当前位置:文档之家› 纳米SnS_2和TiO_2复合材料的制备及其光催化性能的研究

纳米SnS_2和TiO_2复合材料的制备及其光催化性能的研究

纳米SnS_2和TiO_2复合材料的制备及其光催化性能的研究
纳米SnS_2和TiO_2复合材料的制备及其光催化性能的研究

纳米SnS_2和TiO_2复合材料的制备及其光催化性能的研究【摘要】:医药,染料,生化等工业部门排放的有机废水造成的污染,已经严重威胁到人类的生存环境。采用传统的生物、物理、化学处理方法不能从根本上消除污染物,而采用光催化降解技术却可以有效地利用取之不尽的太阳能,在催化剂作用下有机物分解为无毒的CO2和H20等小分子。纳米TiO_2因其化学性质稳定、成本低、无毒而引起人们的注意。但是,Ti02在实际应用中又存在一定的缺陷,一方面,Ti02禁带较宽(锐钛矿相Eg=3.2eV),只能利用波长在380nm以下的紫外光,因而其实际应用受到了限制;另一方面,TiO2半导体表面上的载流子极易复合,从而降低了其光催化作用。因此,本文采用简单快速的水热法来合成纳米TiO2复合物,进而最大限度地利用太阳光,促进光生电子-空穴的分离,提高光催化活性。本论文的主要研究内容:(1)采用SnCl4·5H2O、硫代乙酰胺(TAA)和TiO2为前躯体,在5%醋酸溶液中进行水热反应,制备出TiO2/SnS2复合材料(以TiO2为载体,采用不同量的SnS2纳米粒子来修饰TiO2)。采用扫描电镜、透射电镜、X射线光电子能谱、X射线衍射和紫外可见漫反射光谱等表征技术对所制备催化剂的结构进行表征。以甲基橙溶液为目标降解染料,在不同的光照下(波长为250-400,360-600和400-600nm)来研究它们的光催化活性。研究结果表明,TiO2/SnS2复合材料的光催化活性与复合物中SnS2的含量和光照强度有关。含有33%的SnS2的复合物在波长为250-400和360-600nm光照下光催化降解效率最高。但是,在400-600nm波长

的光照下,TiO2/SnS2的光降解效率随着复合物中SnS2的含量的增加而增大,且复合材料的光催化活性均高于单纯的TiO2。(2)以TiCl3水溶液和SnS2固体粉末为前躯体,在160℃的高压反应釜中水热反应4小时,合成SnS2/Ti02复合材料(以SnS2为载体,水热合成不同量的金红石相Ti02来修饰SnS2纳米材料)。采用扫描电镜、透射电镜、X 射线光电子能谱、X射线衍射和紫外可见漫反射光谱等表征技术对所制备催化剂的结构进行表征。在不同的光照(波长为360-600和400-600nm)下,测定催化剂对甲基橙溶液的降解效率。结果表明,SnS2/Ti02的光催化活性取决于复合物中金红石相TiO2的含量,含有26%的Ti02的复合材料表现出较高的光催化活性,且远远高于纯SnS2的光催化活性,而纯的金红石相TiO2对甲基橙几乎没有催化活性。【关键词】:TiO_2SnS_2光降解反应甲基橙溶液光催化作用

【学位授予单位】:山西大学

【学位级别】:硕士

【学位授予年份】:2013

【分类号】:TB383.1;O643.36

【目录】:中文摘要10-11ABSTRACT11-13第一章前言13-211.1几种降解污染物的方法13-141.1.1生物法131.1.2物理法131.1.3化学法13-141.1.4光催化氧化法141.2半导体光催化剂的研究现状

141.3TiO_2的概述14-151.3.1TiO_2的性质141.3.2TiO_2的能带结构及光催化反应过程14-151.3.3二氧化钛在实际应用中存在的缺陷151.4提高TiO_2光催化活性的途径15-171.4.1贵金属沉积161.4.2金属离子掺杂161.4.3非金属掺杂161.4.4半导体复合16-171.4.5表面光敏化171.5纳米材料的主要制备方法17-181.5.1沉淀法171.5.2微乳液法17-181.5.3溶胶凝胶法181.5.4水热法181.6纳米ZiO_2在废水处理中的应用18-191.6.1染料废水191.6.2农药废水191.6.3含油废水191.6.4造纸废水191.6.5表面活性剂191.7本论文的研究内容19-21第二章SnS_2修饰TiO_2材料的制备及其光催化性能的研究21-332.1引言212.2实验部分21-232.2.1化学试剂21-222.2.2化学仪器222.2.3SnS_2的制备222.2.4复合材料TiO_2/SnS_2的制备222.2.5样品的表征22-232.2.6光催化实验232.3结果与讨论23-322.3.1XRD分析23-242.3.2XPS分析24-262.3.3表面形貌分析262.3.4UV-vis光谱分析26-272.3.5样品的光催化性能27-322.4结论32-33第三章金红石相TiO_2修饰SnS_2材料的制备及其光催化性能的研究33-423.1前言333.2实验部分33-353.2.1化学试剂333.2.2化学仪器33-343.2.3SnS_2的制备343.2.4复合材料SnS_2/TiO_2的制备343.2.5样品的表征343.2.6光催化实验34-353.3结果与讨论35-413.3.1XRD分析353.3.2表面形貌分析35-373.3.3XPS分析37-383.3.4UV-vis光谱分析38-393.3.5样品的光催化性能39-413.4结论41-42第四章总结与展望42-434.1总结424.2展望42-43参考文献43-52研究成果52-53致谢53-54个人简历54-56 本论文购买请联系页眉网站。

纳米材料应用特点

超细微粒、超细粉末,这些其实都是纳米材料的别称。它具有自己的一些性能特点,同时应用范围较广,例如生物医药、能源环保、化工等等行业。本文就给大家详细介绍一下。 一、应用 由于纳米颗粒粉体具有电、磁、热、光、敏感特性和表面稳定性等性能,显著不同于通常颗粒,故其具有广泛的应用前景。经过多年探索研究,已经在物理、化学、材料、生物、医学、环境、塑料、造纸、建材、纺织等许多领域获得广泛应用。下面为大家例举几个纳米材料的应用实例。 (1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。 (2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其

产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,然后能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。 (3)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。 (4)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。 二、特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

浅谈中职学校就业方向英语教学

浅谈中职学校就业方向英语教学 摘要:中职学校英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生性质的不同而有针对性地进行英语教学。中职英语老师需要有针对性的备课,灵活多变的课堂组织教学,以及不可忽略的课后教学。 关键词:中职学生就业方向英语教学 中图分类号: g718 文献标识码: c 文章编号:1672-1578(2011)11-0215-02 许多中等职业学校的教师都认为教学就是把自己所学知识倾囊 相授,这些年教学实践使笔者明白中职英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生的性质不同,而有针对性地进行英语教学。下面笔者主要针对就业方向的中职学生浅谈一下英语教学应该注意的几点: 1 有针对性地备课 中等职业学校学生的文化知识一般比较差,英语老师在教学前是否认真的有针对性的备课是教学是否成功的首要条件,备课时教师要熟悉大纲和教材,把握教学内容;分析教学任务,明确教学目标;研究学生特点和性质以及学生的知识基础,选择教学方法;设计教学过程,编写教学计划,从而为上课做好充分的准备。中等职业学校就业方向的英语教学应以“适用”为备课原则,以求学生能掌握一些基础英语知识以及能说一些日常生活适用的英语,很多属于高

考的英语知识点或难点则可以选择不予讲解。 2 进行有效的课堂组织教学 2.1激发学习英语的激情与兴趣 每个教师都明白学习兴趣对于教学的重要性,而在中职学校教学过程中这一点显得尤为重要,中职学生在中学的文化课已经相对薄弱,这严重导致了他们缺乏对文化课的学习兴趣,进入中职学校还要学习文化课,他们显然没有任何的学习兴趣,尤其是英语这一学科,一些学生甚至连26个英语字母都在中学时没能掌握,不能准确的针对国际音标发音,怎能还有学习兴趣?所以作为一名中职学校的英语教师,怎样唤醒中职学生的英语学习兴趣是一个教学过程中的一个重点也是难点,培养中职学生学习英语的激情与兴趣应该从两点出发:首先,要从教师本身出发。我们很多人都认为老师一般都需要在学生面前建立自己的威信,这点的确需要,但是往往很多老师过于严肃,让学生产生了相当大的畏惧心理,再加上教学内容全是枯燥的英语语法知识,中职学生怎能对英语学习充满学习兴趣?其实老师上英语课应该一改严肃的教学风格,上课可以带上丰富的肢体语言,英语语言可以抑扬顿挫,面部表情可以根据授课内容而变化,同时老师面对学生要少一点架子,多一点的尊重和真诚,少一点尖酸刻薄,多一点赏识和信赖,少一些冷漠,多一点的热情和交流.师生之间只有互相了解,互相沟通,互相平等,学生才会喜欢你,才会爱你,到那时候,“亲其师而信其道”,一名这样的英语教师在学生喜欢的环境下教学必定充满了教学乐趣,学生同时也

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获中心,抑制了两者的复合,以至于光催化活性有所提高,但也有的缺陷可能成为

异质结纳米材料光催化性能

密级★保密期限:(涉密论文须标注) Z S T U Zhejiang Sci-Tech University 硕士学位论文 Master’s Thesis 中文论文题目: p-n型Cu2O/TiO2异质结纳米材料的结构及其光催化性能研究 英文论文题目:Structure and photocatalytic performance of p-n heterojunction Cu2O/TiO2 nanomaterals 学科专业:应用化学 作者姓名:周冬妹 指导教师:王惠钢 完成日期:2015年1月

浙江理工大学学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江理工大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名: 签字日期:年月日

目录 中文摘要 ..................................................................................................................................... I Abstract .......................................................................................................................................... II 第一章前言. (1) 1.1背景 (1) 1.2文献综述 1.2.1纳米TiO2概述 (1) 1.2.2纳米Cu2O概述 (2) 1.2.3 p-n异质结用于光催化的基本原理 (2) 1.2.4p-n型Cu2O/TiO2异质结纳米材料光催化反应的研究进展 (4) 1.3本课题的选题思路及研究内容 (6) 参考文献 (7) 第二章还原法制备的Cu2O/TiO2异质结纳米颗粒及其光催化性能 (11) 2.1引言 (11) 2.2实验 (11) 2.2.1主要试剂和仪器 (11) 2.2.2实验方法和步骤 (12) 2.3实验结果与讨论 (13) 2.3.1Cu2O/TiO2颗粒的表征 (13) 2.3.1.1XRD表征 (13) 2.3.1.2XPS表征 (14) 2.3.1.3SEM与TEM表征 (15) 2.3.1.4PL表征 (17) 2.3.1.5DRS表征 (18) 2.3.2光催化性能实验 (19) 2.3.2.1光催化降解装置 (19) 2.3.2.2对亚甲基蓝的光催化降解性能 (19) 2.3.3Cu2O/TiO2复合材料中Cu2O颗粒的粒径调控 (20) 本章小结 (23)

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

纳米复合材料制备

纳米复合材料制备文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发

生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。) 原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PVA[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合

纳米材料的一种制备方法

固液界面反应一水热晶化法制备二氧化锡纳米颗粒 一、简介 水热晶化法: 水热晶化法是合成无机纳米材料广泛采用的一种方法,装置简单,只需衬有聚四氟乙烯内胆的高压釜和加热设备(例如鼓风烘箱、油浴锅等)即可。在高温与溶剂自生高压的条件下,体系能够模拟自然界的成矿过程。水热晶化法的特点是适用范围广,可以用来制备各种金属氧化物、硫化物、磷酸盐等无机纳米材料。生产成本低,合成的材料纯度高,结晶度好。可以通过调节溶剂、物料配比、体系的pH值、有机添加剂等参数达到对粒径、形貌、结构的控制。 二氧化锡纳米材料的制备也常常运用水热晶化法。Chiu等人使用2-propanol 与蒸馏水作为混合溶剂,SnCl4?5H2O为锡源,在碱性条件下(pH=12)水热合成了3nm的SnO2纳米颗粒。Guo等人使用水热晶化法,通过调节SnCl4和NaOH的摩尔比,即体系的pH值,控制合成出空心微球、中空核-壳微球和纳米颗粒三种形态的二氧化锡。水热过程中,不同的结构导向剂也能控制二氧化锡的形貌结构。例如,Guo等人同样使用SnCl4玩为锡源,在CTAB模板剂的作用下,水热获得了棒状纳米二氧化锡。而Han等人换用环六亚甲基四胺作为结构导向剂,依旧使用SnCl4作为锡源,水热合成了核-壳结构的二氧化锡微球。Sun等人使用PVP(MW=30000)作为结构导向剂,并换用SnC12?2H2O作为锡源,双氧水预处理后,水热获得了蒲公英状二氧化锡。 在各种结构导向剂中,油酸分子由于能在颗粒表面选择性吸附,从而可以有效地引导各种结构的形成,并对纳米微粒起到稳定保护作用。 固液界面反应: 在纳米材料的制备过程中,通常会发生氧化、水解、沉淀等各种化学反应。利用在两相界面发生的化学反应来控制材料的合成引起了一定的关注。Kang等人利用水相与油相界面Sn2+的氧化反应制备出了不同粒径大小的二氧化锡纳米材料。由于水-油界面的存在,产物的结晶度比较高,尺寸分布也较窄。Deng等人使用PVP(MW=30000)作为保护试剂,乙二胺作为催化剂,过氧化氢作为氧化剂,室温下,利用单质锡块与水的界面发生的氧化反应,获得了由约3.8nm的纳米晶自组装形成的纳米球。纳米球的直径约为30nm,且具有良好的分散性。Wang 等人基于liquid-solid-solution(LSS)相转移原理合成了一系列纳米材料,其实也利用了界面间的化学反应。在这些利用界面反应控制纳米材料合成的文献中,有些纳米材料的制备其实也运用了水热晶化过程,综合利用了界面反应与水热晶化两者在材料控制合成方面的优势。 金属油酸盐是一种合成无机纳米材料比较理想的有机前驱物,它不能溶解于水或一些低碳醇(如乙醇)中,而会形成固液界面相。对于油酸锡而言,它又易发生水解反应。所以在本章中使用油酸锡作为锡源,利用固液界面反应-水热晶化过程来制备二氧化锡纳米材料。并且在油酸锡的水解过程中,可生成目前较受关注的油酸表面修饰结构导向剂。 二、实验步骤 所有原料均未作任何纯化处理,直接使用。首先,10mL去离子水中溶解

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

纳米材料在光催化中的应用

纳米材料在光催化中的应用 姓名:杨明学号:5400209157 班级:工管093班 摘要: 纳米技术是当今世界最有前途的决定性技术。以半导体材料为催化剂光催化氧化水中有机污染物在近年来受到广泛关注,许多研究工作者在有机物光催化氧化方面进行了大量研究工作,发现卤代芳香烃、卤代脂肪烃、有机酸类、染料、硝基芳烃、取代苯胺、多环芳烃、杂环化合物、烃类、酚类、表面活性剂、农药等都能有效地进行光催化反应,除毒、脱色、生成无机小分子物质,最终消除对环境的污染。纳米材料是晶粒尺寸小于100 nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等(1)。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。 引言: 此法能处理多种污染物,适用范围广,特别是对难降解有机物具有很好的氧化分解作用;还具有反应条件温和,设备简单,二次污染小,易于操作控制,对低浓度污染物及气相污染物也有很好的去除效果;催化材料易得,运行成本低;可望用太阳光为反应光源等优点,是一种非常有前途的污染治理技术。 关键字:纳米纳米材料纳米材料光催化纳米TiO2 水热合成法 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃(2)。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米TiO2在光催化领域已经显示出广阔的应用前景.但是,由于TiO2仅仅能吸收5%紫外区附近的太阳光而限制了它的广泛应用,许多研究试图通过表面改性与掺杂来扩大它的光谱响应范围和提高它的催化活性。有选择性的进行掺杂已被证明是一种提高半导体氧化物光催化活性的极其有效的方法,掺入一定的金属阳离子能极大的提高TiO2的光催化效率,最近有大量的关于通过掺杂来提高TiO2的光催化性能的报道,掺杂的半导体光催化材料由于其物理和光学性质的改变,通过扩展光响应范围和提高光生电荷的分,从而提高了光催化性能(2)。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景(3)。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子

纳米材料的特性和应用

纳米材料的特性和应用 摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。关键词纳米材料;分类;特性;应用;发展 1 引言 有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年 克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。 2 纳米材料及其分类 纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。 3 纳米材料的特性1 3.1 小尺寸效应 当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。 3.2 表面效应 纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比

环氧树脂_二氧化钛纳米复合材料的制备及性能

环氧树脂/二氧化钛纳米复合材料的制备及性能 作者:董元彩, 孟卫, 魏欣, 杨绪杰, 陆路德, 汪信 作者单位:南京理工大学材料化学教研室,210094 刊名: 塑料工业 英文刊名:CHINA PLASTICS INDUSTRY 年,卷(期):1999,27(6) 被引用次数:74次 参考文献(11条) 1.Shang SW;WilliamsJ W查看详情[外文期刊] 1994(29) 2.ShangSW;WilliamsJW查看详情 1995(30) 3.黄锐;徐伟平查看详情 1997(03) 4.熊传溪;闻荻江;皮正杰查看详情 1994(04) 5.欧玉春;漆宗能查看详情 1997(02) 6.Henglein A查看详情 1989(89) 7.严东生查看详情 1995(01) 8.Rustum Roy查看详情 1987(18) 9.林鸿益查看详情 1994(06) 10.张宝龙;黄吉甫查看详情 1998(05) 11.邹盛欧查看详情 1996(09) 引证文献(74条) 1.吴宗汉.罗曼环氧树脂及涂料的增韧改性[期刊论文]-涂料工业 2009(12) 2.熊磊.王汝敏.梁红波.管静超支化聚合物接枝纳米TiO2/环氧树脂复合材料的制备与表征[期刊论文]-中国胶粘剂 2009(4) 3.齐鑫.邸明伟纳米技术在弹性体增韧环氧树脂中的应用[期刊论文]-粘接 2009(1) 4.颜正义.游长江.李瑶环氧树脂增韧改性的研究进展[期刊论文]-广州化学 2009(1) 5.吴捷.杨楠.吴大青聚合物基纳米复合材料的制备方法及其性能评述[期刊论文]-森林工程 2009(6) 6.欧宝立.李笃信表面修饰纳米SiO2增强增韧聚氯乙烯[期刊论文]-复合材料学报 2009(1) 7.江曙.廖立兵环氧树脂/金云母纳米复合材料的制备与表征[期刊论文]-矿物学报 2008(4) 8.狄宁宇.沈鉴烽.曹万荣.刘攀登.郑芳环氧灌封料中无机填料的研究[期刊论文]-绝缘材料 2008(5) 9.谢宇.曹黎华纳米粒子改性环氧树脂的研究进展[期刊论文]-应用化工 2008(3) 10.王合情.曹诺.肖卫东.胡高平纳米有机蒙脱土改性环氧树脂的研究[期刊论文]-现代塑料加工应用 2007(6) 11.王慧敏.柳婵.李清环氧丙烯酸酯/蒙脱土插层材料的研究[期刊论文]-烟台大学学报(自然科学与工程版)2007(3) 12.曹端庆.熊联明.覃毅.李璐.曾林辉.郭亮环氧树脂改性方法研究进展[期刊论文]-塑料科技 2007(11) 13.曹树祥.黎苇.余任亮纳米材料的特性及其在建筑涂料中的应用[期刊论文]-九江职业技术学院学报 2007(3) 14.陈士昆.吴杰颖.徐国财微米碳酸钙复合树脂制备及表征[期刊论文]-淮南师范学院学报 2007(3) 15.曹诺.肖圣洁.肖卫东三溴苯酚/环氧树脂活性阻燃体系的增韧研究[期刊论文]-塑料科技 2007(3) 16.魏建军.毕兴.姚建武纳米材料的特性及其在建筑涂料中的应用[期刊论文]-江西化工 2007(2)

浅谈纳米材料光催化技术研究现状

龙源期刊网 https://www.doczj.com/doc/0d9065666.html, 浅谈纳米材料光催化技术研究现状 作者:林雪牛文成 来源:《神州》2012年第29期 摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。 关键词:纳米材料,光催化 一、纳米材料的分类 人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正 式创刊标志着纳米科技从此正式开山立派。而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。 人们对于一门新学科——纳米材料学的研究已经有一定的进展。通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类: 1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。 2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。 3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。 二、纳米光催化技术的研究现状

相关主题
文本预览
相关文档 最新文档