当前位置:文档之家› 短波倒V天线单边振子长度数据及计算方式

短波倒V天线单边振子长度数据及计算方式

短波倒V天线单边振子长度数据及计算方式
短波倒V天线单边振子长度数据及计算方式

倒V天线单边振子长度数据及计算方式如下:

老业余无线电家们常说:有一部好电台,不如有架好天线。有短波电台的朋友都想有架八木天线,但制作或购买以及架设都有一定的负担。有短波的朋友常常为架设天线而犯愁,其实并不难。架设一架倒V天线取材容易、制作简单、架设也方便,两个人就可以架设调试成功。

1/4波长水平、倒V天线长度的计算公式:光速/频率/4*95%=(单臂)长度

21.400MHz天线的计算长度300000/21.4/4*95%=3330mm

14.270MHz天线的计算长度300000/14.27/4*95%=4993mm

7.05MHz天线的计算长度300000/7.05/4*95%=10107mm

29.60MHz天线的计算长度300000/29.60/4*95%=2667mm

以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于1.2即可)。

例如:假设我们的目标频率是21.400MHz上述天线SWR最小值时候的频率读数是19.896MHz。

读数差=21.400MHz-19.896MHz=1.504MHz=1504KHz

计算得知15米波段每KHz对应修剪长度为0.025cm:

15米波段半波振子总修剪值=1504X0.025=37.6(cm)

振子两边对称剪去37.6/2=18.8(cm)

修剪振子要留有余地,差别越小越要细心,防止修剪过多。还要注意测试人员尽量远离天线振子,或站在偶极天线中间馈电点附近测试,减少人体干扰。另外,使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。

水平偶极天线角度与阻抗的关系如下:

水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。

使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。

补充:直接将各波段并联比采用振子串陷波器的方法简单。

天线隔离度

5G NR天线隔离度 5G NR(2.6GHz频段)与其它无线系统共址时,需预留足够的干扰隔离距离规避干扰,同时多系统共址时需要预留不同天馈系统间的安装和维护空间,因此建议: (1)5G NR(2.6GHz)系统与D频段TD-LTE系统邻频,需要时隙对齐避免交叉时隙干扰。 (2)5G NR大规模天线阵与GSM/NB-IoT(900MHz)CDMA 1X/NB-IoT(800MHz)/FDD LTE(900MHz和1.8GHz)/WCDMA/FDD LTE(2.1GHz)/TD-SCDMA(A频段)/TD-LTE(F频段)/5G NR(3.5GHz)/5G NR(4.9GHz)定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m;垂直距离≥0.3m。 (3)5G NR大规模天线阵与DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.9m;垂直距离≥0.3m。 (4)如果安装空间有限,可以适当缩减隔离距离,以不影响天馈系统安装和维护为宜。同时隔离距离不应该小于下表所示数值: 表 10.1-1 5G NR(2.6GHz频段)与其它移动通信系统共站站时的隔离距离要 求 1.15G NR( 2.6GHz频段)与其他无线电台(站)的干扰协调 根据中国人民共和国无线电频谱划分方案,在5G NR系统使用的2600MHz 频段(2500~2690MHz)附近,有低端和高端无线系统存在。 (1)低端:2483.5~2500MHz频段,分配给移动、固定、无线电定位、卫星移动(空对地)、卫星无线电测定(空对地)使用。

(2)高端:2690~2700MHz频段,分配给卫星地球探测、射电天文以及空间研究业务;2700~2900MHz频段,分配给航空无线电导航、无线电定位业务使用。 在2.6GHz频段低端,主要是5G NR与北斗一代导航系统的干扰。在2.6GHz 频段高端,主要是5G NR与航空无线电导航系统的干扰。 (1)5G NR与北斗一代导航系统的干扰协调 5G NR与北斗一代导航系统的干扰主要是5G NR基站和终端对北斗系统终端的干扰。 如果以被北斗系统终端的接受机灵敏度降低1dB为其干扰保护标准,则需要的干扰隔离距离要求如下表: 表10.0-1 5G NR(2.6GHz)与北斗一代卫星导航系统干扰隔离要求 考虑北斗系统终端的移动性,其所受到的干扰为瞬态干扰,因此从整体看,5G NR与北斗系统基本满足共存的要求。 为规避对北斗系统终端的干扰,除增强北斗系统终端的抗干扰能力外,建议综合采取以下干扰缓解工程措施: ①5G NR基站选址及建设时,保证周围一定范围内没有用户活动。 ②通过网络优化实现5G NR网络的良好覆盖,避免5G NR基站和终端以最大功率发射。 (2)5G NR与航空无线电导航系统的干扰协调 航空无线电导航业务属于重要的无线电业务,根据《中华人民共和国无线电管理条例》规定,在导航雷达周围应设置电磁环境保护区。保护区范围由各地无线电管理机构协调相关单位,结合当地地理地形等因素确定。从干扰规避的角度,干扰保护区的范围在视距范围外,且大于850米。 除设置电磁环境保护区外,为规避对5G NR与导航雷达的干扰,建议综合采取以下干扰缓解工程措施: ①提高5G NR基站在2700~2900MHz的抗阻塞指标。 ②5G NR天线最大辐射方向严禁朝向导航雷达。

短波倒V天线单边振子长度数据及计算方式

倒V天线单边振子长度数据及计算方式如下: 老业余无线电家们常说:有一部好电台,不如有架好天线。有短波电台的朋友都想有架八木天线,但制作或购买以及架设都有一定的负担。有短波的朋友常常为架设天线而犯愁,其实并不难。架设一架倒V天线取材容易、制作简单、架设也方便,两个人就可以架设调试成功。 1/4波长水平、倒V天线长度的计算公式:光速/频率/4*95%=(单臂)长度 21.400MHz天线的计算长度300000/21.4/4*95%=3330mm 14.270MHz天线的计算长度300000/14.27/4*95%=4993mm 7.05MHz天线的计算长度300000/7.05/4*95%=10107mm 29.60MHz天线的计算长度300000/29.60/4*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于1.2即可)。 例如:假设我们的目标频率是21.400MHz上述天线SWR最小值时候的频率读数是19.896MHz。 读数差=21.400MHz-19.896MHz=1.504MHz=1504KHz

计算得知15米波段每KHz对应修剪长度为0.025cm: 15米波段半波振子总修剪值=1504X0.025=37.6(cm) 振子两边对称剪去37.6/2=18.8(cm) 修剪振子要留有余地,差别越小越要细心,防止修剪过多。还要注意测试人员尽量远离天线振子,或站在偶极天线中间馈电点附近测试,减少人体干扰。另外,使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。 水平偶极天线角度与阻抗的关系如下: 水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。 使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。 补充:直接将各波段并联比采用振子串陷波器的方法简单。

隔离度计算

直放站建设中隔离度问题的几点考虑 深圳市国人通信有限公司张学工丁天文 摘要:隔离度是无线同频直放站应用中非常重要的工程调整参数,在不同的应用中有着不同的调整,如果不注意,会对网络造成很大影响。本文根据实际应用的情况,总结了几种对隔离度调整的概念及方法,希望对使用直放站有所帮助。 关键词:直放站建设隔离度调整方法 隔离度定义为直放站输入端口信号对输出端口信号的衰减度,是功率之比,单位dB。隔离度是同频无线直放站建设中极为关键的因素,也是其它直放站调试中所必需注意的指标。针对在不同应用中的隔离度问题,本文将从四个方面进行分析,以求得到关于隔离度参数调整的一般方法。 1.无线同频直放站的隔离度问题 无线同频直放站采用同频放大转发的技术,施主天线和重发天线之间收到和发送的信号频率是一致的,又在开放的环境下收发信号,必然存在着信号的空间耦合。如果这种耦合度不控制在一定的范围之内,就有可能引起直放站设备的自激,这将对整个网络造成影响。降低耦合的重要方法是提高隔离度。因此也可以说隔离问题是用好同频无线直放站的关键问题。 1.1 无线同频直放站的隔离度的定义及测试 无线同频直放站的隔离度是指直放站的信号输入端口对信号输出端信号

的抑制度(或衰减度),它取决于施主天线和重发天线间的相对位置,也同天线的方向角、前后比等参数有关,由于直放站的上行频率和下行频率之间差别不大,所以上行隔离度和下行隔离度可以近似看成相同。 在工程现场,多采用信号源加上频谱分析仪的方法现场测试,可以很方便的得到两个天线间的隔离度。 1.2自激的产生及同隔离度的关系 图1 同频无线直放站产生自激原理图 无线同频直放站在应用中最容易出现的问题就是自激,当系统内出现正反馈环路时,就会出现自激,如图1所示。这是自激产生原理图,施主天线从施主基站接收频率为f1的下行信号,经增益为G的直放站放大后,由重发天线发射出去(同频信号f1)。一部分信号再经过转发天线的后瓣(旁瓣)耦合到施主天线的后瓣(旁瓣),再由直放站放大。这样无线同频直放站就形成一个潜在的正反馈环路,测试和实践验证,当该环路满足下列关系式时直放站才能稳定而可靠工作,不会产生自激。 I-G≥15 (公式1)

短波天线原理和应用

短波天线的原理和应用 摘要:本文从电波传播和电离层分布特性的角度解释了短波电波辐射的特点,并介绍了常用短波天线的种类和特性。对各类短波天线的架设要求和注意事项给出了建议和参考。最后对短波天线的接地系统的设计给出了一些参考方案。 关键词:天线、电离层、极化、接地 1.序 无线电通信就是依赖于无线电电波在空间的传播而建立通信链路的,因此电波传播是 无线电的一个重要环节。对于不同的工作频段,电波的传播特性将有所不同。同时所采用的辐射天线也将有很大的不同。本文将就电波的传播特性和短波常用天线以及电台架设的注意问题作一些介绍。 1.1 电离层特性 电波在空间传播将会受到电离层的影响,尤其是中短波的传播就是依赖于电离层的反射进行传输的,因此对电离层应有一些了解。 a)电离层的产生 地球表面有1000公里高的大气层,由于太阳光辐射(x射线,紫外线)空气不断电离同时不断复合,这样空气中将存在着游离的带电粒子; b)带电粒子随高度增加而增加,在离地面较近的地方每立方米只有几个或几十个粒子,到接近1000公里时,每立方米将有上千或上万个带电粒子。因电离层一般按如下分层: C层D层E层F1层F2层 0~50kM 60~90kM 100~120kM 170~220kM 225~450kM c)电离层在白天、黑夜,一年四季将会有不同的变化。白天由于有阳光,低层(D层)电离层浓度升高,反之黑夜时将降低。一年四季变化也是由于因受阳光照射时间长或短而变化。 d)电离层在不断上下或水平运动,从而造成电波反射传播过程中的瑞利衰落和多普勒效应。 e)电离层具有非均匀分布性,类似云彩的特点,因而造成电波反射时的散射,多径时延。f)电离层对电波的吸收随工作频率升高而减少。对中长波吸收很大,如10~20kW的中波广播机覆盖面在100km左右,而1kW的短波可传送3000km。即频率愈高的中短波信号愈容易穿越低层(D层)的电离层。 1.2 大地对电波的影响 大地对电波的影响主要是地波传播的影响,大地不能视为良导体也不能视为绝缘体,由于地质不同应区分对待。 a)对于如海水、淡水、湿地,对电波的吸收较小,但由于地面反射波与入射波有180o 相位差,将会吸收紧靠地面的电波,使波瓣抬高; b)对于干燥地质对电波吸收会较大(主要对短波吸收); c)对于金属矿藏地质如铁矿地带,对电波吸收是非常大的,千万不要在这里设立电台(收发信台);

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

天线的最佳长度计算

天线的最佳长度计算 一段金属导线中的交变电流能够向空间发射交替变化的感应电场和感应磁场,这就是无线电信号的发射。相反,空间中交变的电磁场在遇到金属导线时又可以感应出交变的电流,这对应了无线信号的接收。 在电台进行发射和接收时都希望导线中的交变电流能够有效的转换成为空间中的电磁波,或空间中的电磁波能够最有效的转换成导线中的交变电流。这就对用于发射和接收的导线有获取最佳转换效率的要求,满足这样要求的用与发射和接收无线电磁波信号的导线称为天线。 理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。因此,天线的长度将根据所发射和接收信号的频率即波长来决定。只要知道对应发射和接收的中心频率就可以用下面的公式算出对应的无线电信号的波长,再将算出的波长除以4就是对应的最佳天线长度。 频率与波长的换算公式为: 波长=30万公里/频率 =300000000米/频率(得到的单位为米)) 例:求业余无线电台的天线长度 已知业余无线电台使用的信号频率为435MHz附近,其波长为: 波长= 300000公里/435MHz = 300000000/435000000 = 300/435 = 0.69米 对应的最佳天线长度应为 0.69/4 ,等于0.1725米

当频率为439MH时,大家可以将计算公式简化为 波长=300/439 =0.683米 最佳天线长度为0.683米/4,等于0.17米 注意:只要在金属体内有交变的电流,该金属体就要向空间辐射电磁波;反之,只要空间中有一定强度的电磁波信号,就会在该空间中的金属体上感应出交变的电流。天线与一般金属体的不同之处在于,天线强调了将金属体内交变电流最有 天线输入阻抗 天线输入阻抗是天线馈电点处的电压与电流之比。通常是一个复阻抗,而且是频率的函数。 驻波系数(VSWR) 驻波系数是天线馈线上的一个特征参数,它反映了天线输入阻抗与馈线特性阻抗的匹配程度,定义为馈线上最大电压与最小电压之比。 增益G 在天线输入功率相同的情况下,某天线在最大辐射方向的场强平方,与一理想的无方向性的点源在相同处产生的场强平方之比,常用分贝表示。 方向图 天线方向图用来描述电(磁)场强度在空间的分布情况,常用般功率波瓣宽度来表示方向图的宽度。 极化特性 天线极化特性表示天线在最大辐射方向上电场的极化形式。可分为线极化、圆

天线隔离度

1.各系统之间的干扰分析 1.1. 需考虑的干扰类型 由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。 1)杂散辐射(Spurious emissions) 由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。 邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。 2)接收机互调干扰 包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。 多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。 发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。 交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。 3)阻塞干扰 阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。被干扰系统可允许的阻塞干扰功率一般要求低于LNA的1dB压缩点10dB。 由于互调干扰主要出现在:有两个以上不同的频率作用于非线性电路或器件时,将由这两个频率互相调制而产生新的频率,若这个新频率正好落于某一个信道而为工作于该信道的接收机所接收时,此时所构成的接收机的干扰。本次共址建设的多个系统只是共用铁塔、机房等公共设施,收发信机间并不共用电路或器件,所以不会直接共同作用在非线性器件上,间接落在某系统非线性器件上的不同频率分量一般强度不高,产生的新频率分量较微弱。而且,互调干扰产物与各频率分配有关,可以通过频率规划(所分配频段内的频率调整),避免互调产物落在被干扰系统工作频点上。所以,本方案可以不考虑互调干扰,重点分析杂散干扰和阻塞干扰,并且按照两者中受限的一种,分析共址时的干扰抑制方案;由于基站发射功率大、接收灵敏度高,所以本例中多系统共址时主要考虑基站与基站之间的干扰。

系统间隔离度及天线间距计算举例

WLAN 系统中和共址时 天线之间的最小间距计算 (版权所有) 我们选取以下模型来计算 WLAN 系统隔离度和室内分布中和共址时天 线之间的最小间距 干扰站 y y 被干扰站 图1两牛对W214扰校型 在这个模型中,从干扰源基站的功放输出的信号首先被发送滤波器滤波,然 后因两个基站间有一定的隔离而得到相应的衰减,最后被受干扰基站的接收 机所接收。 到达被干扰基站的天线端的杂散干扰功率可以表示: lb 二Ptxamp-Patte nutio n-lisolatio n+10*lg(BW1/BW2) 变形得: Iisolatio n=Ptxamp-Patte nutio n-Ib+10*lg(BW1/BW2) 其中: I 旳发找火亦干 脱电平 计以法L 卜旳千祝电平 的干九毗平

isolation :天线隔离度(dB) Ptxamp:干扰源功放输出杂散功率指标(dBm) Patte nuation:限带滤波器带外衰减 lb :允许最大杂散干扰(杂散干扰不应该大于带内总的热噪声Pn) BW1:被干扰基站信号带宽 BW2:干扰信号可测带宽 ( 1 )计算WLAN 频段和频段工作信道带宽内总的热噪声功率。 WLAN频段工作信道带宽为22MHz,因此WLAN频段工作信道带宽内总 的热噪声功率: Pn=-174dBm+10lg(22 ^HZ)=-101dBm WLAN频段工作信道带宽为20MHz,因此WLAN频段工作信道带宽内总的热噪声功率: Pn=-174dBm+10lg(20 ^HtQ二-101dBm (取值四舍五入,实际计算值均小于-101dBm) 则lb= Pn=-101dBm 2)根据我国无委型号核准测试标准, WLAN 杂散指标为-30dBm/MHz; 则:干扰源功放输出杂散功率指标: Ptxamp() =22 MHz &30dBm/MHz) =( 10lg22-30) dBm=-17 dBm Ptxamp ()=20 MHz x(-30dBm/MHz) = (10lg22-30) dBm=-17 dBm (取值四 舍五入,实际计算值均小于-17 dBm) 则Ptxamp=-17 dBm (3)常用WLAN设备的限带滤波器带外衰减Pattenuation为80dB 4) 10*lg(BW1/BW2)

短波天线尺寸计算

短波天线尺寸计算 计算方法: 用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是波长为单边振子长度,再去93--97%的缩短率: 比如: 频率 7.05兆的单边振子xx为: 10.64米,加上 0.3米作为修剪余量;l* p" u;[6 q!L/p7B5s: }6频率 14.22兆的单边振子xx为: 5.3米,加上 0.3米的修剪余量; 频率 21.26兆的单边振子xx为: 3.53米,加上 0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。 主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于 1.3。 倒V天线单边振子长度数据及计算方式如下:

水平、倒V天线计算公式 /4波长水平、倒V天线xx的计算公式: 光速/频率/4*95%=(单臂)xx 21.400MHz天线的计算长度3000/ 21.*95%=3330mm 14.270MHz天线的计算长度3000/ 14.*95%=4993mm 7.05MHz天线的计算长度3000/ 7.*95%=107mm 29.60MHz天线的计算长度3000/ 29.*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm 左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。 或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于 1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于 1.2即可)。 例如: 假设我们的目标频率是 21.400MHz上述天线SWR最小值时候的频率读数是 19.896MHz。

天线隔离度要求.docx

精品文档 1、LTE-D频段天线隔离度要求 : GSM/DCS符合 3GPP TS 05.05 V8.20.0 (2005-11 )规范要求时, TD-LTE 线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直 距离≥ 1.8 m ; GSM/DCS符合 3GPP TS 45.005 V9.1.0 (2009-11)规范要求时,TD-LTE 线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.3m。 TD-LTE线阵和 CDMA 1X定向天线之间间距要求:并排同向安装时,建议采用垂 直隔离方式,垂直距离≥ 2.7m。 TD-LTE 线阵和 CDMA2000定向天线之间间距要求:并排同向安装时,建议采用 垂直隔离方式,垂直距离≥ 2.7m。 TD-LTE线阵和 WCDMA定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥ 0.2m TD-LTE与 TD-SCDMA隔离要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥ 0.2m。 2、LTE-F 频段天线隔离度要求 : TD-LTE 线阵和 GSM/DCS定向天线之间间距要求:并排同向安装时,水平隔离 距离≥ 0.5m,垂直距离≥ 0.3m。 TD-LTE 线阵和 CDMA 1X定向天线之间间距要求:并排同向安装时,建议采用垂 直隔离方式,垂直距离≥ 2 m。 TD-LTE 线阵和 CDMA2000定向天线之间间距要求:并排同向安装时,建议采用 垂直隔离方式,垂直距离≥ 3 m。 TD-LTE线阵和 WCDMA定向天线之间间距要求:并排同向安装时,水平隔离距离 ≥ 0.5m,垂直距离≥ 0.2m。 3、GPS 天线安装位置应高于其附近金属物,与附近金属物水平距离大于等于 1.5 米,两个或多个 GPS天线安装时要保持 2 米以上的间距 4、不同扇区的天线之间间距应在 2 米以上; a) 铁塔顶平台安装全向天线时,天线水平间距必须大于4m。 b) 全向天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3m。 c)同平台全向天线与其它天线的间距应大于 1.5m。 d)上下平台全向天线的垂直距离应大于1m。5、 定向天线 同一小区两单极化天线在辐射方向上间距应大于 4m。(最小不小于 3.5m)相 邻小区间两天线间距应大于 0.5m。 上下平台间天线垂直分极距离应大于 1m。 900MHz天线和 DCS1800MHz天线安装与同一平台上时,天线水平间距应大于 1m。 微波天线与 GSM天线安装于同一平台上时,微波天线朝向应处于 GSM同一小区两天线之间。

收发天线隔离度

收发天线隔离度? 在安装天线时, 一般要求天线的水平隔离度约为 5 λ至10 λ, 垂直隔离度约为 1 λ。 GSM系统中天线隔离度为避免交调干扰,GSM基站的收、发信机必须有一定的隔离,Tx-Rx:30dB;Tx-Tx:30dB。这同样适用于GSM900和GSM1800共站址的系统。天线隔离度取决于天线辐射方向图和空间距离及增益,通常不考虑电压驻波比引入的衰减。其计算如下: 垂直排列布置时,Lv=28+40lg(k/ ) (dB) 水平排列布置时,Lv=22+20lg(d/ )-(G1+G2)-(S1+S2) (dB) 其中,Lv为隔离度要求,λ为载波的波长k为垂直隔离距离,d为水平隔离距离,G1、G2 分别为发射天线和接收天线在最大辐射方向上的增益(dBi),S1 、S2 分别为发射天线和接收天线在90°方向上的副(dBp,相对于主波束,取负值)。通常65°扇形波束天S约为-18dBp,90°扇形波束天线约为-9dBp,120°扇形波束S约为-7dBp,这可以根据具体的天线方向图来确定。采用全向天线时,S为0。 GSM900和GSM1800两系统天线支架应满足以下要求: 定向天线 同一系统内,同扇区两天线水平隔离间距≥4m;不同扇区两天线水平间距≥0.5m; 两系统间,同扇区两天线同方向时,天线水平隔离间距≥1m; 天线垂直隔离间距≥0.5 米;天线底部距楼顶围墙≥0.5米; 天线下沿和天线面向方向上楼顶的连线与水平方向的夹角>150; 全向天线 天线水平间距≥10米或天线垂直间距≥0.5米;天线下沿距楼顶围墙≥0.5米 ●水平隔离度Lh是收发信天线在水平间隔距离上产生的空间损耗,表示公式如下: Lh=22.0+20lg(d/λ)-(Gt+Gr)+(Dt+Dr) 其中:22.0为传播常数;d为收发天线水平间隔(m);λ为天线工作波长(m);Gt、Gr分别为发射和接收天线的增益(dB);Dt、Dr分别为发射和接收天线的水平方向性函数造成的损耗,具体数值可以在天线方向图中查得,当收发天线夹角为180°时,方向性损耗即为天线的前后比。 ●垂直隔离度Lv是收发信天线在垂直间隔距离上产生的空间损耗,表示公式如下:

天线知识

1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:(1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚gov-ern-ment的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因, 而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很

小型高效短波天线M-409

小型高效短波天线M-409的调试与使用 M-409天线是BD8ABM于2005年4月9日一次试架成功的。因通联效果好,很多HAM要求公开数据和出套件,经过BD8ABM 一个月的试用和野外架设,感觉性能和W-8010一样,效率与1/2波长五段倒V无明显差别,因此向大家郑重推荐。一年多来,这款适合DIY的五波段短波天线,因可以水平、倒V架设,占地面积小、效率高,受到全国各地HAM的喜爱。在天线的调试和使用过程中,各地的HAM就该天线的使用环境及灵活组合等与BD8ABM进行了广泛地探讨和研究。 为了使更多的HAM方便地了解和掌握409天线的使用,经征得BD8ABM的同意,本人把一年来各地HAM在网上关于该天线的调试方法及使用技巧等内容的帖子整理成文件免费供大家下载参考学习。(加粗字体为BD8ABM的回帖) 祝各位通联愉快! 73! M-409缩短五波段短波天线数据 1. 线圈参数 频率 线圈直径(毫米) 线圈圈数(匝) 3.5MHZ 40 毫米 73匝 7MHZ 40 毫米 19匝 14MHZ 40 毫米 13匝 2. 振子线参数 振子线编号 长度(毫米) 数量(根) 振子线A 3760 毫米 2根 振子线B 4230 毫米 2根 振子线C 2820 毫米 2根 振子线D 2830 毫米 2根 振子线E 1410 毫米 2根 调整用线须 410 毫米 6根 3. BALUN 磁环 30*6*16mm 线径1.0mm 3根绞合绕6~8圈 注:以上数据经用150W/FM连续工作30分钟试验,BALUN微热,工作正常。 *因改进而有所变化,恕不另行通知。 M-409天线陷波线圈使用说明 天线各部见图1 建议您采用外径4毫米的多芯铜导线做振子,各段的长度为A段3.76米2根, B段4.23米2根, C段2.82米2根, D 段2.83米2根, E段1.41米2根, 另外再用6根外径4毫米长度为0.4米的多芯铜导做调整线须;振子线A .B. D两端都要用冷压接线端头与BALUN. 线圈连接,C. E一端用冷压接线端头与线圈连接,另一端与绝缘子连接(留出0.4米做调整线须)见图2

天线基本参数说明

天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。这些参数是衡量天线质量好坏的重要指标。 【天线的方向性】是指天线向一定方向辐射电磁波的能力。它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。所以方向性是衡量天线优劣的重要因素之一。天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的性和抗干扰性。 【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。 实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。在这个立体图中,由于所取的截面不同而有不同的方向性图。最常用的是水平面的方向性图(即和平行的平面的方向性图)和垂直面的方向性图(即垂直于的平面的方向性图)。有的专业书籍上也称赤道面方向性图或子午面方向性图。 【波瓣宽度】有时也称波束宽度。系指方向性图的主瓣宽度。一般是指半功率波瓣宽度。当 L/λ数值不同时,其波瓣宽度也不同。L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。因此,波瓣宽度越小,其方向性越强,性也强,干扰邻台的可能性小。所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。 任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。 按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。 在中波和短波波段,方向性系数约为几到几十;在米波围,约为几十到几百;而在厘米波波段,则可高达几千,甚至几万。 【辐射电阻】发射天线的辐射功率与馈电点的有效电流平方之比,称为天线的辐射电阻。 辐射电阻是一个等效电阻,如果用它来代替天线,就能消耗天线实际辐射的功率。因此,采用辐射电阻这个概念,可以简化天线的有关计算。 辐射电阻的大小取决于天线的尺寸、形状以及馈电电流的波长。因为发射天线的任务是辐射电磁波,所以在装置天线时总是适当地选择其尺寸和形状,使辐射电阻尽可能大一些。

WCDMA共站址天线安装隔离度要求

WCDMA共站址天线安装隔离度要求 概述 随着运营商的增加和新移动系统的应用,同一站点出现几种制式共存的情况也将大大增加,由于基站天线的距离近,不同系统之间将产生干扰,如何避免、减少不同系统共站址时相互之间的干扰就成为一个突出的问题。共站址干扰主要是由一个系统基站天线发射的(杂散、互调)信号被(同站址)另一个系统基站天线接收到,而形成了干扰(或阻塞)。根据WCDMA与其它移动系统的隔离度要求,本文给出了共站址时WCDMA天线的安装要求,可作为共基站建设时天线安装的指导或建议。 1 共站址隔离度分析 1.1 WCDMA BS与其它系统共站址协议分析 根据文献[1]~[5],WCDMA与GSM 900MHz、DCS 1800MHz、PHS BS、CDMA2000 BS 或TD-SCDMA BS共站址时,考虑其它系统杂散对WCDMA接收灵敏度的影响小于0.1dB,得到的隔离度要求如下表所示: 表1根据协议WCMDA与其它系统共站址时隔离度要求 根据协议分析,由上表可以看出,WCDMA和其它系统基站基本不可能做到共站址。如果要共站址,必须对其它系统基站在WCDMA接收频段的杂散辐射进行滤波。 1.2 WCDMA BS与其它系统共站址建议值 表2WCMDA与其它系统共站址时隔离度建议值

说明:根据协议WCDMA与GSM、DCS、CDMA2000系统间要求的隔离度非常高,在实际情况中,一般要求隔离度在40dB以上,所用60dB是考虑到可能各家的GSM、DCS、CDMA2000系统设备杂散不一致而留了干扰余量。 2 共站址天线安装要求 2.1 各种系统所使用的天线情况 各系统频段内天线均包括: 1.全向单极化:增益11dBi(GSM、DCS、CDMA、WCDMA),10dBi(PHS) 2.定向单极化:水平波瓣宽度65°、90°,增益15dBi(GSM、DCS、CDMA、WCDMA),增益18dBi(DCS,WCDMA) 3.定向双极化:水平波瓣宽度65°,增益15dBi(GSM、DCS、CDMA、WCDMA),增益18dBi(DCS,WCDMA) 其中PHS系统是如下的形式:由多个天线单元构成,天线的下倾角比较大,一般在100以上。 2.2 需要考虑的各种组合方式 1.WCDMA全向天线与其它系统全向天线间: WCDMA-GSM WCDMA-DCS WCDMA-CDMA WCDMA-PHS WCDMA-WCDMA 由于只考虑WCDMA系统与其它系统的隔离度,不考虑其它系统之间的要求。 2.WCDMA全向天线与其它系统定向天线间: WCDMA-GSM WCDMA-DCS WCDMA-CDMA WCDMA-WCDMA

短波天线

优化短波通信的方法 1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率: (1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线

天线的最佳长度及计算方法1

天線的最佳長度及計算方法 一段金屬導線中的交變電流能夠向空間發射交替變化的感應電場和感應磁場,這就是無線電信號的發射。相反,空間中交變的電磁場在遇到金屬導線時又可以感應出交變的電流,這對應了無線信號的接收。 在電臺進行發射和接收時都希望導線中的交變電流能夠有效的轉換成為空間中的電磁波,或空間中的電磁波能夠最有效的轉換成導線中的交變電流。這就對用於發射和接收的導線有獲取最佳轉換效率的要求,滿足這樣要求的用與發射和接收無線電磁波信號的導線稱為天線。 理論和實踐證明,當天線的長度為無線電信號波長的1/4時,天線的發射和接收轉換效率最高。因此,天線的長度將根據所發射和接收信號的頻率即波長來決定。只要知道對應發射和接收的中心頻率就可以用下面的公式算出對應的無線電信號的波長,再將算出的波長除以4就是對應的最佳天線長度。 頻率與波長的換算公式為:

波長=30萬公里/頻率 =300000000米/頻率(得到的單位為米)) 例:求業餘無線電臺的天線長度 已知業餘無線電臺使用的信號頻率為435MHz附近,其波長為: 波長= 300000公里/435MHz = 300000000/435000000 = 300/435 = 0.69米 對應的最佳天線長度應為 0.69/4 ,等於0.1725米 當頻率為439MH時,大家可以將計算公式簡化為 波長=300/439 =0.683米 最佳天線長度為0.683米/4,等於0.17米 注意:只要在金屬體內有交變的電流,該金屬體就要向空間輻射電磁波;反之,只要空間中有一定強度的電磁波信號,就會在該空間中的金屬體上感應出交變的電流。天線與一般金屬體的不同之處在於,天線強調了將金屬體內交變電流最有 天線輸入阻抗 天線輸入阻抗是天線饋電點處的電壓與電流之比。通常是一個複阻

天线隔离度要求

1、LTE-D频段天线隔离度要求: GSM/DCS符合3GPP TS 05.05 V8.20.0(2005-11)规范要求时,TD-LTE线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直距离≥1.8 m; GSM/DCS符合3GPP TS 45.005 V9.1.0 (2009-11)规范要求时,TD-LTE线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.3m。 TD-LTE线阵和CDMA 1X定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直距离≥2.7m。 TD-LTE线阵和CDMA2000定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直距离≥2.7m。 TD-LTE线阵和WCDMA定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.2m TD-LTE与TD-SCDMA隔离要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.2m。 2、LTE-F频段天线隔离度要求: TD-LTE线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.3m。 TD-LTE线阵和CDMA 1X定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直距离≥2 m。 TD-LTE线阵和CDMA2000定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直距离≥3 m。 TD-LTE线阵和WCDMA定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.2m。 3、GPS 天线安装位置应高于其附近金属物,与附近金属物水平距离大于等于1.5米,两个或多个GPS天线安装时要保持2米以上的间距 4、不同扇区的天线之间间距应在2米以上; b)全向天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3m。 c)同平台全向天线与其它天线的间距应大于1.5m。 d)上下平台全向天线的垂直距离应大于1m。 5、定向天线 同一小区两单极化天线在辐射方向上间距应大于4m。(最小不小于3.5m) 相邻小区间两天线间距应大于0.5m。 上下平台间天线垂直分极距离应大于1m。 900MHz天线和DCS1800MHz天线安装与同一平台上时,天线水平间距应大于1m。 微波天线与GSM天线安装于同一平台上时,微波天线朝向应处于GSM同一小区两天线之间。 直放站中的施主天线和重发天线应满足水平距离≥30 m,垂直距离≥15 m。

相关主题
文本预览
相关文档 最新文档