灾害的防护【1】。

1.2 黄土

通常将具有以下特性的土称为黄土;颜色以黄色、褐黄色为主,有时呈灰黄色;颗粒组成以粉粒(0.05~0.005mm)为主,含量一般在60%以上;有肉眼可见的大孔隙、较大孔隙,一般在1.0mm左右;富含碳酸盐;垂直节理发育。公路工程

中,根据黄土沉积年代不同,可将黄土分为新黄土(如马兰黄土Q

3、Q

4

)、老黄土(离

石黄土Q1

2、Q2

2

)、红色黄土(午城黄土Q

1

)三类;根据黄土的湿陷性又分为湿陷性

黄土和非湿陷性黄土。

1.2.1 黄土的颗粒组成会及结构

黄土的颗粒组成以粉粒为主,其含量可达50%以上,其中粗粉粒(0.05~0.01mm)含量大于细粉粒(0.01~0.005mm)含量。黄土中的粘粒、细粉粒和腐殖质胶体,大部分被胶结成集粒或浮在砂粒及粗粉粒的表面,或聚集在大颗粒间的接触点处。黄土中的粉粒和集粒共同构成了支承结构的骨架,较大的砂粒“浸”在结构体中由于其排列比较疏松,接触连接点少,构成了一定数量的架空孔在结构体中,而在接触连接处没有或只有少量的胶结物质。常见的胶结物质有聚集在连

接点处的粘粒,易溶盐及沉积在该处的CaCO

3、MgCO

3

等。研究表明,黄土的粉粒

含量越大,其孔隙比越大,干密度越小,其湿陷性越明显。粘粒的存在对湿陷性有抑制作用,当粘粒含量大于30%时,湿陷性几乎减弱到不复存在,当然这与粘粒的结构、性质及分布有关。在颗粒大小中,小于0.01mm的颗粒对湿陷性的影响更加明显。

1.2.2 黄土的多孔性

黄土中的孔隙,呈垂直或倾斜的管状,以垂直为主,上、下贯通,其内壁附有白色的胶结物,一般为CaCO

3

,这种胶结对黄土起着加固作用。一般将黄土的孔隙分为以下三类:①大孔隙,直径约0.5~1.Omm,肉眼就可辩识;②细孔隙,是架空结构中大颗粒的粒间孔隙,肉眼看不见,可在放大镜下观察到:③毛细孔隙,由大颗粒与附在其表面上的小颗粒所形成的粒间孔隙,肉眼更看不见。由这三种孔隙形成了黄土的高孔隙性,故又将黄土称为“大孔隙土”。黄土孔隙率一般在35%~60%之间,有沿着深度逐渐减小的趋势;在地理位置上,自东向西,自南向北,黄土孔隙率有增大的规律。一般认为黄土的孔隙是引起黄土湿陷的主要原因,但有资料表明压实黄土仍存在大孔隙,也具有湿陷性,表明这不是黄土湿陷的根本原因,但它为黄土湿陷提供了足够的空间【6】。

1.2.3 黄土的湿陷性与变形特性

湿陷性是指土在自重或附加应力与自重共同作用下受水浸湿后产生急剧而大量的下沉。浸水湿陷只在士体自重作用下产生的黄土称为自重湿陷性黄土,而浸水湿陷在土体自重与附加应力共同下产生的黄土称为非自重湿陷性黄土。根据自重湿陷量与总湿陷量可对湿陷性场地进行湿陷等级与湿陷类型划分。非自重湿陷性场地的湿陷起始压力一般大于土的饱和自重压力,湿陷敏感性较弱,湿陷性事故较少,自重湿陷性场地的湿陷起始压力小于其上覆土的饱和自重压力,湿陷敏感性较强,湿陷性事故多。

黄土与其它粘土的区别在于黄土对含水量的变化极为敏感,含水量的高低严重影响土的湿陷性和承载力的高低,含水量低时,土的湿陷性强烈,但承载力却很高,随着含水量的增加,土的湿陷性逐渐减弱,承载力随之急剧下降,而压缩性却得以提高。根据大量土样的试验资料统计结果表明,黄土的湿陷性与饱和度成直线反比关系,见表l-l,即饱和度愈低,土的湿陷性愈强,土的湿陷性随着饱和度的增大而降低。

表1-1 饱和度Sr与湿陷系数6s的关系

饱和度

S r(%) 湿陷系数δs范围湿陷系数δs中值<30 0.09~0.137 0.120

30~40 0.04~0.118 0.086

40~50 0.02~0.100 0.060

50~60 <0.02~0.084 0.04

60~70 0~0.060 0.03

>70 0~0.03 δ

s>0.015者只占3.4%黄土的压缩性反映黄土地基在外荷载作用下产生压缩变形的大小,主要取决于土的密实程度和含水量,三者的关系见表l-2。

表1-2 黄土变形模量与含水量和孔隙比的关系

土类含水量(%)孔隙率(%)变形模量(Mpa)

黄土10~17 47~48 22.5~32.0 6~8 46~48 22.0~28.0 8~14 47~49 19.0~22.0

黄土状粉质12~18 43~45 10.0~40.0 22~25 45~48 8.0~1.5

1.2.4 黄土的结构性问题

结构性应该是描述土物理本质中比粒度、密度、湿度重要的一个侧面。它的重要性早为太沙基所指出,也早为一系列学者所重视。如果说结构性对任何土都是重要的,那么,对黄土就更是不可避免的,具有更大的意义。研究黄土的结构性及其在力和水作用下的变化规律对整个土力学研究的对象都会有很大的辐射作用。

目前,将黄土受力、水作用后结构由损伤到破坏作定量描述的固体力学方法,因其可以回避在寻求独立表示土结构性参数上的困难,使结构性关系的建立出现了新的跳跃。但它仍然遇到了建立不同湿密状念土在受到外力作用过程中损伤变量正确表述的困难.显然,如果能够找到一个能合理反映土的结构性及其随水与力的作用而变化的土结构性参数,无疑会使问题的解决更加直观、更加灵活,会使土力学的参数体系更加完善.文献中关于综合结构势这一新指标的提出及对其合理性、灵敏性、稳定性与普遍性的检验的相关研究表明:

(1)黄土的结构可视为一个由单粒、集粒或凝块等骨架单元共同形成的空间结构体系.它的单元形态(单粒的矿物碎屑与集粒或凝块)确定了力的传递性能和土的变形性质,它的连接方式(点接触、面接触)确定了土的结构强度,它的排列方式(大孔隙、架空孔隙、粒间孔隙)确定了土的稳定性.单粒点接触、架空孔隙占优势的结构,湿陷性大;集粒或凝块,面接触、粒间孔隙占优势的结构,湿陷性小.

(2)黄土结构性的研究,应既注意揭示土颗粒排列的几何特征(以孔隙分布特征最为敏感),又注意揭示土颗粒联结(物理的和化学的,而以化学的为最敏感)的力学特征,同时将结构与组成相结合,探讨黄土的非均质性,各向异性.

(3)从黄土力学的观点来看,结构性研究的根本目的在于揭示结构性对土力学行为的影响及内在联系,因此,将土的微观结构与宏观力学行为相结合是一条正确的研究途径.

(4)黄土的结构性问题在其结构联结没有遭到破坏以前表现为它维持结构可稳性的能力,它和颗粒联结的特性与稳定性有关;在结构联结遭到破坏以后表现为结构可变性的能力,它和颗粒的排列特性与均匀性有关.

1.2.5 压实黄土的工程特性研究现状

1.2.5.1 压实黄土的湿陷性

经过对原状土和压实土的湿陷性试验,得到:

(1)湿陷性黄土经过压实后,如填筑含水量较低,填筑干密度较小时,仍具

有明显的湿陷性,并具有以下特征:①压实黄土与原状黄土的含水量和干密度都相同时,在较大的压力范围内,压实黄土的湿陷性要比原状黄土的大②压实黄土的湿陷性,随填筑含水量的减小而增大,反之,随填筑含水量的增大而减小;③即使压实黄土的填筑干密度较大,而含水量都较低时,仍具有一定的湿陷性,并在较大的压力范围内随压力的增加而增大.

(2)压实黄土填筑含水量不应低于最优含水量的2~3倍,同时要以最大干密度来控制施工质量,否则将会在工程运营期间受水浸湿后出现不同程度的湿陷变形,进而危及工程的正常使用。

1.2.5.2 压实黄土的压缩性质

压实黄土的压缩性质,也用土的压缩系数、压缩模量、固结系数等指标表示,在室内用压缩仪测定.根据有关资料表明,西北黄土在击实饱和情况下,当垂直压

力为0.1~O.47MPa时,其压缩系数平均值介于(0.0137~0.0199)×10-5Pa1 之间,为中等压缩性土,其平均压缩模量介于11.18~24.2MPa之间.当垂直压力为0.4~1.6MPa时,其平均压缩系数为(0.0057~0.0175)×10-5Pa-1之间,多数为低压缩特性,其压缩模量介于42.44~23.67MPa之问,平均固结系数介于1.092×10-1~5.50×10-3㎝2/s之间。

第2章路基沉降

2.1 路基沉降

路基裸露在自然界中,整个路基经常受到自重、列车荷载和各种自然因素的作用。由于水、温度和各种荷载的作用,路基的各部分将产生可恢复和不可恢复的变形,那些不能恢复的变形,将引起路基标高和边坡坡度、形状的改变,甚至造成土体位移和路基横断面几何形状的改变,危及路基及其各组成部分的完整和稳定,形成路基的危害

2.1.1 高速铁路路基沉降特性分析的研究现状

铁路路基沉降变形主要包含运营阶段行车引起的基床累积下沉,列车行驶中路基面的弹性变形,路基本体填土及地基的压密下沉三个方面。大量的调查表明,路基沉降是由土性、压实度、饱和度、环境和外载等多方面因素综合作用的结果,但主要是由路基本身和地基的排水固结变形引起的。地基的沉降变形与地基土的性质和地基处理方法有关,而路基本体的变形通常与填料的性质、填料含水量和压实系数有关,地基的沉降变形直接影响到路基的变形。基床累积下沉是由列车通过道床传递到基床面的动荷载引起的,主要发生在基床部位,特别是基床表层。设计时若能限制列车荷载在基床表面产生的动应力在基床填料的临界动应力以内,则累积下沉量在经过一段时间行车后(例如一年)能够逐渐趋于稳定而不会继续发展的。

2.1.2 路基沉降的原因

2.1.2.1 路基填土压实度不足

由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基土体压实度不足的主要原因有以下几点:

(1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其拼接处也会产生压实度不足的情况。

(2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路基压实度达不到规范要求。

(3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。

(4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存

在压实度不足问题,对于较高的填方路基,通常都要做相应的处治。

填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和,在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面:①车载,尤其超载情况;②含水量变化造成土体容重的改变;③地下水位升降而导致浮力作用改变;④土体饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土体发生压缩变形。

土体压实度不足还会导致填土路基的侧向变形。目前采用的地基沉降计算方法是假定侧向完全受限,仅有竖向变形,实际路基土中存在有侧向变形,这种侧向变形会引起沉降。

2.1.2.2 路堤填料不均匀,控制不当

在公路施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路堑、隧道掘进产生的方法,这些填料性质差异大、级配也相差很远。一方面,在施工过程中,如果分层碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长期作用下,回填料会产生不协调沉降变形,路面会产生局部沉陷,刚性路面还可能产生裂纹。另一方面,由于回填料的性质不一样,特别是有的回填料具有膨胀性,在路基排水系统局部失效后,水的渗入会使路面局部隆起,影响行车舒适度,严重的会使路面破坏。

控制不当体现在:(1)选用了稳定性较差的路堤填料,如采用高液限粘土、粉质土或使用淤泥、腐殖质含量较高的土料填筑路堤,会使路堤产生整段或局部的变形。(2)采用不同土质填筑路堤时,因土的性质不同如填筑方法不当,碾压成型后易造成不均匀性沉降。

2.1.2.3 地下水的影响

在地下水的交替作用下,路基土体内含水量反复变化,土体容重在一定范围内波动,更为重要的是由毛细管张力引起的负孔隙水压力可以达到相当的数值,再加上水的软化、润滑效应,可以使土体产生沉降变形。路基或地基中地下水的动态特征对路基不均匀沉降影响很大,路堤及其地基中的地下水主要补给来源有3种类型,即地下水侧向补给、降雨补给、地表水侧向补给。其动态变化及潜蚀作用影响到土体中的有效应力分布、土体的结构特征和土体强度从而导致路基的不均匀沉降。

2.2 路基强度高且刚度大以及均匀性要求高

列车速度越高,要求路基的强度越高、刚度越大,弹性变形越小。但是路基刚度过大,会使列车振动加大而不能平稳运行,路基刚度的不均匀则会给轨道造

成动态不平顺。研究表明:由刚度变化引起的列车振动与速度的平方成正比。因

此,列车运行速度越高,要求路基的刚度越大、弹性变形小,在线路纵向做到刚

度均匀、变化缓慢,不允许刚度突变。客运专线的路基基床厚度、填料要求、压

实标准以及检测方法等要比铁路I 级干线的要求高得多,对路基的填筑质量,引

入了30K 、2v E 、vd E 等多项检测指标进行联合控制【8】。

2.3 路基不均匀沉降的影响和危害

2.3.1 路基不均匀沉降对铺轨施工的影响

路基不均匀沉降会增加施工难度和施工强度,在铺轨时需要再度调整路基整

体的高度使其达到统一,因扣减可调整量很小并要预先填高一定量为工后沉降留

有空间以便达到设计标高,还要考虑未来行车后各不同时间段各路段不同土质以

及路桥过渡段不同沉降量。

2.3.2 路基对称将对高铁运营的危害

路基是路面的基础,路基不均匀沉降必然会引起路面的不平整,导致路面产

生许多病害,主要表现为坑凹、起拱、波浪、接缝台阶、碾压车辙、桥头或涵洞

两端路面沉降、桥梁伸缩缝的跳车等,破坏了线路平顺通畅,不仅难以满足客运

专线高速行驶的要求,而且还会加大运输成本,增加运输时间,增加养护维修费

用,减少使用寿命,降低社会经济效益,降低旅客舒适度,危及行车安全等。

2.4 客运专线无砟轨道路基的填料要求

针对快速铁路对填料及压实标准的高要求,一方面要在施工中积累资料,同

时需要开展大量的室内外试验研究工作,研究制定填料适用性试验方法与判别标

准,建立一套适合我国地域特点,适用于路基设计,施工的填料分类。

由于地域不同,路基填料也千差万别,这就要求在勘测设计阶段和施工前对

土源进行详细判别。工程实践表明,采用优质的填料可以减少路基的后期沉降,

且有较高的安全储备,能保证路基稳定。国内外对高速铁路的路基沉降观测结果

也表明,采用级配良好的粗颗粒填料可大大减少路堤的后期沉降,因此,只要能

满足上述要求者才可作为高速铁路路堤填料。铁路路基填料的分类主要依据土类

和小于0.075mm 细颗粒含量两个指标来划分的,并考虑与压实要求相关性质和适

用条件分成A 、B 、C 、D 、E 五个组,如表2-1所示。其中,D 组为高液限粉土、粉

质粘土、粘土,很少用作填料:E 组为有机土类,不能作为填料。

2-1 我国铁路路基填料分类组别

填料A组B组C组

碎石类级配良好的碎石、含

土碎石

级配不好的碎石、含

土碎石,细粒含量为

15%-30%的土质碎

细粒含量大于30%的

土质碎石

砾石类级配良好的粗圆砾、

粗角砾、细圆砾、细

角砾,级配良好的含

土粗圆砾、含土粗角

砾、含土细圆砾、含

土细角砾

级配不好的粗圆砾、

粗角砾、细圆砾、细

角砾,级配不好的含

土粗圆砾、含土粗角

砾、含土细圆砾、含

土细角砾、细粒含量

为15%-30%的土质粗

圆砾、土质粗角砾、

土质细圆砾、土质细

角砾

细粒含量大于15‰

30%的土质粗圆砾、

土质粗角砾、土质细

圆砾、土质细角砾

砂类土级配良好砾砂、粗砂、

中砂,含土砾砂、含

土粗砂、含土中砂

级配良好细砂,级配

不好的砾砂、粗砂、

中砂、细粒含量大于

15%的含土砾砂,含

土中砂,含土粗砂

级配不好的细砂,含

土细砂,粉砂

细粒土低液限粉土,粉质黏

土,黏土

路基填料和压实质量也是控制路基沉降的一个方面,填料选择和压实质量控制不好,将会加大路基的工后沉降或路基与结构物之间的不均匀沉降。国内有关客运专线及高速铁路的规范已对无砟轨道路基填料及压实标准进行了严格的限定:基床表层采用级配碎石,基床底层采用A、B组填料或改良土;基床以下的路堤应优先选用A、B组填料和C组的块石、碎石、砾石类填料,当选用C组细粒土填料时应根据土源性质进行改良后填筑。设计施工中应严格限制填料粒径,特别是A、B组填料,个别线在施工过程中反映填料粒径过大(但满足规范要求的基床底层不大于10cm,基床以下不大于15cm),填料难以达到压实标准,建议基床底层填料粒径不大于5cm,基床以下不大于10cm作为控制标准。

沿线土质较差地段宜首选远运粗粒土填筑路基,其次是物理改良和级配改良.应慎用少用化学改良土,化学改良土从经济效应、工期效应、环保效应等方面考虑都不宜大量采用,且填筑质量难以保证,化学改良土的水稳定性对路基本体压密沉降的影响程度很难预见。

2.5 客运专线无砟轨道路基填筑的压实标准

铁路路基压实质量是保持线路稳定与平顺,保证列车能高速、安全运行的重

要条件,而控制和检测压实质量的标准、方法和设备,则是保证压实质量的重要措施。客运专线铁路路基质量检测参数主要包括地基系数30K ,动态模量vd E ,空隙率n(或压实系数K),变形模量2V E 四项指标。空隙率n 是土体中空隙体积与土的三相体积的比值,而压实系数K 是指工地碾压时达到的干容重与相应的击实试验得到的最大干容重之比,即相对理论压实的比例,均反映土体的松密程度;地基系数30K :是表示土体表面在平面压力作用下产生的可压缩性的大小,是我国原有铁路规范对路基压实质量的强度检测指标;变形模量2v E 是通过圆形承载板和加载装置对地面进行第一次加载和卸载后,再进行第二次加载,测得的应力—位移曲线上0.3max 0σ与0.7max 0σ之间的位移割线斜率确定,用来分析土体的变形性质和承载能力;动态变形模量vd E 是指土体在一定大小的竖向冲击力s F 和冲击时间t s 作用下抵抗变形能力的参数,可直接用于评判路基的压实质量。

虽然地基系数值30K 是反映路基土强度及变形关系的参数,但试验的荷载—

沉降曲线是一次加载得出的,其沉降包括了填料的弹性变形和塑性变形。计算变形模量30K 的荷载-沉降曲线是在逐级加载后,逐级卸载,再二次加载得出,可认为其沉降(变形)消除了填料的塑性变形,测试结果离散性小,更能反映路基土的真实强度,比地基系数30K 更科学、更合理。静态变形模量2V E 和地基系数30

K 都是采用小于300mm 的静态平板载荷试验仪,通过在压实填土表面做静压试验测得,二者反映的都是静态应力作用下土体抵抗变形的能力,而铁路路基承受的是列车运行时产生的动荷载,采用vd E 可以有效地反映列车在高速运行条件下产生的动应力对路基的真实作用状况,是客运专线路基质量检测的发展方向。表2-2是客运专线路基填筑质量检测参数30K 、2v E :vd E 与三项指标的对比情况。

表2-2 30K 、2v E 与vd E 三项指标的对比

项目

30K 2v E vd E 载荷板直径

300㎜ 300㎜ 300㎜ 预加载

0.01MPa (以前0.035MPa ) 第二次加载 三次冲击荷载 与地面接触

耦合

一般 好 差 加载等级 0.04MPa 不少于6级 动态施加脉冲

宽度18ms

项目 30K

2v E vd E 加载控制 当1min 的沉降量不大于该级

荷载沉降量的1% 时加下一级

荷载

120s 后加下一级荷载 最大荷载或终止试验加载的标准 总沉降量超过1.25㎜ 或荷载

强度超过估计的现场实际最

大接触压力,或达到地基屈服

点 0.5MPa 或沉降大于5㎜ 7.07KN

计算公式 25

.1/30s K σ=s σ为s -σ 曲线上

s=1.25㎜所对应的荷载 E v2=0.225/(1α+max 02σα) max 0σ为最大平均标准应力,1α,2α为待定系数 vd E =22.5/s,s

为实测荷载板下沉幅值

2.6 客运专线无砟轨道路基沉降的控制理念

在自重(包括轨道结构)和列车荷载的长期作用下,铁路路基避免不了会产生

一定的下沉变形,铁路路基沉降组成及其相互关系如图2-1所示。从时间而言,

路基沉降可分为路基在填筑过程中至竣工验收前所产生的沉降,以及路基在铺轨

完成后所产生的沉降即所谓工后下沉。路基施工沉降是在路基施工过程中产生的

沉降,不会影响实际的工程实施,因为总要填筑到设计标高后,才会进行铺轨工

程的施工;工后沉降是指在铺轨工程全部结束后,整个路基结构物产生的沉降量,

即为路基最终沉降量与铺轨完成时已有沉降量之差。由于工后沉降是指铺设无砟

轨道后出现的,因而不能通过路基工程本身加以克服的沉降,将会对后期的运营

产生较大的影响,是路基沉降的重点控制对象。

通常而言,铁路路基工后沉降一般由三部分组成:(1)路基填土在自重及上

部荷载作用下产生的压密沉降; (2)路基基床在动荷载作用下的弹性变形和累积

塑性变形; (3)地基在轨道、路堤自重及列车作用下的残余沉降。第一部分沉降

与路堤填料和压实质量有密切关系,国外高速铁路的经验和实测资料表明,路堤

填土压实压密沉降主要是与路基填筑施工的压实密度相关,该部分沉降一般在路

堤竣工后一年左右时间内完成,若施工组织安排合理,并有一定的放置工期,路

基本体的压密沉降可不计入工后沉降;第二部分沉降与列车轴重、运行密度、轨

道结构以及基床表层质量有关,由于高速铁路对路基基床结构提出了特殊要求,

在列车动荷载作用下一般小于5mm ;第三部分是工后沉降的主要组成部分,

特别是当地基为软弱粘性土时,沉降量大,完成时间长,如果不采取有效的控制措施,下沉量高达数十厘米,时间长达数十年,因此控制路基沉降主要是控制地基的工后沉降【8】。

图2-1铁路路基沉降组成及其相互关系

2.7 客运专线无砟轨道路基沉降的控制要求

客运专线路基作为无砟轨道结构的基础,对路基的沉降变形非常敏感,要求沉降控制在非常小的范围内。我国拟建的客运专线无砟轨道在汲取国外沉降控制经验的基础上,围绕线路运营、结构允许变形,从路基竣工后扣件可调整的总沉降量,20m结构长度范围内的不均匀沉降、路基与桥涵之间差异沉降形成的错台,以及轨道结构单元之间形成的折角等多方面对路基变形都作出了严格规定,如表2-3、表2-4。

表2-3 工后沉降及沉降差控制标准

一般情况允许工后

沉降

均匀地基长

≥20m

允许工后沉降

不均匀沉降错台差异沉降折角

15

≤㎜≤30㎜m

mm20

20≥5mm

1000 1

<

表2-4 路基工后沉降控制标准

设计速度km·h-1轨道结构类型一般地段工后沉

降量/mm

过渡段工后沉

降量/mm

沉降速率(mm

/a)

250 有砟轨道100 50 30 300/350 有砟轨道50 30 20

250 /300/

350 无砟轨道

工后沉降≯l5mm;长度大于20m沉降比较均匀路基,

工后沉降量≯30mm,且R sh≥0.4V sj。

路桥、路隧间差异沉降≯5 m,折角≯1/1000

第3章路基沉降的控制

客运专线路基沉降控制的主要目的是控制路基的工后沉降,以确保高速列车的行车安全,尽量满足旅客对舒适度的要求,并减少日常维修工作。

3.1 路基各种处理措施效果评价

(1)垫层法

垫层法是以灰土或素土做成垫层的处理方法,具有因地制宜、就地取材和施工简便等特点,使用较为广泛.垫层施工时,应先将处理的湿陷性土挖出,然后利用挖出的粘性土或其他粘性土作为土料,经过筛分后,在最佳含水量的状态下,将其分层回填夯实,单层最大铺设厚度不得大于30cm。

(2)强夯法

强夯法是一种适应性很强,既经济又简便的地基加固手段.由于处理效果显著,成本低,已成为处理湿陷性地基广泛采用的一种方法.一般采用l00~200KN 重锤,10~20m落距,锤底直径为2.3~3.0m,锤底静压力值为25~40kPa,湿陷性土层被消除的厚度可达3~6m.夯点一般按正方形或梅花形网格排列,间距根据试夯时单点的侧向影响范围确定。湿陷性黄土经强夯后,其物理力学性质发生很大变化,土的结构也发生了变化;根据强夯前后各点的干容重可确定对应的压实系数,在夯点中心以下0.5~1.0m深度内土体密实度相对于1.0~2.0m深度小,一般在夯点中心以下1.0~2.0m深度内土体密实度最大,在大部分区域,土的物理力学性质变化较大,其压缩性由夯前的高压缩性变为夯后的低压缩性,干容重由夯前12.8~13.9kN/m3增加到夯后16.4~17.2kN/m3,提高了23.7~28.1%;孔隙比也显著降低,由夯前0.967~1.126降为夯后0.570~0.671,降低了40.4~41.1%;承载力由夯前183~189kPa增加到夯后的266~328kPa,提高了45.4~73.5%.湿陷性消除效果的分析可知,天然状态下黄土的湿陷性系数δ均大于0.015,最大值为0.206.在夯后地面一定深度范围内(1000kJ—5m内:2000kJ—6m内;3000kJ-7m 内)黄土的湿陷性系数δ均小于0.015。

(3)水泥搅拌桩

水泥搅拌桩复合地基作为地基加固新技术之一,它是利用水泥作为固化剂的主体,通过搅拌机械,将地基土和固化剂强制搅拌,利用固化剂和土之间所产生的一系列物理—化学反应,使土硬结成具有整性、水稳定性和一定强度的桩体,和桩周土共同构成复合地基.借鉴软土地基处理的成功经验,提出了深层搅拌法

加固饱和黄土地基的方法,加固后的地基承载力可提高一倍以上,工程费用比常用的混凝土灌注桩低20~25%,经济效益明显。根据工程实践经验,当黄土的含水量低于20%时,搅拌桩边缘部分硬化尚可,越往中心硬化程度越差,到桩心时甚至变成干粉状,桩体水泥土密实度也低.这是因为水泥粉在桩体土内的分布并不均匀,靠近桩芯水泥粉含量大,相应水化需水量也大.再这由于土本身含水量低,在水泥粉被搅入后水泥土非常干硬,不易搅匀和压实.所以为保证桩体水泥土都能充分硬化和较高的密实度,土的含水量应大于20%,若含水量在24%以上更好.

(4)孔内深层强夯挤密法

北京长城建筑新技术研究所将地基处理与砟土(无机固体垃圾)消纳结合起来,提出了孔内深层强夯挤密法(DDC技术),它是先成孔,再向孔内填料以重锤在孔内进行冲击夯实,使填料向孔周侧向挤压,而形成一种复合地基.此方法已在西安某自重湿陷性场地地基处理中应用,其特点:①加固深度大,可达数十米;

②夯击能量大;⑧桩体是不等径串珠状;④填充材料很广泛.

(5)浅层阻水方案和深层散水方案

以非饱和土的土水势原理和薄膜水运动理论为基础,提出了用浅层阻水方案和深层散水方案解决深厚湿陷性黄土地基湿陷性交形的思路,具有较好的应用前景.浅层阻水方案是利用非饱和土土水势原理,在深厚湿陷性黄土层的一定深度设置一薄砂层,将地基中可能渗人的水分尽可能保持在经处理已消除湿陷的上部土层孔隙中,并大大减小未处理的深层大厚度湿陷性黄土层的增湿水量和增湿变形.深层散水方案是将浸入地基的水通过一定的竖井(需防渗处理)引向深厚湿陷性黄土层的深层,使其以薄膜水的方式向四周散开,在深层形成一定范围但不致危及基础工作的湿润区,由于保持了基础下土的天然湿度和结构,使之具有原状黄土较高的自然强度。

(6)灰土桩挤密法

灰土桩挤密法在湿陷性黄土地基处理中,是采用最广泛的地基处理方法之一,它能有效地消除大厚度黄土的湿陷性,与其它处理方法比较,灰土桩挤密法具有不需大量开挖和回填、所用施工机械简单、处理费用低、处理深度深(达5~15m)等特点,这是其它处理方法(如重锤夯实法、强夯法)所难以达到的。除了消除黄土湿陷性外,灰土桩与挤密土一起构成复合地基,提高了地基强度,减小地基变形,改善了黄土地基的工程特性。土中掺入石灰后产生吸水和膨胀作用、土和石灰的离子交换反应、土和石灰的胶泥反应、石灰与碳酸气体产生碳酸化作用等改善了土的工程性质,提高了灰土桩的混合土强度,并且具有一定的水稳性.

(7)冲击压实技术

冲击压实技术主要是利用运动中的三叶或五叶凸形轮,来产生瞬间的竖向振动荷载,振动荷载向路基快速传递能量,传给路基的能量是压缩波、剪切波和瑞利波联合传递的.压缩波的质点运动是属于平行波阵面方向的一种拉压运动,这种波使孔隙水压力增大,土的结构发生变化,由疏松变为紧密;剪切波使解体的土颗粒移动、错位,这样多次重复,使土颗粒处于密实状态:而瑞利波的质点运动则是由水平和竖向分量组成,在有效加固深度范围内使士颗粒形成紧密的排列。

该方法于1995年从南非引进,成功应用予香港机场,后来在华北,西南等地区已有使用,后来在国道主干线连云港至霍尔果斯某区段中使用。目前在黄土地区主要用于处理湿陷性黄土地基和黄土路基的补强。冲击压实处理湿陷性黄土地基,即直接在路堤基底、零填路基或路堑路床进行冲击碾压作业。根据甘肃某项目的试验结果,采用25KJ三边形冲击压实机对天然湿陷性黄土地基冲碾40遍后,地表平均下沉量达32cm以上,地表以下80cm内的平均压实度达85%,消除湿陷性深度可达120cm以上.

3.2 影响路基沉降的因素

3.2.1 影响沉降稳定的自然因素

3.2.1.1 地形

地形不仅影响路线的选定与线形设计.也影响到路基设计。平原、丘陵、山岭各区地势不同,各区的水和温度的情况也不相同。平原区地势平坦,地面水易于积聚,地下水水位较高,因此路基需要保持一定的最小填土高度,力求不低于自然区划和土质所规定的临界高度:丘陵区地势起伏,山岭区地势陡峭。如果排水设计不当,或地质情况不良,易降低路基的强度与稳定性,出现水毁、边坡坍方、路堤沿山坡的滑动等坏现象。

3.2.1.2 气候

气候条件,如气温、降水、湿度、冰冻深度、日照、年蒸发量、风向和风力等,都影响路基水温情况。在一年之中.气候有季节性的变化,因此路基水温情况也随之变化。气候还受地形的影响,例如山顶与山脚、山南与山北,就有所不同。即所谓“小区地形与小区气候”.因此路基水温情况也有所差异。大气的温度变化使路基的温度也发生相应的变化.并造成土基内不同深度处温度出现差异。在温度差的影响下,土基中的水分以液态或气态由热处向冷处转移,并积聚或凝结在该处。从而使土基中的湿度分布发生变化.特别是在季节性冰冻地区,

湿度积聚现象更为严重。。

3.2.1.3 水文地质

水文条件指地面径流、河流洪水位、常水位及其排泄条件、有无积水和积水期的长短以及河岸的冲刷和淤积情况等。水文地质条件指地下水位、地下水移动情况、有无泉水、层间水等。所有这些。都会影响路基的稳定性,如处理不当,往往会导致路基出现各种病害

3.2.2 影响沉降稳定的人为因素

3.2.2.1 荷载作用

作用于路基的荷载有路面路基的自重(静载)和机车的轮重(动载)。静载在土基内部产生的应力随深度的增加而增加;相反,动载在土基内部产生的应力随深度的增加而减少。且车型不同.动载在土基内部的应力作用深度也不相同。随着交通运输的蓬勃发展,交通量逐年增长,在很大程度上影响路基的稳定性。

3.2.2.2 施工方法

正确的施工方法也是保证路基稳定性的重要因素。就土质路堤而言,既要选择良好的土填筑路基,同时还要选用正确的填筑方法和合适的施工机械。通常采用水平分层填筑法自下而上逐层填筑,并在土的含水量控制于最佳范围同时进行充分压实。保证达到《路基施工规范》规定的压实度,使路基具有足够的强度和稳定性。相反,如果填筑方法不正确,压实不充分。土基在车辆荷载的重复作用下就会出现不同程度的变形沉陷。从而造成路面破坏。

3.2.2.3 养护措施

养护措施包括一般措施及在设计、施工中未及时采用而在养护中加以补充的改善措施。通过及时养护可以保证路基在使用期限内具有较高的强度和稳定性。

3.3 湿陷性黄土路基处理方法及效果评价

3.3.1 试验段工程地基处理方法

试验段工程地基处理方法对湿陷性黄土的地基处理应达到两个目的,其一是消除处理范围内的湿陷性,其二是提高地基承载力,提高地基的变形模量,减少压缩(固结) 变形试验段采用多种地基处理方法,改变黄土结构,增加土密度,达到消除黄土的湿陷性的目的。

首先进行局部地表处理,挖除耕植土后,换填改良土和冲击碾压进行加固处

理,再采用桩基和碎灰土垫层处理,同时辅以土工布和土工格栅。坑墓穴处,先挖出松土,再用灰土夯填,然后再用钻灌注水泥砂浆进行填实处理。

3.3.2 地基处理效果方法

对湿陷性黄土地基处理的成功经验地分析研究得出:当湿陷性黄土厚度不大于3m时,灰土垫层种经济有效的方法(但一般需要较大的翻挖地,不利于冬、雨季施工) 。深度相对较大(4~6m且环境影响要求较低时,可选择强夯法,但它的有效性与夯击的最佳击数(9~12击)、夯锤的底面积(锤重l0~15t,锤底面上静压力宜为20~25kPa )、及地基土的含水量(最好为最优含水量附近)有关更大深度(大于8m) 宜选择挤密桩(孔内填以灰土或素土)、搅拌桩或 CFG桩,这些是处理厚湿陷性黄土地基的经济有效的方法,而且对调整地基的不均匀性和提高防水抗渗性能也有一定的作用。因此在条件允许的情况下,在试验段进行现场试验和长期观测,能更好地把握地基处理效果和路基变形规律。

3.3.3 湿陷性黄土路基的沉降控制措施

(1) 对试验段湿陷性黄土、松软土、地震液化土段地基,根据初步设计采用换填、强夯、灰土挤密桩、CFG桩、水泥搅拌桩、旋喷桩、碎石土垫层加铺土工格栅等多种地基处理方法进行加固,消除黄土的湿陷性和地震液化土的液化性,并对松软土进行加固经检测达到《京沪高速铁路设计暂行规定》和设计要求后转入下道工序施工。

(2) 在基础处理前首先进行局部地表处理,提高地基上部的密实度,减少路基的工后沉降。基础加固后保证地基系数 K30≥90MPa/m、压实系数I>0.95

(3) 路堤填筑按照“三阶段、四区段、八流程”水平分层( 每层松铺厚度不超过30cm) 填筑。推土机粗平,平地机精平,YZ18~20型振动压路机压实;填料的最佳含水量、碾压遍数、碾压速度及铺设宽度等按现场填筑试验段确定的施工参数进行,根据压实黄土的湿陷性随含水量的减小而增加,随干容重的增大而减小的试验分析特性,施工中填料含水量偏差控制在最佳含水量的-1%~3%之间,填料的干密度大于15.5kN/m 以消除湿陷性;每填高1.5m左右采用YCT25型冲击式压路机碾压一次,碾压遍数根据现场试验确定。路堤分层填筑主要控制质

>45N/mm 。

量达到压实系数≥0.95,地基系数≥90MPa/m,静态变形模量E

v2

(4) 路基基床表层所采用的级配碎石,基层采用的改良黄土均有严格的材质、粒径和级求。为保证达到设计标准,设带自动计量装置配碎石拌和站和改良土拌和站对填料进行集中拌和或改良,确保基床底层和基床表层的压实质达到规范规定的标准。

高速铁路线下工程沉降观测暂定技术要求

新建贵广高速铁路 线下工程沉降与变形观测暂行技术要求编写: 复核: 贵广高速铁路中铁二十一局工程指挥部工程部 2010年4月18日

1沉降变形测量 1. 贵广客专线下工程沉降变形观测工作以桥梁、隧道、路基等建(构)筑物的垂直位移观测为主,水平位移监测根据路基(含过渡段)、桥涵工点具体要求确定。 2. 贵广客专沉降与变形观测的高程系统应采用1985国家高程基准。 3. 结构物的变形监测应建立独立的变形监测网,覆盖范围不宜小于4公里,基准点选择应优先考虑利用已有的CPI、CPII控制点和线路二等水准控制点。结构物的变形监测应充分利用已有的CPI、CPII控制点和线路二等水准控制点作为水平和垂直位移监测的工作基点。 1.1 测量等级及精度要求 1.1.1本线变形测量(包括垂直位移和平面位移)按《建筑沉降变形测量规程》中三等精度标准执行,对于技术特别复杂工点,可根据需要按二等精度标准的规定执行。 表1.1.1 测量等级及精度要求 1.2 变形监测网技术要求 4.2.1垂直位移监测网建网方式 线下工程垂直位移监测一般按沉降变形等级三等的要求(相当于国家二等水准测量)施测,根据沉降变形测量精度要求高的特点,以及标志的作用和要求不同,垂直位移监测网用分级布网等精度观测逐级控制的方法布设。具体为:在贵广客专沿线二等水

准控制点(包括基岩水准点、深埋水准点、加密二等水准点)的基础之上,按国标二等水准测量的技术要求进一步加密设臵沉降观测的工作基点直至满足工点垂直位移监测的需要。加密后的水准点(含工作基点)间距不宜大于200米。一般情况下,每12个月对垂直位移监测网整体复测一次,按施工期4年考虑,计复测4次,每次观测水准路线长度往返约170km;垂直位移监测过程中怀疑水准点(含工作基点)不稳定时,应立即进行全网或局部的复测直至能清楚地判明水准点(含工作基点)的沉降情况。 对于技术特别复杂、垂直位移监测测量等级要求二等及以上的重要桥隧工点,应独立建网,并按照国家一等水准测量的技术要求进行施测或进行特殊测量设计。 1.2.2垂直位移监测网主要技术要求按表1.2.2执行 ●表1.2.2 垂直位移监测网技术要求 ●注:F-附合线路或环线长度k m ●R:-检测已测测段长度km 1.2.3水平位移监测网建网方式 一般按独立建网考虑,根据沉降变形测量等级及精度要求进行施测,并与施工平面控制网进行联测,引入施工测量坐标系统,实现水平位移监测网坐标与施工平面控制网坐标的相互转换。

路基工后沉降分析

路基工后沉降标准资料分析 随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。 法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。 德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。 日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。 韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道) 台湾高速铁路考虑路基工后沉降标准是采用法国标准。 目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。 对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。 着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。 二、路基沉降的概念 1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。 2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。 3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。 4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。 5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。 三、路基沉降的组成 路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。 1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

京沪高速铁路沉降观测细则

京沪高速铁路沉降观测细则 一、概况 京沪高速铁路施工期间的沉降观测,是通过对线路路基、桥梁、涵洞工程的沉降观测和对沉降观测资料的分析,预测工后沉降,提出加速路基沉降的措施,确定无碴轨道的铺设时间,评估路基工后沉降控制效果,确保无碴轨道的结构安全的有效手段。京沪高速铁路基础工程的沉降观测数据必须采用先进、成熟、科学的检测手段取得,且必须真实可靠、全面反应工程状况。 地质情况 二、构筑物工程沉降观测技术依据 1、《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设【2006】158号) 2、《铁路客运专线竣工验收暂行办法》(铁建设【2007】183号) 3、《客运专线无砟轨道铁路施工技术指南》(TZ216-2007)、 4、《客运专线无碴轨道铁路工程测量暂行规定》(铁建设【2006】189号) 5、《国家一、二等水准测量规范》(GB12897-91) 6、《建筑变形测量规程》(JGJ/T8-99) 7、工程施工图纸和文件。 三、沉降观测网的建立及观测要求 1、在施工控制网的基础上进行加密,测量按二等水准测量精度和方法进行加密测量。

2、高程基准点一般不大于200m,以便对沿线桥梁和路基等建筑物或构筑物进行观测。 3、沉降观测使用DS1以上级的光学或电子水准仪和铟瓦尺。观测前对所使用的仪器和设备进行检定、检校,并保留检查检定记录。做好基准点的保护,发现丢桩和移动应尽快加以补齐。对基准网进行定期复测,复测周期一般为6个月。 4、沉降观测的置镜点、观测路线、观测人员、观测设备应相对固定并应在成像清楚时段进行观测,不得在日出前半小时、日落后半小时内及其他不利观测的天气下作业。作业中应经常对水准仪及水准尺的水准器和仪器i脚进行检校,以确保观测成果的质量。 5、各种观测记录薄要记录清楚、整齐、工整不得有涂改现象出现,记录错误应全行用横杠划去,提行重记。 四、桥梁的一般规定 1、无碴轨道铺设前,应对桥涵变形作系统的评估,确认桥涵基础沉降变形等符合设计要求。、 2、通过各施工阶段对墩台沉降的观测,验证和校核设计理论、设计计算方法,并根据沉降资料的分析,预测总沉降和工后沉降量,进而确定桥梁工后沉降是否满足铺设无碴轨道要求。 3、根据沉降资料分析,对沉降量可能超标的墩台研究对策,提出改进措施,以保证桥梁工程的安全;同时累积实体桥梁工程的沉降观测资料,为完善桩基础沉降分析方法作技术储备。

高铁路基沉降观测方案

DK887+~DK889+段路基工程 观测、检测方案 一、观测方案 1、路基变形监测控制技术措施 高速铁路路基作为变形控制十分严格的土工构筑物,沉降变形监测应作为路基施工中的重要工序,贯穿整个路基施工始终。 路基沉降变形监测主要是测定每一层填料填筑过程中的地基沉降及整体水平位移和路基成型后的地基沉降及路堤本身的沉降值。在填筑施工期间,填土速率根据观测情况确定,如地基稳定情况良好可以酌情加快,反之减缓填土速率,当边桩横向位移大于5mm/d,地面沉降超过10mm/d时,停止填土。路堤填筑完成后,根据观测的数据绘制时间和沉降曲线,预测总沉降和剩余沉降。 该段路基沉降变形监测主要是路堤基底沉降监测和路基面沉降监测。 路基沉降变形监测施工工艺流程见图1。 2、监测测试项目 以路基中心沉降监测为重点,其他包括路基面位移监测、基底沉降位移监测、路堤本体沉降监测、深厚层第四系地层的深层沉降监测,另外还有软土或松软土地段的边桩位移监测等。 ⑴路堤基底沉降监测 每10~100m设一个监测断面,桥路过渡段必须设置。每个监测断面预埋1~3个沉降板(软弱地基时3个)。路堤填筑前,于路堤基底地面预埋沉降板进行监测,每个监测断面预埋3个沉降板。沉降板

图1 路基沉降变形监测施工工艺流程图 由沉降板、底座、测杆(ф=20mm钢管)及保护测杆的ф=49mmPVC塑料管组成。随着填土的增高,测杆与套管亦应相应加高,每节长度不超过100cm,接高后的测杆顶面应高于套管上口,在填土施工中应采取措施保护测沉设施。 沉降板安装前应先将地面整平(可铺设0.1m厚中粗砂),注意保持底板的水平及垂直度。填土高度小于2.0m时,每两天观测一次,超过2.0m后,要求每天观测一次,在沉降速率较大的情况下,还应加密观测。地面沉降量用仪器测量,精度要求准确到±1mm。每天的观测数据都要及时整理并绘制“填土高~时间~沉降量”关系曲线图。 ⑵路基面沉降监测 路堤地段每50m设一个监测断面,桥路过渡段必须设置,且应加密。每断面3个监测点。分别于路基中心、两侧路肩各设一个监测桩(包桩),路基成形后设置。监测桩采用C15混凝土方桩或圆桩(边长或直径0.1m),其中埋设ф16mm钢筋一根,桩长0.6m,埋入基床表层以下0.55m。 ⑶测量的精度及频度 观测频率应与位移速率相适应,位移越小,观测频率也可减慢,

高速铁路路基沉降观测的技术要点

高速铁路路基沉降观测的技术要点 发表时间:2018-05-25T10:37:44.007Z 来源:《防护工程》2018年第2期作者:胡英剑 [导读] 新世纪以来,我国国民经济高速发展,国力逐渐强盛的同时也带动了居民生活水平的提升,更使得国内生活节奏不断变快。 四川路桥桥梁工程有限责任公司四川省成都市 610072 摘要:高速铁路在线性波动和变化上表现的非常平缓,因此也造就了高度平滑顺畅的轨道,但是这也要求高速铁路的路基具有相当高的稳定性和均匀性,才能为乘客提供高速度和高舒适度的服务。同时这也说明了高速铁路路基沉降观测工作的重要性。据此,本文针对高速铁路路基沉降观测的技术要点和应用规范进行了详细探讨,希望可以为今后的工作开展和创新提供引导帮助,为高速铁路建设质量持续提升奠定坚实的基础。 关键词:高速铁路;路基;沉降;精度 新世纪以来,我国国民经济高速发展,国力逐渐强盛的同时也带动了居民生活水平的提升,更使得国内生活节奏不断变快。这也使得我国铁路建设和服务上融入了迅速和稳定的观念。我国在铁路技术、工艺以及质量等方面屡次取得突破性发展,为列车提速工作的开展奠定了坚实基础。我国路基沉降观测技术在超高速铁路工程建设和运营中的应用十分有效。但是从目前的研究和应用来看,我国的路基沉降观测技术仍然处于初级阶段,还有需要改进和提升的方面,不少细节问题也有待进一步打磨。因此,高铁建设工程的技术人员需要加强学习和研究,在实际应用中不断强化对于高速铁路路基沉降观测技术要点的掌握,提高工作的质效水平,使之更好的服务于我国铁路运输,更好的保障我国居民出行安全与体验。 一、高速铁路路基沉降观测技术的工作要求 (一)设备的精密和准确度要求 精密设备和仪器作为保障数据精准度的基础,需要摆在观测工作的首要位置,确保不会因为仪器本身的误差导致整个工作付诸流水。从我国铁路建设技术标准和要求上来看,沉降观测的误差值需要保持在变形值的5%到10%之间,这其中需要包含天气、环境等各方面的影响因素,无论如何都不能超过允准范围。这对与沉降数值的准确性具有相当的保障意义。铁路观测工作意义重大,需要引起高度重视,不可以因为铁路观测条件限制而敷衍了事,条件受限可进行方案变更,采用变点位或三角高程的模式都能满足需求。 (二)时间的准确性要求 高铁建设工程在路基标准上具有严格的要求,因此,在路基沉降的观测过程中,也需要对时间具有严格要求。尤其是初次观测的时间需要进行保障,确保初次数据测量超过两次,并通过平均值的模式来确定初始值的最终数据,切不可大意、马虎、敷衍。而随后开展的复检工作也需要严格按照时间规范进行观测,尤其是不能因为时间空余来随意调整观测周期,或是对数据记录进行捏造,否则将造成数据失准。除此之外,还需要注意对观测间隔时间的确定,以地基的沉降值及沉降速率来进行确定,若是出现观测连续的不稳定性,也需要及时进行观测周期的调整,以此来保障综合数据的完整性,确保沉降数据的参考价值。除此之外,还需要尽快与工程施工团队进行沟通交流,及时采取地基加固或是调整措施,并对工程进度进行一定的调整。这也是对整个工程后期运营的重要保障,确保高铁服务的安全性和稳定性。 (三)人员的专业素质要求 作为高铁路基沉降观测的工作人员,对于专业技能的掌握需要符合工作的各项要求,同时也需要在实践中不断学习,不断对工作进行总结和梳理,才能最大化的发挥作用。同时,实际工作也是考察自身实践能力的过程,对于理论和实践的结合需要灵活,同时也需要能够面对各类复杂环境进行随机应变,迅速准确的找出科学的应对措施。唯有完成上述的各项要求,才是新世纪高铁路基沉降观测任务的合格工作者。 (四)观测地点的要求 为了确保观测数据的精度和准度,在观测地点的选择上也要引起重视,恪守观测地选择的各项要求。具体来看,观测地要能够准确反映高铁铁路路基的沉降状况;要能够便于观测人员进行观测,最好能够满足地势平整和地貌对称的要求;要确保观测地的安全性,最佳观测距离约为20m。 二、高速铁路路基沉降观测的方法和技术要点分析 (一)工作基点桩的定位与埋设 高速铁路的路基沉降观测工作往往是从工作基点桩的制作与埋设来开始,同时这也是最重要的环节之一,需要观测工作人员对于工作基点桩进行准确定位,防止因此所造成的巨大误差。具体来看,高速铁路路基观测工作基点桩的确定需要考虑实际观测对象所分布的状况,然后采用多个施工控制点同时设置的模式来实现更多的位移监测控制点,从而保障观测数据和结果的完整性、多面性、准确性以及科学性。通常条件下,路堤填筑高度高于埋管位置30cm的填土压实以后,在垂直线路方向开挖出宽20cm和深30cm的沟槽,并在整平槽底后与沟底铺设约5-10cm厚的细砂。现阶段,我国的高铁路基观测的工作基点桩定位和埋设两项工作属于技术难点,需要工程勘测单位对各项技术标准进行充分熟悉,对各项标准进行严格复核,便于技术人员对控制点的变化情况进行深入了解,对施工计划进行准确调整。 (二)观测板沉降方法 沉降观测板测杆顶面高程测点通常使用水准模式来进行测量,按照精度测量需求标准和实际工作效率定期进行。同也需要在测杆头绕上测量专用帽以用于沉降观测板。刚好以测杆套入为宜,并以此作为测量帽下部,以一半中心为球型的测点则作为测量帽上部。在进行接高高程测量的同时,也可以进行接高沉降板的测量工作。 (三)地表水平位移量及隆起量的观测方法 高铁线路穿越了我国大部分地区,同时也使之观测工作需要受到各类环境因素和地质要素的影响。因此,在观测的过程中,需要对不同地段的地表水平位移量及隆起量进行针对性的识别,根据具体的地质和水文情况采用特定的观测模式,并进行数据采集。 (四)地下土体水平位移的观测方法 高速铁路路基观测工作中,对地下土体水平位移的观测需要综合项目开展区域的地质环境、水文状况以及岩土层结构等要素进行综合确定。因为地下土体水平位移本身的变动具有相当的规律性,因此观测工作的开展需要多次重复进行,采用集中统计模式来进一步提高观测精度。首先需要利用四个相互垂直导槽,分别将其埋设到观测目标的体中。然后在后续的观测工作中,相关人员需要为活动式测头安置

高速铁路线下工程沉降评估方法

高速铁路线下工程沉降评估方法 宋来中1,易春龙2 (1.中交第一航务工程局铁路工程分公司,天津300042;2.河北工业大学土木工程学院,天津300401)摘 要:线下工程沉降评估已成为高速铁路建设和运行过程中的重要环节。以京沪高铁六标段线下工程沉降观测为 研究对象,对asaoka 法、GM ( 1,1)法、遗传算法双曲线的应用进行介绍。根据相关评估标准,通过对实测数据进行分析,并分别建立三种模型进行工后沉降预测评估,藉此判断是否满足无砟轨道铺设条件,并通过对评估成果进行对比分析,进一步探讨该沉降评估方法的科学性与实用性。关键词:沉降评估;asalia 法;GM (1,1)法;遗传算法曲线中图分类号:U238;U213.157 文献标志码:A 文章编号:1003-3688(2010)06-0034-03 Subsidence Assessment for High-speed Railway under Line SONG Lai-zhong 1,YI Chun-long 2 (1.Railway Engineering Branch of CCCC First Harbour Engineering Co.,Ltd.,Tianjin 300042,China ; 2.Civil Engineering Institute ,Hebei University of Technology ,Tianjin 300401,China ) Abstract :Thesubsidenceassessmentofprojectsunderlineshasbecomeanimportantpartoftheconstructionandoperationofhigh-speedrailway.TakethesixthsectionofBeijingtoShanghaihigh-speedrailwayastheobjectforstudyandmakeintroductionfortheAsaoka,GM(1,1),GeneticAlgorithmsmethod.Accordingtotherelevantevaluationcriteria,analyzingthemeasureddataandthenestablishingthreemodelstoassessmentthesubsidenceastheprojectfinished,thenmakingajudgmentwhetheritsatisfiedoftheconditionoftheunballastedtracklaying,andbycomparingtheresultsoftheevaluation,gettingafurtherdiscussionontheusabilityandscientificityofthesubsidenceassessmentmethod.Key words :subsidenceassessment;Asaokamehtod;GM(1,1)method;geneticalgorithms收稿日期:2010-07-08 作者简介:宋来中(1967—),男,山东临清市人,硕士,高级工程 师,道路与铁路工程专业。 中国港湾建设 China Harbour Engineering 2010年12月第6期总第171期 Dec.,2010Total171,No.6 高速铁路或客运专线对线下工程工后沉降量有着严格的要求。不均匀沉降过大会造成线路的平顺性差,从而引起列车振动、轮轨动力作用增大,导致列车通过时产生巨大的冲击力,在高速行车条件下,使列车在平稳、舒适、安全性方面严重恶化,甚至导致列车脱轨[2]。从目前我国已建成并投入运行的高速铁路情况看,线下工程沉降评估已成为高速铁路建设和运行过程中的重要环节和新课题。1 沉降评估预测方法的选取 目前,运用于高速铁路或客运专线线下工程沉降预测评估的方法较多,而每种预测方法均有一定的适用范围,需结合线下工程不同结构物和不同地质条件下的沉降观测情况,选择合适的预测方法。常用的沉降评估预测方法有规范双曲线法、修正双曲线法、固结度对数配合法(三点法)、指数曲线法、遗传算法双曲线、Verhulst 算法、 Asaoka 算法、灰色系统GM (1,1)算法[1]。结合本工程线下沉降变形特点,分别采用Asaoka 算法、灰色系统GM (1,1)算法和遗传算法双曲线进行沉降预测分析。1.1 Asaoka 算法 Asaoka 法基本思想就是用简化递推关系近似地反应一维条件下以体积应变表示的固结方程,利用此简化递推关系可用图解法来求解最终沉降值[1]。如此,可用求解递推形式为: S j =β0+β1S j -1 (1) 式中:S j 为t j 时刻的沉降量,t j =j Δt ,Δt 为相邻两次沉降 观测的时间间隔;β0,βi (i =1, 2,3,…,n )为未知参数。在Asaoka 法推算的过程中,Δt 的取值对最终沉降量的推算结果有直接的影响。Δt 过小会造成拟合点的波动性较大,拟合直线的相关系数较小;Δt 过大,S j 点过少,易产生较大的偏差,而且对是否已进入次固结阶段不易作出判断。一般取Δt 在30~100d 之间。在实际的推算过程中,宜同时多计算几个不同的Δt 得出相应的最终沉降值,而后在其中选取相关系数较好的沉降值作为最终沉降值。

浅论高速铁路沉降观测技术

浅谈高速铁路沉降观测技术 张XX (中铁二十一局宝兰客专咸阳 712000) 摘要:高速铁路工程沉降变形观测是确保铺设质量的基础,对保障高速列车的安全平稳运行和高速铁路轨道的几何平顺性及稳定性有极大作用,是确定合理无砟轨道铺设时间的关键。本文结合宝兰客专西坪隧道沉降观测实例,介绍了高速铁路沉降观测的技术要求,布设方案和观测过程,对高速铁路隧道沉降观测技术进行了总结。 关键词:高速铁路;沉降观测;测点布设;二等水准 1 引言 近年来,随着我国经济建设的推进,高速铁路建设也得以迅猛发展。高平顺性和高稳定性是高速铁路的两个重要特点,这两个特点决定了高铁工程沉降变形监测的意义和重要性。高速铁路无砟轨道对工后沉降要求严格、标准高,沉降受到的影响因素也较多,因此对高速铁路沉降观测的数据生产过程必须严格把关,使作业过程规范化,保证沉降监测作业的顺利实施,从而有力保障高速铁路的建设。 1.1工程概况 宝兰客专西坪隧道位于天水市麦积区伯阳镇与社堂镇之间渭河右岸黄土覆盖的黄土梁峁区,设计为双线式无砟轨道隧道,隧道起点里程IDK750+027,终点里程IDK754+304.8,全长4284.624m,隧道洞身全部位于湿陷性黄土地层中,通过段地形起伏较大,洞身段最大埋深244m,海拔高程1102~1342m,相对高差约340m。 1.2电子水准仪 相对于其它测量仪器,电子水准仪出现较晚,这主要是由于水准仪和水准标尺不仅在空间上是分离的,而且两者的距离可以以1米多变化到100米,因此在技术上引起数字化读数的困难,但经过数十年的发展,现在人们已经攻克这一难题,电子水准仪也已普及,并具有能自动读数,作业效率高,精度高,操作简便等优点。电子水准仪又称数字水准仪,它采用条码标尺进行读数,将仪器照准条码尺并调焦使条码尺成像清晰,人工完成照准和调焦之后,标尺条码一方面被成像在望远镜分化板上,供目视观测,另一方面通过望远镜的分光镜,标

高速铁路路基沉降浅析

高速铁路路基沉降浅析

在我国铁路“十五计划”编制中已经明确指出,要加强国快速客运专线的建设,逐步建成以北京、上海、广州为中心,临街各省会城市和其他大城市间铁路快速客运系统,2004年1月7日,国务院主持通过了《中长期铁路网规划》。规划指出:“到2020年,我国铁路运营总里程达到10万公里,要建设“四纵四横”快速客运专线及三处城际快速轨道交通系统,实现主要繁忙干线客货分线运输”。建设高标准的铁路客运专线,是《中长期铁路网规划》中的一项重要内容。 实施《中长期铁路网规划》,我国将大规模建设世界一流的高速客运专线。铁道部的一份研究报告指出,发展无碴轨道视为我国高速铁路建设特别是在线路设施方面一场深刻的技术变革,这足以说明无碴轨道技术的巨大作用和广阔前景。但是我国无碴轨道铺设的数量少、时间短,尚缺乏设计、施工和运营经验等方面的应验,对此,针对无碴轨道高速铁路的建设,我国需要通过国内外联合设计、试验段的建设和相关实验开展一系列的技术研究。在国际上,无碴轨道技术用于高速铁路中比较有经验的是德国和日本,因此,我国可借鉴的无碴轨道结构形式也主要来源于这两个国家,相对而言,对于路基上铺设无碴轨道,德国的经验明显更丰富一些。 无碴轨道由于受自身调整能力的限制,对线下工程的沉降变形提出了严格要求,因此要实现高速铁路全线铺设无碴轨道的目标,路基上铺设无碴轨道已经成为高速铁路工程建设的关键技术问题。而如何有效地控制路基工后沉降问题尤为突出。 高速铁路对轨道的平顺性提出了更高的要求,而路基是铁路线路工程的一个重要组成部分,是承受轨道结构重量和列车荷载的基础,它也是铁路工程中最薄弱最不稳定的环节,路基几何尺寸的不平顺,自然会引起轨道的几何不平顺,因此需要轨下基础有较高的稳定性和较小的永久变形,以确保列车高速、安全、平稳运行。由于软土特殊的工程性质和高速铁路路基的特点,在一般情况下,多数路段地基的强度与稳定性处理难度都不大,不成为控制因素;给工程带来的主要难题是沉降变形及其各种处理措施条件下的固结问题,所以路基沉降变形问题是高速铁路设计中所要考虑的主要因素。 日本对控制路基沉降的认识是一个发展得过程,1972年日本国

DBSG-3标铁路沉降观测方案

新建敦化至白河铁路工程DBSG-3标段路基沉降观测施工方案 中铁二十四局集团有限公司 新建敦化至白河铁路DBSG-3标段项目经理部 2017年12月10日

目录 一、工程概况3 二、沿线工程地质、水文条件3 三、技术依据3~4 四、沉降变形观测范围、内容4 4.1路基沉降变形观测:4 4.2桥涵沉降变形观测:4 4.3过渡段不均匀沉降观测:4 五、人员及仪器配置4~5 六、沉降变形测量等级及精度要求5~6 6.1本段沉降变形测量三等规定:5 6.2变形精测网技术要求:5~6 七、沉降变形测量点的布置6~15 7.1沉降变形观测点的布设要求错误!未定义书签。14 7.2独立监测网的设置原则错误!未定义书签。 7.3监测网点稳定性的验证错误!未定义书签。 7.4监测点的核实错误!未定义书签。 7.5测量数据的处理错误!未定义书签。 7.6测量资料的整理归档错误!未定义书签。 八、沉降观测具体要求错误!未定义书签。21 九、沉降结果的分析、评估21~26 9.1路基21~23 9.2桥涵23~25 9.3过渡段25~26 十、评估报告的汇编26

一.工程概况 中铁二十四局集团新建墩化至白河客运专线DBSG-3标第三工区,工区起点DK93+270,位于丰产隧道进口附近,经墩化南站至工区终点DK102+100,全长8.83公里,其中梁式桥2座,框构小桥2座,涵洞16座,隧道3座,墩化南站站场1个,其余为路基地段,共分为11段。合同总工期24个月,即从2017年10月开工,到2019年10月竣工。管段内有CPI控制点、CPII控制点、水准加密点若干。 二.沿线工程地质、水文条件 墩白铁路DBSG-3标第三工区路基原地表多为种植土、粉质黏土、腐殖质土为主,地质情况变化不大,地层结构复杂,路基多以填方为主,岩质路堑边坡坡面需采用光面爆破开挖。 沿线位于温带大陆性湿润气候区,气候多变,冬季易发生干旱,降水量季节差异性较大,沿线土壤最大冻结深度1.98米。 工点区地下水赋存条件良好,地下水类型为第四系孔隙潜水和基岩裂隙水,地下水埋深不同地段略有差异,地下水主要靠大气降水和地下迳流补给,由蒸发和补给地表水排泄,水位变化幅度2.0m~4.0m。工点范围内地下水化学侵蚀环境对对铁路混凝土结构不具侵蚀性。 三.技术依据 《高速铁路工程测量规范》(TB10601-2009); 《国家一、二等水准测量规范》(GB12897—2006); 《建筑沉降变形测量规程》(JGJ/T8-2007); 《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号);

浅谈铁路路基沉降的控制办法

浅谈铁路路基沉降的控制办法 摘要: 随着我国铁路建设事业的蓬勃发展,建设高等级铁路的规模不断加大, 提升铁路建设的科技含量是铁路建设工作者义不容辞的责任。本文从路基沉降观测,路基沉降的原因进行了分析,并针对易发生路基沉降的部位提出了一些预防方法。 关键词:路基沉降控制 为满足铁路运输需要, 保证运输安全, 提高铁路路基质量, 铁道部建设公司近十几年先后几次对铁路路基设计规范进行了修订, 在我国铁路跨越式发展时提出了“强本简末”的要求, 设计标准有了很大提高。随着国家铁路的第六次大提速的完成, 快速铁路对路基的基床承载力与沉降变形要求更高, 仅局限于选线时尽量绕避不良地质地段, 避免高填深挖是不够的, 铁路路基的填料选择、沉降控制与观测、提高路基的防排水能力、加强过渡段设计及加强路基支挡防护设计显得更加重要。其中, 铁路路基的填料种类、压实标准与铁路路基的沉降控制有着密切的联系, 因此,本文就铁路路基的填料选择与沉降控制这两方面谈一下自己的看法及建议。 1、路基填料 1.1 路基填料适用性判别 高等级铁路的路基填筑标准及对路基工后沉降的要求均远高于普通铁路。因此必须特别重视对路基填料的勘察、鉴定、分类工作, 慎重对待取土场的选择。对填料需严格把关, 在勘察设计阶段就应当作为一项专门的工作来进行, 对其工程特性,适用性进行必要的试验工作后作出专门的评价, 以确定该取土场的填料用作路基本体或基床底层是否合格, 否则需考虑改良土方案或变更取土场。 由于地区不同, 路基填料也千差万别根据《铁路路基设计规范》相关规定, 对于巨粒土、粗粒土填料根据颗粒组成, 颗粒形状, 颗粒级配、细粒含量、抗风化能力等来分为A、B、C 、D组, 细粒土填料根据液限含水量ωL进行填料分组, 当ωL<40%时为粉土, 为C组,当ωL≥40%时为黏性土,为D组, 有机土为E组。 1.2 特殊填料在路基中的应用 在比较平坦的地区, 铁路路基取土较困难, 传统做法是在考虑经济成本与可行性的同时, 采取部分填料外运与集中挖坑取土或者薄取相结合, 在集中挖坑取土后, 再对取土场进行生态恢复, 如将取土坑留给当地百姓进行养鱼等经济生产。或者沿线与排水沟相结合, 挖深拓宽排水沟。这两种传统方法由于简单便于实施,得到了人们广泛的认同, 并在很多类似线路中得以应用。

高速铁路沉降观测作业指导书

新建铁路哈尔滨至齐齐哈尔客运专线工程项目HQTJ-5标路基沉降观测作业指导书 编制: 复核: 审核: 施工单位:中铁十三局集团哈齐客专项目部一分部 日期:2009年12月

目录 1.编制依据 (1) 2.适应范围 (1) 3.施工工艺流程及技术要求 (2) 4.沉降变形监测网建立及测量技术要求 (3) 5.路基沉降变形观测 (4) 5.1 一般规定 (4) 5.2 观测的内容 (4) 5.3 观测断面和观测点的布置 (4) 5.4 路基沉降变形观测频次 (5) 5.5 观测精度要求 (6) 5.6 沉降观测要求 (6) 5.7 评估方法和判定标准 (6) 6. 桥涵沉降变形观测 (7) 6.1 一般规定 (7) 6.2 沉降观测的内容 (8) 6.3 观测点的布置 (8) 6.4 观测精度 (8) 6.5 沉降观测频次 (8) 6.6 评估方法和判定标准 (10) 7.过渡段 (11) 7.1 一般规定 (11) 7.2 观测点布置与观测频次 (11) 7.3 观测精度 (11) 7.4 沉降观测频次 (11) 7.5 评估方法和判定标准 (12)

客运专线路基沉降观测作业指导书 1.编制依据 《客运专线铁路路基工程施工质量验收暂行标准》 《客运专线铁路路基工程施工技术指南》 《施工图设计文件》 《国家一、二等水准测量规范》(GB12879-91) 《工程测量规范》(GB0026-93) 《全球定位系统(GPS)铁路测量规程》(TB10054-97) 2.适应范围 本规定适用于哈齐客运专线HQTJ-5标(DK218+000—DK256+680)施工期及正式验收通过前的沉降观测评估工作。

公路路基沉降观测方案

州群众服务中心一级主干道工程二标段路基沉降变形观测专项方案 编制: 审核: 日期:

1.工程概况 麻新城区群众服务中心一级主干道工程是黔东南苗族侗族自治州群众服务中心主要干道。本项目的建设将促进和拓展经济开发区和凯麻新城区的城市发展空间,为后续城市建设起到重要作用。凯麻新城区州群众服务中心一级主干道起于开司大道,于开司大道左侧相交90°。路线全长3163.394道路主干道标准建设,设计车速为60km/h。 为及时掌控路基填挖方的沉降、位移情况,指导路基施工过程,保证工后沉降满足设计要求和路基稳定性,有效控制路基工程质量,制定本方案。 2.编制依据 2.1《公路路基设计规范》 2.2《路基工程施工图设计》 2.3《工程测量规范》 2.4《路基横断面图》 3.路基沉降变形监测的目的 3.1控制和保证路基过程质量,确保工后沉降满足设计要求(一般地段不大于15cm,年沉降速率小于4cm/年,涵背过渡段不大于8cm)。 3.2.通过连续、正确、完整、系统的观测和分析,预测沉降趋势,

验证和指导施工,正确控制路堤填筑速率,以确保路基和路面的完成时间。 3.3确保路基稳定和施工安全 4路基沉降变形观测方案 4.1 观测内容 根据设计及规范要求,确定观测的主要内容有:填方段的基底沉降观测、水平位移观测、路基本体沉降观测;涵洞、路堤的过渡段沉降观测。 4.2观测断面设置 4.2.1基底沉降观测 根据《公路路基施工技术规范》要求,沿线路方向每隔100~200m 设置一个观测断面,路堤填筑施工前,在基底地面的线路中心线位置埋设一个沉降板,并进行首次观测。 4.2.2路堤水平位移观测 根据《公路路基施工技术规范》要求,沿线路方向每隔100~200m,在路堤两侧坡脚外2m、10m处各设置水平位移观测桩,路基填筑前埋桩并进行首次观测。 4.2.3路基本体沉降观测

我国高速铁路及路基工程技术发展

中南林业科技大学课程考查作业学科专业:工程管理 年级:2011级 学号:20111518 姓名:梁志杰 课程名称:铁道工程

我国高速铁路与路基工程技术发展 【摘要】:高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。高速铁路的出现已突破了传统铁路路基的设计理念,其设计理论、施工技术和检测手段等都有了很大发展,相关的技术标准不断提高,新技术也不断被应用于高速铁路路基中。 【关键字】:高速铁路、路基、技术特点 【正文】: 高速铁路是指通过改造原有线路,使营运速率达到每小时200公里以上,或者专门修建新的高速新线,使营运速率达到每小时250公里以上的铁路系统。高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。 我国高速铁路的运输组织模式主要有以下3种类型:(1)高速客运专线。这种高速铁路建于客货运输都十分繁忙的通道上,一般沿既有线修建,设计速度达350km/h。承担本线到发与跨线客流的输送任务,采用300km/h及以上的高速列车与200~250km/h的跨线列车混合运行的运输组织模式。(2)城际铁路。这种高速铁路建于两相邻大城市间,设计速度为200~250km/h。承担两城市间到发客流的输送任务,采用高密度、短编组、公交化的运输组织模式。(3)快速客运

通道。这种高速铁路建于客货运输潜在需求都十分旺盛但还没有铁路的地区,设计速度为200~250km/h,承担吸引区内客货运输任务,采用200~250km/h的旅客列车与120km/h货物列车混合运行的运输组织模式。我国高速铁路的技术体系构建,主要应针对高速客运专线。 高速铁路不仅仅是高速,它具有三点优势:一是高速铁路速度快、省时间,安全系数高,乘坐空间大,舒适又方便,价格又适宜,迎合了现代社会出行的需求,因而受到人们的青睐,成为世界各国振兴铁路的强大动力。二是高速铁路运输系统是铁路大面积吸纳现代高科技成果进行技术创新的产物。推动了铁路科学技术和装备登上一个崭新的台阶,增强了铁路的竞争力。三是高速铁路不仅运输能力特别大,有年运输量可达数亿人次以上的优势,又有减少环境污染的优势,因而特别适宜于大运量的城市间、城市群和城郊的高频率运输。旅行时间的节约,旅行条件的改善,旅行费用的降低,再加上国际社会对人们赖以生存的地球环保意识的增强,使得高速铁路在世界范围内呈现出蓬勃发展的强劲势头。总之,发展高速铁路是科技进步的必然,是时代发展的需要。 我国高速铁路以其高速、平稳、舒适的优良品质赢得了人民群众的广泛赞誉,有力促进了沿线区域经济发展,带动了相关产业升级,改善了人民群众生活。 从旧时落后的铁路到如今的高速铁路,我国铁路的发展经历了几代人不懈的努力,从封建落后的清朝至今已有百余年的历史,旧时中国铁路发展缓慢,受到清政府封建势力的强烈发对。在那个动荡的年

铁路路基沉降问题及其控制措施 刘济华

铁路路基沉降问题及其控制措施刘济华 发表时间:2019-08-05T09:32:27.047Z 来源:《建筑学研究前沿》2019年8期作者:刘济华 [导读] 这就需要在施工中加强对铁路路基沉降变形的观测,并采取一定的措施来对路基沉降量进行控制。 石家庄铁道大学石家庄 050000 摘要:最近这些年,我国铁路工程建设数量越来越多,建设里程不断增加,覆盖范围不断扩大,且对工程施工质量也提出了更高的要求。铁路工程施工中,路基施工是决定其整体质量的关键因素,要求其具有足够的强度和规定范围内的沉降量来满足其轨道对行驶列车的支撑要求。而路基施工中的难点就是对路基沉降量的控制。路基在铺轨之前发生与预留沉降量不符的沉降,则会导致线路的整体高程不符合要求,这就需要在施工中加强对铁路路基沉降变形的观测,并采取一定的措施来对路基沉降量进行控制。 关键词:铁路;路基沉降;控制措施 引言 新时期下,我国交通运输事业得到了飞速的发展,而铁路作为我国交通事业的基础,为市场经济的高速发展提供了极大帮助,并且随着铁路事业的改革与转制,其在国家经济发展中的作用更为突显。2017年我国铁路的技术创新和实践应用得到了显著的提升,如铁路管理平台、BIM技术试点、交互信息化系统等,这为铁路建设技术的发展提供的必要的保障,但施工中铁路路基的沉降问题一直困扰着铁路技术人员,如何有效的提升路基沉降的施工工艺,促进路基沉降质量和标准的进一步发展,成为了时下铁路技术部门所关注的焦点问题。 1铁路路基沉降变形控制的必要性 铁路路基沉降问题一直困扰着铁路工程建设,最突出的是软土基层上的铁路路堤修筑,软土地基吸水饱和、剪切强度弱的问题是引发铁路路基沉降的重要原因。在铁路工程施工结束后会对沿线建筑特别是高层建筑、大型建筑产生影响,必须采取有效措施来避免铁路路基周边土层出现附加应力累积的不良后果。路基作为轨道结构、列车载荷的基础承载体系,若存在结构变形不仅会造成轨道发生形变,进而还会造成列车振动严重,甚至出现安全事故问题。因此,必须采取有效措施,严格控制好铁路路基沉降变形问题。 2铁路路基沉降问题出现的原因 一是在铁路路基施工过程中,由于下雨或者其他原因而导致进水,从而对路基内部的含水率造成改变,含水率的增加会破坏其内部的稳固性,在施工以及后续运营中,会在自身重力以及外界荷载的作用下而出现形变并引发沉降以及开裂等问题。 二是在对路基进行设计的过程中,没有对施工现场进行详细的勘察,进而在路基设计中的相关参数的分析和计算时出现误差或者不准确的问题,直接影响后期施工质量不达标而出现沉降问题。 三是在施工过程中对填筑材料等施工材料进行选择时,没有按照工程地质特点和施工设计要求来进行选择,导致所选用的材料不达标或者与施工现场的具体条件不符而导致出现沉降问题。 四是所采用的路基填筑方法不够正确和合理,主要是在碾压施工中没有按照规范进行以及通过实验来确定碾压次数,没有对碾压质量进行保障,因而导致碾压不均匀或者密实度不足而增加其出现不均匀沉降等版型以及开裂等缺陷的出现。 五是隐伏型岩溶路基塌陷的问题。此问题主要在岩溶化平原地区比较常见,其主要是由于地下水位下降而形成真空吸蚀作用,地下水潜蚀作用,列车或采石放炮引起的震动等因素导致土体强度降低以及土体破坏、土层负荷过重等因素引起的。 3铁路路基沉降控制措施 某高速铁路工程A标段总长约116.5km,采用CRTSII型板式无砟轨道。线路上共有6段路基,总长为16.3km,约占线路总长的14%。经地质勘察,路基表层以杂填土和素土为主,下部为松土。 3.1桩+筏板加固 采用刚性桩对路基进行加固,桩径和桩间距分别为0.4m、1.5m,桩端进入持力层的深度应达到1.0m以上。同时在顶部加设筏板,采用强度等级为C30的混凝土,其厚度按0.5m控制,筏板的下方设置垫层,厚0.15m。桩与桩间土的共同作业可以形成复合地基,由筏板将荷载传递至桩,以此减小沉降变形,保证沉降控制的有效性。 3.2桩基施工质量控制 ①开工前先进行试桩,确认桩身实际强度满足要求后,从中抽取1%进行静载试验,并抽取30%进行无损检测。 ②各类原材料进入施工现场前应对其品质和配合比等进行检测或试验。其中,水泥应为抗硫酸盐水泥;石料,即卵石或碎石,其粒径应在2~4cm范围内;中粗砂的含泥量不能超过5%;采用II级或III级优质粉煤灰。 ③采用长螺旋钻机进行成孔,钻进应匀速进行,不得产生螺旋孔,孔深应在钻杆上作出标记,以达到要求的深度,钻孔垂直度偏差不能超过1%。 ④孔深达到设计要求后,停钻并对钻杆进行提升,并同时进行灌注,实际泵送量需要和拔管速度保持协调,通常拔管速度不超过 1.2~1.5m/min,埋钻高度应达到1.0m以上,保证管中混合料充足,避免停泵待料。在灌注过程中,应超过桩顶高程一定距离。 ⑤桩体应保持连续和密实,避免缺陷,如夹砂、 断桩和缩径。 3.3严格把控路基填筑质量 ①不得使用大粒径填料,对天然集料进行集中堆放和筛分处理,所用筛网的筛孔尺寸按14cm×14cm控制,倾斜度为60°。对筛余部分进行破碎处理,与满足要求的填料相混合。在填料装车过程中,对填料进行均匀搅拌,保证运输到现场的填料是符合要求的。 ②在施工中,应对土料进行严格计量,保证掺量的准确性与适宜性。同时,还要安排专人对填料质量进行控制,使填料的级配达到规范要求。 ③为切实保证路基的压实效果,应根据填料产地开展工艺试验。通过工艺试验,确定松土厚度与压实系数,将含水量控制在“最优含水率的-5%~+3%范围内。 ④对填筑厚度和分层压实进行严格控制,填筑层厚度应保持均匀,这是使压实质量达到要求的重要过程。填筑施工中,应以填筑层的

相关主题
文本预览
相关文档 最新文档