当前位置:文档之家› Bacterial succession in bioheap leaching

Bacterial succession in bioheap leaching

Bacterial succession in bioheap leaching
Bacterial succession in bioheap leaching

浅析植物抗逆性

浅析植物抗逆性 摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。 关键词:植物;抗逆性;基因 根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。 一.植物抗逆性的利用 1. 植物抗逆性与农业生产 早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。 时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。 2.植物抗逆性与环境 在对不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件下,绿化植物叶片的生长收到限制。PSII最大光化学效率下降,光合色素发生降解,细胞膜受到伤害。实验证明,根据不同植物在同种污染物作用下的伤害阙值不同,可以确定不同物种对此污染物的抗性等级。由于测定大量植株多项指标的伤害阙值不可行,因此可根据污染点与对照点相对值的大小判断植物抗性。实验数据表明,同一住屋不同生理指标对环境污染的响应不相同,从而,得到的抗性等级不同,本实验中只有少数生理指标反映出相同的抗性等级。大气状况使FV/Fm 等七个分析参数产生极显著差异,说明,大气污染直接影响这7个生理指标,子评价大气污染状况及植物

专业的电气设计软件SolidWorks Electrical

专业的电气设计软件SolidWorks Electrical 摘要 现在的设备制造可以说是机械设计与电气设计不分家.甚至一个工程师要完成机械设计与电气设计这两部分.南京东岱信息技术有限公司是SolidWorks老牌增值经销商,在与SolidWorks客户的技术沟通中,了解到机械设计部分SolidWorks是完成可以解决问题。而现有的电气部分很多还是在AUTOCAD的平台上,但是随着技术的发展,现有的电气设计工具已经不能满足电气设计工作量的增加和产品的节能减排要求。具体存在的不足之处大致如下: 1.缺少一个很好的电气设计项目管理理念,所有的项目设计数据之间缺少电气关联; 2.所有的电气设计全部使用CAD线条,缺少电气设计独有的电气属性,经常产生设计 错误; 3.电气符号之间缺少关联,更改过程繁琐,很难评估更改范围; 4.各种清单,包括接线表都需要人工统计,增加了错误产生的机率; 5.无法直接进行3D布线,获取布线的长度,造成连接线的大量浪费; 6.设计过程无法直接调用产品编码等,及时获取目前零部件的库存信息; 7.指导装配的是2D CAD图纸,因为接线比较多,很容易出现错误; 8.没有布线图指导现场布线等; 针对目前的现状与需求, SolidWorks Electrical软件帮助客户提高图纸的设计质量和效率,并且与企业的三维设计规范和信息化管理工具接轨;同时通过SolidWorks技术人员对国外先进的电气设计理念和设计方式的掌握,再结合软件应用,达到帮助企业培养合格设计人才的目的。 一. 项目技术方案 目前企业在设计方面,需要一个平台化的软件能够多方位的电气设计。结合目前设计中所遇的问题,SolidWorks针对性的阐释了SolidWorks Electrical在以下几个方面的能力:1.融入项目管理工具,图纸设计的高效性,准确性和安全性 传统的AutoCAD设计软件仅仅是停留在绘图模式上,着重于对于线条和图形的处理。SolidWorks Electrical作为专业的电气设计软件,拥有专业的设计工具,例如项目的管理、

声音引导系统(完整版)

2009全国大学生电子设计竞赛题目B: 《声音导引系统》 参赛学生: 指导教师: 学校:临沂师范学院 院系:信息学院

目录 一、设计任务与要求 (1) 二、系统整体设计方案比较与选择 (1) 三、设计与论证 (1) 1、电机运行速度设计 (1) 2、误差信号的产生 (2) 3、控制理论简单计算 (2) 四、电路设计 (2) 1、系统整体设计框 (2) 2、单元电路设计 (3) 1)可移动声源及声音接收器 (3) 2)电机驱动电路设计 (4) 3)无线收发模块 (5) 3、电源设计 (5) 五、软件设计 (6) 六、运行情况测试 (7) 1、声源速度测试 (7) 2.测试方法 (7) 3.测试数据 (7) 4.误差分析 (8) 七.设计总结 (8) 八.参考文献 (8) 九. 附录 (8) 十、结束语 (13)

声音导引系统设计与总结报告 摘要: 本文描述了声音导引系统的设计原理和实现方法。该系统由AT89S52单片机控制,双直流电机双轮驱动小车。通过NEC公司的ASSP电机控制芯片和单片机之间的串行通信实现可移动声源的运动。主控制器利用不同声音接收器间产生的误差信号,并用无线通信方式将此误差信号传输至可移动声源,引导其运动。到达目的地,发出声光信号。系统最大特点在于软件设计采用层次化、模块化的设计方法,使得复杂数学模型和控制算法得以简化和快速开发。经调试和测试,系统各项性能参数已基本达到设计指标。且本系统在设计中注意低功耗处理和力求高性价比等细节。 关键词: 声音导引 89S52单片机 ASSP芯片算法 Abstract T his system use two STC12C5A60S2 enhanced 51-series microcomputer, double dc motor drive car outfit. Through different voice signal method-the peak-trough received from various terminal, the car of distance, through wireless transmission module control vehicle, and control chip car movement, destination, a sound signal. This system in the design of low power consumption and high performance to such details.

膳食教案2动植物蛋白类食物

动植物蛋白类食物教案 一、每天吃奶类、大豆或其制品 奶类营养成分齐全。组成比例适宜,容易消化吸收。奶类除含丰富的优质蛋白质和维生素外,含钙量较高,且利用率也很高,是膳食钙质的极好来源。大量的研究表明,儿童青少年饮奶有利于其生长发育,增加骨密度,从而推迟其成年后发生骨质疏松的年龄;中老年人饮奶可以减少其骨质丢失,有利于骨健康。2002年中国居民营养与健康状况调查结果显示,我国城乡居民钙摄入量仅为389mg/标准人日,不足推荐摄入量的一半;奶类制品摄入量为27g/标准人日,仅为发达国家的5%左右。因此,应大大提高奶类的摄入量。建议每人每天饮奶300g或相当量的奶制品,对于饮奶量更多或有高血脂和超重肥胖倾向者应选择减脂、低脂、脱脂奶及其制品。 大豆含丰富的优质蛋白质、必需脂肪酸、B族维生素、维生素E和膳食纤维等营养素,且含有磷脂、低聚糖,以及异黄酮、植物固醇等多种植物化学物质。大豆是重要的优质蛋白质来源。为提高农村居民的蛋白质摄入量及防止城市居民过多消费肉类带来的不利影响,应适当多吃大豆及其制品,建议每人每天摄入30g~50g大豆或相当量的豆制品。 1、奶及奶制品的营养价值 奶类是一种营养成分齐全、组成比例适宜、易消化吸收、营养价值高的天然食品,主要提供优质蛋白质、维生素A、维生素B2和钙。牛奶中蛋白质含量平均为3%,消化率高达90%以上,其必需氨基酸比例也符合人体需要,属于优质蛋白质。脂肪含量约为3%~4%,并以微脂肪球

的形式存在,有利于消化吸收。碳水化合物主要为乳糖,有调节胃酸、促进胃肠蠕动和促进消化液分泌的作用,并能促进钙、铁、锌等矿物质的吸收以及助长肠道乳酸杆菌繁殖,抑制腐败菌的生长。牛奶中富含钙、磷、钾、且容易被人体吸收,是膳食中钙的最佳来源。 提示:优质蛋白质是指食物中含有的必需搭配种类齐全、数量充足、比例适宜,不但能维持成人的健康,并能促进儿童生长发育,如乳类中的酪蛋白、乳清蛋白、大豆中的大豆蛋白等。 2、奶及奶制品的常见品种 常见的奶类有牛奶、羊奶和马奶等鲜奶,其中以牛奶的食用量最大。进一步加工可制成各种奶制品,如奶粉、酸奶、炼乳、奶酪等。 液态奶指挤出的奶汁,经过滤和消毒,再经均质化,即成为可供食用的鲜奶。鲜奶经巴氏消毒后除维生素B1和维生素C略有损失外,其余营养成分与刚挤出的奶汁差别不大。 奶粉是液态奶经消毒、浓缩、干燥处理而成,其中对热不稳定的营养素(如维生素A)略有损失,蛋白质消化能力略有改善。奶粉可分为全脂奶粉、低脂奶粉、脱脂奶粉及各种调味奶粉与配方奶粉等。奶粉储存期较长,食用方便。 酸奶是指在消毒的鲜奶中接种乳酸杆菌后,经发酵培养而成的奶制品,易于人体消化吸收,除乳糖分解形成乳酸外,其他营养成分基本没有变化。酸奶更适宜于乳糖不耐受者、消化不良的病人、老年人和儿童等食用。

植物抗逆性研究进展

植物抗逆性研究进展 V A菌根真菌对植物吸收能力及抗逆性的影响研究进展 接种菌根真菌是一种提高农作物产量和质量的比较经济有效的新方法。V A菌根侵染能扩大寄主植物根系的吸收面积;能够改善水分运输,抵抗水分胁迫,提高植物抗旱性能;能够增强植物对矿物元素和水分的吸收能力,改变菌根根际土壤环境,并在根际生态系统中起重要作用。V A菌根真菌也可通过植物根系获得碳水化合物及其他营养物质,从而形成营养上的共生关系为植物提供生长所必需的氮等矿物营养;增强寄主植物光合作用及水分循环运转;提高植物对各种病虫害的抗性。可见,V A菌根真菌对植物的生长具有极其重要的生态价值和经济价值。 电场处理对毛乌素沙地沙生植物抗逆性影响的研究进展 自2002年以来,将电场技术应用于毛乌素沙地沙生植物抗逆性研究中,结果表明,恰当的电场处理更有利于种子的萌发及苗的生长,增强了其抗旱抗寒能力。 多胺与植物抗逆性关系研究进展 在逆境条件下,植物会改变生长和发育类型以适应环境。许多研究表明,在各种逆境协迫下,植物体中多胺水平及其合成酶活力会大量增加,以调节植物生长、发育和提高其抗逆能力,这种反应对逆境条件下的植物可能有意义。就目前的资料来看,多胺之所以能提高植物的抗逆性其机制可能是:①通过气孔调节和部分渗透调节控制逆境条件下水分的丢失。Liu等的研究表明,多胺以保卫细胞中向内的K+-通道作为靶点,调节气孔的运动[10]。多胺还可作为渗透调节剂,其积累可增加细胞间渗透,部分调节水分丢失。②调节膜的物理化学性质。多胺可与膜上带负电荷的磷脂分子头部及其他带负电的基团结合,影响了膜的流动性,同时也间接地调节膜结合酶的活性。③多胺可影响核酸酶和蛋白质酶特别是与植物抗逆性有关的保护酶活性,保护质膜和原生质不受伤害。④清除体内活性氧自由基和降低膜脂过氧化。⑤调节复制、转录、翻译过程。 尽管多胺对植物抗逆性起积极作用,但植物的各种抗性性状是由多个基因控制的数量性状,很难用转基因的方法将如此众多的外源基因同时转入一种植物中并进行表达调控,更何况还有很多与抗性有关的基因尚未发现,这说明植物抗性机制是复杂的。迄今,多胺合成代谢中的3个关键酶ADC、ODC、SAMDC已在许多植物中得到了纯化和鉴定,它们的基因也从多种植物中克隆,并采用转基因技术获得了一些认为多胺可提高植物抗性的证据,但多胺在植物中的载体是什么,植物对多胺的信号感受和传递途径怎样,多胺通过怎样的信号转导通路作用于植物的抗性基因,作用于哪些抗性基因,进而在转录和翻译水平上调控这些基因的表达,控制胁迫蛋白的水平,都还不清楚。因此,采用各种手段,特别是分子生物学的方法研究多胺对植物作用的多样性和提高植物抗胁迫的分子机制、多胺作用的信号转导是值得考虑的 多效唑提高植物抗逆性的研究进展 多效唑是英国ICI有限公司在20世纪70年代末推出的一种高效低毒的植物生长延缓剂和广谱性的杀菌剂[1],因此它对多种植物都有调节生长的效应。多效唑还能引起植物体内一系列的代谢和结构变化,增强植物的抗逆性[2],并兼有杀菌作用。本文仅就多效唑提高植物的抗逆性方面作一简要综述,以期为该领域的研究提供借鉴。 钙与植物抗逆性研究进展 钙是植物必需的营养元素,具有极其重要的生理功能。植物在缺钙条件下,出现与缺钙有关的生理性病害,如苹果果实缺钙可导致苦痘病、水心病和痘斑病等在采前或贮藏期间的生理病害[1]。早在19世纪,钙就被列为植物必需营养元素,并与氮、磷、钾一起称为“肥料的四要素”。钙有“植物细胞代谢的总调节者”之称,它的重要性主要体现在钙能与作为胞内信使的钙调蛋白结合,调节植物体的许多生理代谢过程[2,3],尤其在环境胁迫下,钙和钙调素参与胁迫信号的感受、传递、响应与表达,提高植物的抗逆性[4]。近十几年来,有关钙素营养生理及钙提高植物抗逆性的研究已取得许多进展,现综述如下。 目前,国内外对钙生理及抗逆性研究已经取得了很大进展,但是前人的工作主要侧重于外源钙对植物的影响,对细胞内钙的作用的细节研究得不够深入细致。以下几个方面的问题亟待深入研究:(1)植物是如何感受到逆境信号以及这些信号是如何由激素传导的;(2)激素是如何把逆境信号通过细胞膜传递给钙信使系统的;(3)钙信使系统如何一步步激活靶酶将逆境信号转变为植物体内的生理生化反应从而使植物适应环境胁迫的;(4)钙信使系统与其它胞内信使是如何一起协调调节植物激素的生理反应的。相信随着植物生理学和分子生物学的发展及研究的一步步深入,人们对以上这些问题一定会有日益透彻的认识。这些问题的解决,将使钙生理及抗逆性的研究更加深入,使钙素营养的研究和应用走向新的辉煌 硅与植物抗逆性研究进展 果聚糖对植物抗逆性的影响及相应基因工程研究进展 果聚糖是一类重要的可溶性碳水化合物,其在植物中的积累可提高植物的抗逆性。本文除了介绍果聚糖的有关知识外,重点综述了果聚糖对植物抗逆性的影响,并从果聚糖对渗透的调节,对膜的保护,在低温、干旱条件下果聚糖相关酶活性变化方面阐述了果聚糖抗旱、抗寒机制。此外,综述了提高果聚糖积累方面的基因工程研究进展及存在的相关问题。

植物生理学

光合作用 1、光合作用的气孔限制与非气孔限制,判断。气孔限制值的计算,优缺点? 2、叶绿素荧光诱导动力学曲线,可以测定哪些叶绿素荧光参数?有什么生理意义? 叶绿素荧光诱导动力学是指当暗适应的绿色植物材料转至光下时,其体内叶绿素荧光强度会产生有规律的随时间的变化 3、光合作用的光抑制,衡量指标,植物光保护机制? 4、水孔蛋白的种类和功能? 5、渗透调节,植物相容性物质的作用机理? 6、植物激素的研究进展?测定植物激素的方法?优缺点 7、根系化学信号,植物感知土壤干旱信息并调控气孔运动 8、植物次生代谢物,植物次生代谢物的合成途径及生理功能 9、植物热激蛋白,LEA蛋白质 10、 11、植物的抗盐性,antiport 简述植物光系统的结构和功能 矿质离子营养 1、什么是离子吸收动力学曲线,其参数意义是什么? 2、为什么低亲和力的硝酸盐吸收也需要H+--ATPase的参与? 3、与其他的养分离子相比,硝酸盐转运蛋白基因表达的调节有何特点? 4、钾离子运输蛋白有哪几类?有何特点? 5、不同植物铁吸收运输机制有什么不同,有哪些基因参与? 光受体 1、光敏色素发现的意义何在?举例说明PHY在植物的个体发育过程中有哪些作用?例:、1、光敏色素与植物光周期反应 2、光敏色素与生理节律现象 3、避阴反应 4、光敏色素对植物激素等成分的调节作用 1.种子萌发 2.弯钩张开 3.节间延长 4.根原基起始 5.叶分化和扩大 6.小叶运动 7.膜透性11.光周期 12.花诱导 13.子叶张开 14.肉质化 15.偏上性 16.叶脱落 17.块茎形成 18.性别表现 19.单子叶展叶 20.节律现象 8.向光敏感性 9.花色素形成 10.质体形成 2、简述PHY的三种反应类型VLFR、LFR、HIR的作用特点 光敏色素的反应可按它们对光量的需求进行区分 每个光敏色素的反应都有特定的光通量范围,在此范围内,反应幅度与光通量成正比。这些反应根据所需要的光量可分为三个类型: 极低辐照度反应(VLFR) 这类反应可以被10-4~10-2μmol/㎡的红光或远红光诱导,但红光反应不能被远红光所逆

B题 声音导引系统 (四川.西南科技大学)

声音导引系统 西南科技大学姜军周仁彬丁华建 赛前辅导教师:张华文稿整理辅导教师:王姮梁艳阳 摘要:系统以A VR系列Mega88为主控模块,采用NEC的电机控制芯片MMC-1控制L298N,实现可移动声源的运动控制。主控模块通过PWM控制L298N驱扬声器发音,同时接收接收器反馈的声源位置信息,经滤波处理并计算出声源当前的位置以及得到新的运动方向后,通过PID位置控制算法控制步进电机实现可移动声源的高速高精度声音引导定位。 关键字:声音引导,运动控制,PID算法 Abstract: The designed system realizes the motion control of the mobile sound source based on main process unit (MPU) A VR Mega88 MCU and NEC’s motor control chip MMC-1 controlling L298N chip. The MPU controls L298N by PWM method to drive the speaker, receiving feedback information from the receiver, and calculate the sound source’s current location and the moving direction after information filtering. Afterward, the high-speed high precision steering control according to sound source can be implemented through the PID control for stepping motor. Keywords: guide by sound, motion control, PID algorithm. 1 系统方案设计 1.1 系统方案 根据题目的功能及参数要求,本系统基本结构示意图如图1所示。 图1 系统结构示意图 声源检测、主控模块、电机驱动及信号无线传送方式等的方案选择情况如下:1)声源检测:(方案一)用运算放大器将拾音器输出的微弱电信号放大,用LM393比较器产生方波信号,以触发单片机中断,但由于有较多的干扰信号,使音频信号无法正确提取,还会至使控制器死机。(方案二)用驻极体话筒作为拾音器,经KIA4558运算放大器前级滤波放大、KIA4558组成二阶有源带通滤波器

动植物蛋白源替代鱼粉的研究进展

动植物蛋白源替代鱼粉的研究进展 1 鱼粉 1.1 鱼粉的特点 由于鱼粉具有必需氨基酸和脂肪酸含量高,碳水化合物含量低,适口性好,抗营养因子少以及能够被养殖动物很好的消化吸收等特点,一直以来是水产饲料中不可或缺的优质蛋白源。鱼粉在饲料中的营养作用主要是提高氨基酸平衡性和利用效率,与其它蛋白原料相比,有比较显著的优势。但鱼粉的作用不仅在于其蛋白、氨基酸的作用优势, 还在“未知生长因子”、维生素、微量元素等方面具有营养作用优势。 1.2 无鱼粉或低鱼粉饲料技术对策 在所有的饲料原料中,鱼粉在促进养殖动物生长、提高饲料利用效率方面的效果是最为明显的。在配合饲料中,是否使用鱼粉及使用量不同所获得的养殖效果会有很大的差异,即饲料中鱼粉的使用量与养殖鱼产品的生长速度、饲料效率具有显著的正相关关系, 鱼粉在配合饲料中的使用对配合饲料的质量有非常直接的关系。如在草鱼、武昌鱼饲料中基本不用鱼粉,但是使用1% ~2%的鱼粉后,鱼生长速度可以提高10%以上,同时鱼体的生理机能也会得到改善。因此,在不使用鱼粉或低鱼粉饲料中考虑的技术处理主要包括以下几方面的内容。 1.2.1 配合饲料中氨基酸的平衡性和有效性 蛋白质的营养实际上是通过氨基酸的营养作用来实现的,因此,在无鱼粉或低鱼粉饲料中优先考虑的技术处理是氨基酸的平衡性。由于鱼类对单体氨基酸的利用效果很差, 在部分种类鱼中使用单体赖氨酸、蛋氨酸是没有效果的。对于饲料氨基酸的平衡就只能依赖于饲料原料中氨基酸的互补作用来实现, 在设计无鱼粉或低鱼粉饲料配方时可以选择肉粉、肉骨粉、豆粕、菜粕、棉粕等通过比例调整来实现必需氨基酸的平衡。氨基酸平衡效果的评判可以采用必需氨基酸模式相关系数的大小来判定,即以养殖对象鱼肌肉必需氨基酸模式作为标准模式, 将配方中必需氨基酸模式与此进行比较, 计算两组模式的相关系数, 相关系数越大, 表明配方中必需氨基酸的平衡效果越好。但要考虑氨基酸的利用率问题, 即必需氨基酸的有效性问题。有些原料虽然蛋白含量很高, 但消化利用率很低, 如羽毛粉、皮革粉蛋白含量可以达到80% 以上, 但消化率只有30%左右, 无论是单独使用或是加人鱼粉(掺假鱼粉)中, 均会使配方中必需氨基酸的有效性显著降低。因此,在计算必需氨基酸平衡效果时, 尽可能选择消化率高的饲料原料组成配方来进行必需氨基酸的平衡。

植物抗逆性研究进展.

植物抗逆性研究进展 作为生态系统的重要组成部分,植物无时无刻不在自身所处同环境进行着物质,信息和能量的交换。自然生态系统中与植物相关的因子多种多样,且处于动态变化之中,植物对每自然界中的一个因子都有一定的耐受限度,即阈值。一旦环境因子的变化超越了这一阈值,就形成了逆境。因此,在植物的生长过程中,逆境是不可避免的。植物在长期与自然界相抗争的进化过程中,形成了相应的自我保护机制,从感受环境条件的变化到调整体内新陈代谢,直至发生有遗传性的根本改变,并且将抗性遗传给后代。研究逆境对植物造成的伤害以及植物对此的反应,是认识植物与环境关系的一条重要途径,也为人类控制植物的生长条件提供了可能性。以下从逆境引起的膜伤害、细胞内生化效应等方面探讨植物抗逆生理学的一些重要问题。1逆境引起的膜伤害 1.1影响膜透性及结构 细胞膜作为联系植物细胞与外界的介质,它的组成、性质与细胞所处的环境息息相关,而外界环境对植物的胁迫危害,首先在膜系中有所表现。干旱、低温、冻害、高盐碱度等几种胁迫,无论是直接危害或是间接危害,都首先引起膜通透性的改变。至于膜上酶蛋白的变化以及脂类的组成也可随着胁迫的深化而有所改变,目前,这方面研究最深入的是低温引起膜脂相变的假说[1]。在此之后,大量试验证明,膜脂的组分和结构与抗冷力密切相关。构成膜脂的多种磷脂中,磷脂酰甘油(PG 起主导作用,膜脂相变温度的差异来自饱和度及相变温度较高的PG,抗冷性强的植物膜脂不饱和度高,相变温度低,其膜脂可在较低温度下保持流动性,维持生理活动功能。另外,当植物处于高盐的环境时,植物的水通道蛋白将会产生作用。水通道蛋白是一类特异的、高效转运水及其它小分子底物的整合膜蛋白,在植物中具有丰富的亚型。水通道蛋白通过转录调控、门控机制、聚合调控、重新定位等多种活性调控方式影响细胞膜系统的通透性,参与调节植物的水分吸收和运输。盐害引起渗透胁迫、离子毒害、活性氧胁迫,影响植物生长;水通道蛋白通过多种调控方式,全程参与植物的盐胁迫应答[2]。

水分子通道蛋白的结构与功能的关系

水分子通道蛋白的结构与功能的关系 姓名:王国栋 院系:基础医学院中西医结合1班 学号:20141025 水分子穿越双磷脂生物膜的输运机理是生理学和细胞生物学中一个长期未能解决的重要问题。AQP1水通道蛋白的发现和鉴定使得人们确认出一个新的蛋白质家族———水通道蛋白家族。正是这一蛋白家族的存在,使得水分子可以进行快速的跨膜传输。由晶体学方法解出的哺乳动物AQP1水通道蛋白的原子结构,最终揭示了水通道蛋白只允许水分子快速传输而阻挡其他的小分子和离子(包括质子H+)的筛选输运机理。本文概述了水通道蛋白对水分子筛选传输的机理。 一、水通道蛋白的重要性 活细胞外面有一层由磷脂组成双层膜,称为双磷脂细胞膜。它将细胞的内环境物质及细胞器等与外部环境区分开。水、离子以及其他极性分子一般不能透过这层双磷脂细胞膜。但是细胞生命活动经常需要有选择性地对这些物质进行快速跨膜传输。这是通过镶嵌在细胞膜上具有输运化学物质功能的膜蛋白来实现的,不同膜蛋白具有输运不同化学物质的能力。 水是活细胞的主要组成部分。在活细胞中,水的比例占总重量的70%左右。大多数的细胞生化反应都是在水环境中进行的。水分子的跨膜输运是如何实现的是生命科学中一个非常重要的基本问题。水分子虽然可以以简单渗透扩散方式通过细胞膜,但是扩散速度非常缓慢。科学研究证明,水分子跨越细胞膜的快速输运是通过细胞膜上的一种水通道蛋(aguaporin ,AQP )实现的。一个AQP1 水通道蛋白分子每秒钟可以允许30 亿个水分子通过。水通道蛋白大量存在于动物、植物等多种生物中。在哺乳动物中,水通道蛋白大量存在于肾脏、血细胞和眼睛等器官中,对体液渗透、泌尿等生理过程非常重要。在植物当中,水通道蛋白直接参与根部水分吸收及整个植物的水平衡。由于水通道蛋白的存在,细胞才可以快速调节自身体积和内部渗透压。由此可见,水通道蛋白对于生命活动至关重要。 二、水通道蛋白的结构 蛋白质的功能是通过其结构来实现的。 要解决一个蛋白的功能机理问题,必须首先 解出它的原子结构。 AQP1 在细胞膜中以四聚体形式存在 (图1)。每个单聚体(即一个AQP1 分子) 是一个独立功能单元,中心存在一个通道管。它由6 个贯穿膜两面的长ɑ螺旋构成基本骨架,其中间有两个嵌入但不贯穿膜的短ɑ螺旋几乎顶对顶地放置着(图2)。在两个短ɑ螺旋相对的顶端各拥有一个在所有水通道家族蛋白中都保守存在的Asn-Pro-Aia (NPA )氨基酸组单元。它们使得这种顶对顶结构得以稳定存在。从两个螺旋的顶端分别延生出一条氨基酸残基松散链条分别回绕,走向各自的膜面。后面我们会看到这种短ɑ螺旋结合松散链条组成的结构单元对水通道功能非常重要。事实上,这种结构单元不仅存在于水通道蛋白中,还在其图1 水通道蛋白的投影密度图。 在双磷脂膜中,4个AOPI 水通道蛋白分子构成一个四聚体。每个水通道分子单体的中心存在一个只允许水分子通过的通道管。

大型电力电气工程设计软件E+P介绍

大型电力电气工程设计软件EESP简介 EESP软件的技术特点 1.强大的专业背景软件涵盖了电气设计的所有内容,并通过了中国电力规划设计协会、照明学会等权威机构鉴定。做为设计手册的配套软件,所有专业计算与设计手册完全一致。其中防雷三维算法、导线拉力计算超厚覆冰、短路电流计算模块填补了国内空白。 2.独特的数据流技术从系统到平面、从平面到剖面、从计算到校核、从二维到三维,博超软件的数据流技术能够将整个设计流程中需要的数据整合起来,从一个环节自动流向下一个环节,并在各个环节中处理完善,大大简化了软件的数据输入,避免了人为失误,提高绘图速度的同时提升了设计质量。 3.智能化专家设计系统博超软件是充满智慧的专家设计系统,它完成了从辅助制 图到辅助设计的根本变革,在智能化辅助设计的层面上全面满足工程师的设计需求。你只要 有个大致思路,博超软件就会帮你把设计做得尽量完美。在提高设计速度的同时,明显提升 设计质量,促进设计标准化。 4.动态设计模糊操作由于操作时不能预见结果,我们不得不反复修改或调整设计。假如随着光标移动就能动态看到设备布置效果,随着参数调整就能动态看到计算结果的调整,那该多么方便!博超软件独创的动态可视化技术将愿望变成现实,使设计过程一目了然、结果一步到位,完全避免不必要的修改。博超软件倡导的模糊操作功能将用户操纵的大致光标位置,自动转换成准确的绘图定位,轻松随意之间,设计图纸绝对精确。 5.三维设计习惯于二维设计的电气工程师惊喜地看到博超软件带来的三维设计崭新天地。在平面上布置变配电设备,即可采用剖切实体方式生成任意位置的断面图,连桥架、沟道、电气辅件也分毫毕现。随手布置避雷针,自动进行计算,不但能够同步看到其平面保护范围、保护断面图,而且可以直接观察三维保护效果。 6.模型化、参数化将设计对象以模型化、参数化方式描述,存贮于工程数据库。设计过程直观简捷,工程信息共享,从而实现了图纸之间、图形与数据之间的联动,实现精确的材料统计。 7.全面开放性图形库、数据库、菜单全可由用户根据自己需要随意扩充和修改。即使不熟悉计算机的人,也能随心所欲地将博超软件变得更适合自己。这使得博超软件如同为你量身定制,非常实用。

声音引导装置

目录 一、系统方案 1.声源S位置的计算 2.声音的收发与处理 3.无线收发模块 4.电机控制模块 5.声音收发系统的选择与制备 6.声光显示模块 二、系统的设计与实现 三、测试结果 四、结果分析 五、结束语 参考书目

声音引导系统(B题) 摘要:本系统以两片STC89C52RC做为控制核心,采用小音箱作为声源,能实现声源的大功率输出。用驻极体麦克风作为接收器并经过放大电路及三极管开关电路实现有声音时输入单片机高电平的目的,从而实现距离差的判断。采用机械波式无线收发模块,实现两个单片机的数据传送。 关键词:声音引导,STC89C51,ASSP控制芯片,驻极体麦克风 一、系统方案 1.声源S位置的计算 方案一:以A为原点,AB、AC分别为x轴、y轴建立坐标系。当S发出声音信号后,分别经过Δt1、Δt2、Δt3到达A、B、C三点并接收,经过一定的处理后可以计算出SA与SB、SA与SC得距离差ΔL1、ΔL2,可知其为两条双曲线。这样只通过发射一次声波信号就能计算出曲线的轨迹,得到交点,即当前声源S所在的坐标位置。这样理论上小车就能够直接走到W点。但此种方案对CPU的要求太高,运算时间长,容易导致单片机故障。 方案二:在ABC三点的接收信号传到单片机B,声源的控制CPU为单片机A。当系统启动时,单片机A开始计数同时发送指令时单片机B也开始计数。从声源发出声音道单片机B接收到声音经过了时间T,利用s=vt就可以得出声源到ABC的距离了。从而确定声源的坐标。此方案可以较精确的得出声源距ABC各自的距离,但所用的硬件设备较多,整系统的调试繁琐。 方案三:先忽略SA与SC之间的距离差。只比较SA与SB的距离差,当差为正时,小车向A的方向走,当为负时小车向B的方向走。当走到OX线时SA与SB得差为0,声源在原地停止5s~10s,然后比较SA与SC得距离差,操作同上。这样就可以使声源走到W处。此方案配合利用实时控制算法PID可以达到较好的效果,而且程序量小,所需的硬件设备很少。 方案选择:经过以上比较,我们选择了方案三。 2.声音的收发与处理 在A、B、C处分别放置三个麦克风A、B、C用以接收声音信号。 方案一:采用音频运放再经过施密特整形后进行逻辑运算的方法,进行相位差的计算。这样就能通过相位差来计算SA、SB、SC之间的距离,进而通过比较哪个大来进行相应的电机控制。 方案二:通过比较A、B及A、C接收到信号的时间差的正负来判断S距A、B、C哪个更远些,进而控制电机往相应的位置行走。此方案不需要很多的外围电路及程序设计,且可行性高。缺点是比较难达到比赛所要求的平均速度。 方案选择:鉴于硬件准备的不足及相应知识的缺乏,我们选择了方案二,以实现声源能够到达W点为最高目的。 3.无线收发模块 方案一:采用电磁波作为无线传输方法,如采用APC200A-43。APC200A-43模块是高度集成半双工微功率无线数据传输模块,其嵌入高速单片机和高性能射频芯片。采用高效的循环交织检错编码,抗干扰和灵敏度都大大提高,最大可以纠24bits连续突发错误。但其价格特高,如果邮购每片达100元,且程序调试复杂,烧写困难。 方案二:采用机械波作为无线传输的方法,即通过声波。让单片机B控制音响发声作为无线信号,在移动声源S上也安装一个麦克风作为无线接收装置。当SA和SB相等时,由单片机B控制的音响发声,使单片机A上的麦克风接收到信号,电机停止转动。

植物抗逆性

植物抗逆性 姓名:班级:学号:摘要:随着现代生物技术和基因工程的发展,人们对植物抗性的研究逐渐转入基因层面,现在已能够将多种抗植物病虫害的基因转入目的植物中,但日益引起关注的生物安全性问题也是不容忽视的。在这种情况下,发掘植物自身抗性资源便显得越来越重要。 关键词:植物;抗逆性;基因 根据达尔文“适者生存”的进化规律。凡是地球上现存的植物都是长期自然选择的结果,不同环境条件下生长的植物有利性状被保留下来,并不断加强,不利性状不断被淘汰,就会形成对某些环境胁迫因子的抵御能力,表现为抗逆性。如植物的抗虫性,抗旱性等。 一.植物抗逆性的利用 1. 植物抗逆性与农业生产 早在中国的古代,农耕工作者们就开始认识和利用植物的优良的抗逆性。《齐民要术》中记载要把作物的抗旱性,抗涝性和抗虫性等作为评价和选择种子品种优劣的标准。并对八十六种物粟的抗逆性特点进行了明确的指出。成为我国传统农业在品种选育上的一个重要标准。 时至今日,研究和利用植物的抗逆性意义更是重大之至。化肥、杀虫剂等大量化学试剂的使用,造成了环境的污染破坏,人们利用生物工程技术选择性利用植物自身的抗虫品种而得到优质高产的品系。减少或杜绝了杀虫剂的使用,降低了生产成本和减少了环境污染,对虫害获得持久的仿效,而且不需要入则的技术即可达到防治目的。这是抗性研究而以长期坚持并取得实质性进展的关键所在。如利用植物的次生性物质在植物抗性中起着非常重要的作用,可作为毒素而直接作用于昆虫,如生氰糖苷,作为阻食剂会影响昆虫对食物的利用;又如酚类物质能阻碍昆虫的消化;作为生长调节剂能影响昆虫的变态发育。通过转基因技术,将编码这些抗性的特异基因进行克隆转移到其它植物细胞中,转录出相应的蛋白产物。起到抗性的作用。 2.植物抗逆性与环境 在对佛山市不同污染点30种绿化植物的叶面积、FV/Fm、叶片细胞膜渗漏率及光和色素含量相对清洁对照点华南植物园的差异。结果显示,大气污染条件

植物中的水孔蛋白

植物中的水孔蛋白 目录 1、植物中的水孔蛋白简介 2、植物水孔蛋白的发现 3、植物水孔蛋白的结构及生化特性 4、植物水孔蛋白的分类 5、植物水孔蛋白的功能 5.1水孔蛋白促进植物体内水分运输的功能 5.2水孔蛋白对细胞的渗透调节作用 5.3参与气孔运动 5.4参与光合作用 5.5调节植物对中性分子(甘油、NH 、尿素)和营养元素(硼、硅)的吸收 5.6参与开花生理 5.7参与果实的发育与成熟、种子的成熟与萌发 5.8还参与栓塞的修复 5.9还能防止渗透伤害 6、水孔蛋白的调控 6.1基因表达 6.2翻译后修饰 6.3调控 6.3.1转录水平调控 6.3.2磷酸化调控 6.3.3 pH调控 6.3其他调节机理 7、水孔蛋白与植物抗旱性、抗盐性

一、植物水孔蛋白简介 水孔蛋白(aquaporin,AQP)是指细胞膜上能选择性地高效转运水分子的膜内在蛋白,属于MIP(major intrinsic protein)超家族,分子质量在23~31 ku[1].1988年,Agre研究小组最先从人红细胞质膜中分离得到水孔蛋白CHIP28蛋白,即AQP1[2].1992年他们在爪蟾卵母细胞表达系统中对所得蛋白质进行功能鉴定,第一次从分子水平证实细胞膜上存在蛋白质介导的水分跨膜转运[3].1993年,Maurel等[4]从拟南芥中分离得到第一个植物水孔蛋白γ-TIP.迄今,已在真细菌、古生菌、真菌、动物和植物等几乎所有生物中发现AQP[5].AQP的发 现及其结构和功能的研究,为人们从分子水平认识和阐明细胞内水分运输及其调控的分子机制奠定了基础.本文着重就植物AQP的多样性与分类、结构特征、生理功能、活性调节及基因表达调控等方面的最新研究进展作简要综述. 二、植物水孔蛋白的发现 在植物中发现水孔蛋白并不是由于寻找有水分转运活性的蛋白,或者研究植物水分生理的结果。而只是因为这些蛋白在细胞膜上丰度比较高而发现了这些膜内在蛋白(MIP,major intrinsic membrane protein)。α-TIP是一种种子特异性表达的液泡膜内在蛋白,占蚕

供配电系统集成设计软件(1).

供配电系统集成设计软件(1) 摘要:在工程电气设计领域中,电力系统的设备选型计算、校验计算无疑是最复杂和最烦琐的一件工作。问题复杂性在于电力系统运行的可靠性要求,必须将所有设备:如高压、低压配电设备、变电、输电线缆等设备全部计算选型校验,要考虑各种运行状态下的设备安全可靠运行,短路时可靠动作。由于设备多、回路多、系统复杂、校验项目多,造成了工作烦琐。目前国内尚无模拟电气工程师思路进行自动选型、校验计算的软件,以代替部分工作,把电气工程师真正从烦琐的计算和绘图中解放出来。我公司最新科研成果------供配电系统集成设计软件正好填补了这一空白。 关键词:集成设计选型校验系统模型 pivotal words: integrated design,select and verify equipment type 、constitute power system model 一、引言: 在工程电气设计领域中,电力系统的设备选型计算、校验计算无疑是最复杂和最烦琐的一件工作。问题复杂性在于电力系统运行的可靠性要求,必须将所有设备:如高压、低压配电设备、变电、输电线缆等设备全部计算选型校验,要考虑各种运行状态下的设备安全可靠运行,短路时可靠动作。由于设备多、回路多、系统复杂、校验项目多,造成了工作烦琐。目前国内尚无模拟电气工程师思路进行自动选型、校验计算的软件,以代替部分工作,把电气工程师真正从烦琐的计算和绘图中解放出来。我公司最新科研成果------供配电系统集成设计软件正好填补了这一空白。 二、详述: 电气设计的目标 我们只有了解了电气设计最终实现目标才能进行更明确的工作,为了详细说明一个变配电所的所有电气内容,通常需要出的图纸有: 1.1 电气主接线图或高压系统图 1.2 低压系统图 1.3 平面布置图、剖面图 1.4 配电柜立面图 1.5 电缆清册 1.6 设备材料表 1.7 电气计算书 1.8 二次控制原理图 1.9 二次外部线路图 以上图纸中最复杂的图纸,工作量最大的莫过于高低压系统图,因为他们占用的计算工作量大。过去我们也提供一些计算工具软件,但大都是零散的,不系统的,比如负荷计算、电压损失计算、短路计算等,用户对整个系统的认识,一直停留在修改旧图,反复的计算-填写表格-替换设备-删除-复制等低级的劳动中,造成了劳动效率无法大幅度提高。而且由于缺乏整个供-配电系统结构的认识,往往上一级开关调整以后,没有改下一级开关,或上一级开关整定变了,没有跟着调整配线,造成许多前后不对照的错误图纸和问题工程。旧图中大量的图元各自独立并没有共性,所以难以大规模的一次性修改成功。旧图修改重复劳动特别多,反复的重复删除、复制、替换、文字、移动等命令,容

植物水解蛋白

植物水解蛋白 一.植物水解蛋白的性质 植物蛋白质水解物(HVP,hydrolyzed vegetable protein)是指在酸或酶的作用下,水解含蛋白质的植物组织所得到的多肽及氨基酸的中间混合胶体溶液,再经加工处理后得到的产物。HVP主要性状为淡黄色至黄褐色液体、糊状体、粉状体或颗粒。糊状体含水分17%-21%,粉状及颗粒状者含水分3%-7%,总氮量5%-14%(相当于粗蛋白25%-87%),2%水溶液的pH 值为5.0-6.5,所含氨基酸组成视所用原料而定,其鲜味物质和程度不尽相当,视所用原料和加工方法而各异。 水解植物蛋白是近年来蓬勃发展起来的新型食品增味剂,它集色、香、味等营养成分于一体,主要作用为鲜味剂、营养强化剂以及肉类香精原料,投放市场以来即为广大消费者认可。由于其谷氨基酸含量较高,逐渐成为取代味精的新一代调味品,并且HVP的制造原料植物蛋白质来源丰富,经水解、脱色、除臭、除杂、调味、杀菌、喷雾干燥等工艺制造而成,可机械化、大规模、自动化生产。 植物蛋白质占世界蛋白供应总量70%以上,其营养价值与动物蛋白质接近,且胆固醇含量低,含有大量人体必需氨基酸,是人类食用蛋白质重要来源。因此,水解植物蛋白作为调味品前景非常广阔。 以下为3种水解蛋白的含量指标 氨基酸大豆蛋白水解产品小麦蛋白水解产品玉米蛋白水解产品 名称 赖氨酸8.62 1.98 1.81 组氨酸 2.89 1.73 2.59 精氨酸7.05 2.97 4.40 苏氨酸 4.06 2.48 3.57 丝氨酸 5.39 3.96 5.70 谷氨酸19.67 40.08 24.12 脯氨酸11.83 15.84 11.93 甘氨酸 5.02 2.23 2.85 丙氨酸 6.05 2.33 7.78 缬氨酸 4.75 3.96 2.07 蛋氨酸0.78 1.98 2.59 异亮氨酸 3.08 7.67 9.08 亮氨酸 3.87 3.47 4.15 酪氨酸0.32 1.00 3.89 苯丙氨酸 3.45 4.46 5.70 天冬氨酸13.17 3.96 7.77 合计100 100 100 二.植物水解蛋白生产工艺 目前,水解植物蛋白常用的方法有酸法和酶法,一般为酸法为主。 1. 酸水解法生产HVP 常用的酸水解方法是:在大豆、小麦、花生、玉米和大米等植物蛋白原料中,加浓盐酸进行加水分解(110℃回流酸解),中和后,经脱色、脱臭、再过滤并浓缩而成浆状体,或喷雾干燥制成粉状成品。

植物抗逆性研究概述

植物抗逆性研究概述 摘要:植物在进化过程中,对于外界的不良环境会产生一定的防御机制。综述了干旱、高盐、低温对植物的危害及植物的抗逆性应答反应,以及水杨酸和脱落酸在逆境胁迫中发挥的作用。关键词:植物,抗逆性,水杨酸,脱落酸 逆境指对植物生长和发育不利的各种环境因素的总称,又简称胁迫。植物在生长过程中经常会遇到干旱、盐碱、低温、重金属以及病原物入侵等不良环境条件的影响,导致植物水分亏缺,从而产生渗透胁迫,影响植物的生长和发育,严重时会导致植物死亡。反之,植物经过长期的逆境锻炼也进化产生了一系列对逆境的适应能力,即植物的逆境适应性。其包括避逆性和抗逆性2个方面。避逆性是指植物整个发育过程不与逆境相遇,而是在逆境胁迫到来前已完成生其生活史,但不是普遍现象,只存在于少数植物。而抗逆性是指植物对逆境的抵抗能力或耐受能力,简称抗性,包括御逆性和耐逆性。抗性是植物对环境的适应性反应,是一种遗传特性,是在不良环境条件下逐步形成的,也是绝大多数植物响应环境胁迫的普遍方式。同样,激素水杨酸( Salicylicacid, SA) 和脱落酸(Abscisic Acid,ABA)均是植物体内重要的激素,不仅能调节植物的一些生长发育过程,还在植物抗生物胁迫和非生物胁迫中发挥着重要作用。因此,从干旱胁迫、盐胁迫、低温胁迫、重金属胁迫以及病原物入侵等方面简要介绍植物的抗逆生理及机制,同时也介绍了SA、ABA在植物抗环境胁迫方面的重要意义,以及植物抗逆性基因工程方面的研究成果。 1干旱胁迫对植物的影响 1.1 干旱对植物的伤害 干旱对农作物造成的损失在所有的非生物胁迫中占首位,仅次于生物胁迫病虫害造成的损失。当植物耗水量大于吸水量时,植物体内就会发生水分亏缺,面临干旱胁迫。当植物细胞失水达到一定程度时,膜的磷脂分子排列发生紊乱,膜蛋白遭破坏,使膜的选择透性丧失;叶绿体和线粒体结构也被破坏,会使叶绿体类囊体片层数目减少、扭曲,使线粒体内嵴数量减少,细胞核核膜模糊,染色体凝聚,合成酶类活性下降,光合作用下降。 1. 2植物的抗旱反应 干旱胁迫时,植物的形态结构、渗透调节等会发生相应的变化。抗旱性强的植物根系和输导组织较发达,表皮绒毛多,角质化或膜脂化程度高,叶片细胞体积/表面积比值小,等这些都有利于增加水分的吸收,减少水分的散失。而且植物在面临干旱胁迫时,体内的水分和营养物质会发生重新分配,茎和新叶会从老叶、花、果实中吸收水分和营养。在受到轻度干旱胁迫时,植物能够诱导细胞内发生溶质积累,通过渗透调节降低水势,从而保证组织水势下降时细胞膨压得以维持。植物的渗透调节主要通过亲和性溶质的积累而实现。这类亲和性溶质主要包括脯氨酸、甘露醇、多胺等小分子有机物,它们的大量积累不但不会破坏生物大分子的结构和功能,反而表现出良好的亲和性,有助于植物在干旱条件下对水分的吸收。 1.3 水杨酸与植物的抗旱性 SA 的类似物乙酰水杨酸能改善干旱条件下小麦叶片的水分状况,保护膜的结构。1%的乙酰水杨酸拌种处理玉米种子,可提高玉米幼苗叶片抗脱水能力。根据陶宗娅等的研究,用含1.0mmol/L SA的不同渗透势PEG溶液漂浮处理小麦幼苗叶片,结果表明:SA 降低了叶片过氧化氢酶的活性,轻度胁迫下SA对稳定膜结构和功能有一定作用,在较严重的渗透胁迫和SA 处理下叶片失水量、膜相对透性和丙二醛含量有所增加,H2O2和O-2积累也较快,但与不加SA处理比较,超氧化物歧化酶(SOD)和过氧化物酶( POD)活性仍较高,脂质过氧化程度稍有加重。不同条件下SA在参与和影响植物代谢过程中信号传导途径及其对代谢调控的机理可能存在差异。又如,外源SA 及其类似物的作用位点之一可能在细胞膜上,引起跨

相关主题
文本预览
相关文档 最新文档