当前位置:文档之家› pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展
pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展

10072855 王剑磊高材075

摘要:本文对脂质体,着重对pH敏感型脂质体以及pH敏感型类脂组的系统组成作了一个较简单的介绍,并阐述了临界pH的影响因素及其应用。

关键词:pH敏感型脂质体、pH敏感型类脂组成的系统、临界pH的影响因素

脂质体(Liposome)是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是磷脂双分子层膜,脂质体具有与生物体细胞相类似的结构,因此有很好的生物相容性。脂质体进入人体内部之后会作为一个“入侵者”而启动人体的免疫机制,被网状内皮系统吞噬,从而在肝、脾、肺和骨髓等组织中靶向性地富集。这就是脂质体的被动靶向性。脂质体主要成分是磷脂和胆固醇,其类似细胞膜的微球体。20世纪年代末Rahman等人首先将脂质体作为药物载体应用。70年代初用脂质体作为药物载体包埋淀粉葡萄糖甘酶治疗糖原沉积病首次获得成功。脂质体作为药物载体具有使药物靶向网状内皮系统、延长药效、降低药物毒性、提高疗效、避免耐受性、改变给药途径等优点,但脂质体作为药物载体仍存在对有些疾病的靶向特征不理想、体内稳定性和贮存稳定性欠佳等缺点,因而限制了脂质体的临床应用和工业化生产。近年来人们逐渐研制出长循环脂质体、前体脂质体、聚合膜脂质体等新犁脂质体以提高脂质体的稳定性;设计开发了温度敏感脂质体、pH敏感脂质体、免疫脂质体、磁性脂质体等新型脂质体以提高脂质体的靶向性。本文将着重对pH敏感型脂质体的研究进展做一综述。

1.pH敏感型脂质体(pH—sensitive Liposomes )

pH敏感型脂质体是指在低pH时脂肪酯羧基质子化而引起六角相形成,导致膜融合而达到细胞内靶向和控制药物释放的功能性脂质体,是用含有pH敏感基团的脂质制备的,可在一定程度上避免溶酶体降解并增加包封物摄取量和稳定性,有效地将包封物转运到胞浆。基于肿瘤间质液pH比正常组织低,应用pH敏感型脂质体载药能获得较非pH敏感型脂质体更好的转移效果。此外,PH敏脂质体在基因治疗中也得到了应用。Dzau VJ等利用病毒细胞融合脂质体的特点,将日本血细胞凝集病毒( HVJ )与脱氧寡核苷酸或质粒DNA脂质体复合,能诱导DNA直接进入细胞浆。pH敏感型脂质体的开发为大分子药物人工基因片段的胞内投递提供了手段。随着脂质体生产工艺研究的深入和不断完善,pH敏脂质体将成为临床治疗中的一种重要手段。pH敏感型脂质体在酸性环境中不稳定,而在细胞内吞过程中,在核内体始降低,所以设计合适的pH敏感型可以使其到达溶酶体前将内容物释放中,从而保证药物的活性。此外,炎染区域,某些肿瘤组织或局部缺血时异常酸化现象,所以在pH7 .4 ~6 .5范围内的pH敏感型脂质体对于药物的传递释很大的临床应用价值。

2.pH敏感型类脂组成的系统

pH敏感型类脂组成的系统一般是由两种双亲性分子组成:一种是在生理条件下不能形成稳定双分子层小囊的分子,即“不稳定”分子,为主要组分;另一种是在一定pH条件下能使双分子层稳定的分子。到目前为止,在有关细胞传递的研究中,磷脂酰乙醇胺( P E) 为首选的不稳定”两亲物,纯的PE可以在高pH( pH≥9 ) 或低离子强度介质中形成稳定的双分子层小囊,但在生理离子强度和中性pH条件下即崩溃为其它的类脂结构。使P E 脂质体稳定的两亲物大多数具有弱酸基团,如油酸、琥珀酸-P E、胆甾烯基半琥珀酸( CHE MS )、棕榈酰高半胱氨酸(PHC) 以及合成的含有丝氨酸基的二酰基两亲物。pH>pKa时,此类两亲物带电而使双分子层稳定;pH

3. 临界pH的影响因素

研究发现,不同的聚合物一类脂小pH的敏感性不同,其临界pH(小囊向胶团转变的pH)受到多种因素的影响,如聚合物种类、分子量、浓度及缓冲液的离子强度等等。

3.1聚合物种类的影响

Tirrel等测定了聚丙烯酸( PAA )、聚甲基丙烯酸( PMAA) 、聚乙基丙烯酸( PEAA)对临界pH 的影响,发现随单体取代基大,临界pH愈大。他认为聚合物一类脂结合主要是由于非解离的聚合物羟基和类面的磷脂基团之间氢键的形成。因此取越大,聚合物的酸性越小( 即pKa越大),而临界pH越大。

3.2聚合物( PEAA) 分子量的影响

Sehroeder等实验观察二棕榈酰磷脂胆碱(DPPC)与3种不同分子量PEAA [12000 ( P 12),43000 ( P43),164000 ( P164) ]混合物的pH依赖性的浊度变化。发现不含PEAA 的DPPC 混悬液浊度在p H6.0~7.1之间无变化,而聚合物一类脂混合物分别在pH6.66土0.0

2( P16 )、pH6.6 3土0.02( P34 )、p H6.47 土0.02 ( P164 )时混悬液变清。说明PEAA的分子量对DPPC的相转变行为有影响。

3.3聚合物( PEAA) 浓度的影响

当PEAA/DOPC(重量比) ≥0.1时,粒子有效地减小( Rh< 100nm);当PEAA/DOP C≤0.03时,Rh无变化。所以PEAA至少要达到10% (重量)时才能引起pH依赖性突变。说明在DOPC和PEAA 混合物中膜的重排需要最小的聚电解质浓度。

3.4缓冲液离子强度的影响

由实验可知,离子强度I从50增至500mmol/L时,临界pH 从7.1降至6.5,说明缓冲液的离子强度越大,临界pH越低。原因是PEAA在生理pH条件下处于解离状态,而缓冲液的离子强度越大,聚离子周围的电荷屏蔽效应越大。所以在高离子强度的溶液中,pH低至7.1时,链仍然处于解离和水化状态,只有当pH进一步降低时,吸附、去水化和相破裂才会发生,从而使临界pH更低。

对于PEAA键合的pH敏感型脂质小囊的应用研究,文献报道的还不是很多。Tirrel等

通过酶解作用产生氢离子引起pH下降与表面结合PEAA的脂质小囊对pH的敏感性相结合,探讨了敏感于葡萄糖浓度的脂质小囊的可能性。他们将2.4mg/ml D L P C于纯水或盐水中水化得多室脂质小囊混悬液,加入PEAA和葡萄糖氧化酶后,浊度无变化。而加入葡萄糖(1.3mg/m1 ) 后混悬液几乎变清。上述现象发生酶解生成葡萄糖酸,使起膜重排而使浊度消失。据此可研制开发出一种自调式胰岛素给药系统。

经过长期研究,逐步研制出延长体内循环时间的pH敏感型脂质体和聚合物修饰的pH 敏感型脂质体等。总之,pH敏感型脂质体的研究,越来越离不开对细胞内细胞器的相互作用、融合、释放及体内过程的探索,从而有针对性地载药、释药,最终达到靶向目的;药剂学上pH敏感型脂质体技术水平的提高也越来越离不开与生化、生理、药理、分子生物学等学科的联系与融合。

参考文献:

1.李文锦,钱和年。北京医科大学学报,1994;26(3):184

2.Tirrel DA.Pulsed and Self —Regulated Drug Delivery. Kost Jed,Boca Raton:CRC Press,

1990:109—116

3.王弘,王志清,王升启。中国新药杂志,1999;440-442

4.戈升荣,裴元英。中国医药工业杂志,1998;554-558

5.KunathK, von Harpe A,Fischer D,Kissel T.Galactose-PEI-DNA complexes for targeted gene

delivery:degree of substitution affects complex size and transfection efficiency.J Control Release 2003;88:159-172

pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展 10072855 王剑磊高材075 摘要:本文对脂质体,着重对pH敏感型脂质体以及pH敏感型类脂组的系统组成作了一个较简单的介绍,并阐述了临界pH的影响因素及其应用。 关键词:pH敏感型脂质体、pH敏感型类脂组成的系统、临界pH的影响因素 脂质体(Liposome)是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是磷脂双分子层膜,脂质体具有与生物体细胞相类似的结构,因此有很好的生物相容性。脂质体进入人体内部之后会作为一个“入侵者”而启动人体的免疫机制,被网状内皮系统吞噬,从而在肝、脾、肺和骨髓等组织中靶向性地富集。这就是脂质体的被动靶向性。脂质体主要成分是磷脂和胆固醇,其类似细胞膜的微球体。20世纪年代末Rahman等人首先将脂质体作为药物载体应用。70年代初用脂质体作为药物载体包埋淀粉葡萄糖甘酶治疗糖原沉积病首次获得成功。脂质体作为药物载体具有使药物靶向网状内皮系统、延长药效、降低药物毒性、提高疗效、避免耐受性、改变给药途径等优点,但脂质体作为药物载体仍存在对有些疾病的靶向特征不理想、体内稳定性和贮存稳定性欠佳等缺点,因而限制了脂质体的临床应用和工业化生产。近年来人们逐渐研制出长循环脂质体、前体脂质体、聚合膜脂质体等新犁脂质体以提高脂质体的稳定性;设计开发了温度敏感脂质体、pH敏感脂质体、免疫脂质体、磁性脂质体等新型脂质体以提高脂质体的靶向性。本文将着重对pH敏感型脂质体的研究进展做一综述。 1.pH敏感型脂质体(pH—sensitive Liposomes ) pH敏感型脂质体是指在低pH时脂肪酯羧基质子化而引起六角相形成,导致膜融合而达到细胞内靶向和控制药物释放的功能性脂质体,是用含有pH敏感基团的脂质制备的,可在一定程度上避免溶酶体降解并增加包封物摄取量和稳定性,有效地将包封物转运到胞浆。基于肿瘤间质液pH比正常组织低,应用pH敏感型脂质体载药能获得较非pH敏感型脂质体更好的转移效果。此外,PH敏脂质体在基因治疗中也得到了应用。Dzau VJ等利用病毒细胞融合脂质体的特点,将日本血细胞凝集病毒( HVJ )与脱氧寡核苷酸或质粒DNA脂质体复合,能诱导DNA直接进入细胞浆。pH敏感型脂质体的开发为大分子药物人工基因片段的胞内投递提供了手段。随着脂质体生产工艺研究的深入和不断完善,pH敏脂质体将成为临床治疗中的一种重要手段。pH敏感型脂质体在酸性环境中不稳定,而在细胞内吞过程中,在核内体始降低,所以设计合适的pH敏感型可以使其到达溶酶体前将内容物释放中,从而保证药物的活性。此外,炎染区域,某些肿瘤组织或局部缺血时异常酸化现象,所以在pH7 .4 ~6 .5范围内的pH敏感型脂质体对于药物的传递释很大的临床应用价值。 2.pH敏感型类脂组成的系统

脂质体与当前国内外脂质体研究进展

摘要 脂质体作为药物载体具有很多优点, 但是其主动靶向性和稳定性较差, 为了克服上述缺点,近年来国内外研制出许多新型脂质体。通过检索近 20 年来国内外有关新型脂质体的相关文献, 对其进行综合分析和总结,提出脂质体在制剂中应用研究中存在的问题与建议,对新型脂质体如长循环脂质体、pH敏感脂质体、温度敏感脂质体、前体脂质体、磁性脂质体、免疫脂质体、膜融合脂质体、柔性脂质体等的研究及应用做一综述, 并展望了新型脂质体的发展前景。脂质体在制剂中应用是新剂型和新技术的现代化重要标志,也是国际化的需要,作为一种新型药物载体,研制出稳定的脂质体是脂质体作为药物载体走向实用的前提,因此具有十分重要的意义。 关键词:脂质体,药物载体,临床研究,综述

Abstract Liposome as drug delivery system has many advantages, but its less active targeting and stability, in order to overcome these shortcomings, both at home and abroad in recent years we have developed many novel liposome. By retrieved near 20 years to both at home and abroad about new fat mass body of related literature, on its for integrated analysis and summary, made fat mass body in preparations in the application research in the exists of problem and recommendations, on new fat mass body as long cycle fat mass body, and pH sensitive fat mass body, and temperature sensitive fat mass body, and Qian body fat mass body, and magnetic fat mass body, and immune fat mass body, and film fusion fat mass body, and flexible fat mass body, of research and the application do a summary of, and prospect has new fat mass body of development prospects. Application in liposome preparation are important signs of modernization of new dosage forms and technologies, as well as international needs, as a novel drug delivery system, developed stable liposomes is towards practical premise of liposome as drug carriers, it has a very important significance. Keywords:Liposome ,Drug carrier ,Clinical research ,Overview

脂质体的研究与应用

脂质体的研究与应用 摘要:脂质体是某些细胞质中的天然脂质小体有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的分类、制备方法及研究进展。 关键字:主动载药;被动载药;药物载体;前体脂质体;靶向给药脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。陈建明等[1]在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1 )薄膜分散法 此法是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。 2)超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 3)冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 4 )冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。 5)复乳法

脂质体的研究进展学

新型药物载体免疫脂质体的研究进展 08药剂3班乔宇 20080702067 免疫脂质体(immunoliposomes)是单克隆抗体(monoclonal antibody,mAb,简称“单抗”)或其片段修饰的脂质体的简称,这种新型药物载体对靶细胞具有分子水平上的识别能力,具有很多优势,包括对肿瘤靶细胞呈现明显的选择性杀伤作用,且杀伤活性比游离药物、非特异抗体脂质体、单独单抗等更强;在荷瘤动物体内呈特异性分布,肿瘤病灶药物浓度升高,药物毒副作用较小;体内循环半衰期长及运载药物量大等。免疫脂质体发展至今经历了数代:第一代是抗体或抗体片断直接与脂质体的脂膜相连,但由于巨噬细胞的吞噬很快被血液清除;第二代在第一代的表面引入了聚乙二醇(PEG)等亲水性大分子,延长了在血液中的循环时间,但PEG长链对单抗的屏蔽使抗体与靶细胞的结合能力降低;第三代将抗体连接在PEG或其衍生物的末端,制成空问稳定性免疫脂质体(sterically stabilized immunoliposomes,SIL),延长了包含药物的脂质体的血液循环时问,且单抗伸展至脂质体外部发挥寻靶作用。 本文就免疫脂质体的分类、抗体连接脂质体的方法、临床应用及其发展现状进行综述。 1 免疫脂质体的分类 根据靶向特异性细胞和器官的原理可将免疫脂质体分为抗体介导和受体介导两类。 1.1 抗体介导的免疫脂质体 抗体介导的免疫脂质体是利用抗原一抗体特异性结合反应,将单抗与脂质体偶联。抗体有单克隆抗体和多克隆抗体之分,单抗因其专一性在抗体应用中占主导地位。现今,全世界已有超过1 50种单抗应用于临床或正处于临床研究阶段,且也已从原先的纯鼠单抗发展为人鼠嵌合抗体及人源化抗体,如已上市的人源化单抗Daclizumab、Palivizumab、Trastuzumab等;临床应用中,单抗从最初治疗器官移植排斥反应、降凝血发展到治疗癌症、HIV感染等疑难性疾病[2】。 1.1.1 两种抗体修饰的双靶向免疫脂质体 靶向物用两种不同的抗体修饰脂质体,可增加其结合特异性和细胞摄取率,并且抗体在靶向细胞时能产生协同作用【3】。Laginha等【4]假设脂质体通过抗体靶向到两种或多种受体时,由于受体密度增加,靶向效果会更好,并用荧光测定分析法验证了这一假设的正确性。这项实验中,分别制备了连接相同密度抗体的aCD19靶向脂质体、etCD20靶向脂质体、两种脂质体混合物(混合比例为1:1)及双靶向脂质体,证实了双靶向脂质体和混合脂质体较单个抗体修饰的脂质体和受体有更大的结合率和摄取率,且出现加和性;细胞毒性实验中,装载有阿霉素的双靶向脂质体较这两种脂质体混合物有更高的细胞毒性。Saul等【5]以阿霉素为模型药物,用叶酸和抗表皮生长因子的单抗修饰脂质体,同时靶向两种受体,使药物更多地聚集于肿瘤靶位,降低了对正常组织的毒性。 1.1.2 抗体片段修饰的免疫脂质体 虽然抗体对靶点具有高选择性,但持续给药时,患者往往会出现免疫反应,特别是应用外源性抗体f如鼠)时免疫反应加剧。而抗体片段Fab。(55kDa)、单链抗体可变区基因片段scFv(35kDa)产生的免疫原性比整个单抗低,且更易控制其性质

pH敏感双亲性聚合物分析

pH敏感双亲性聚合物的研究进展 摘要:pH敏感双亲性聚合物由于具有多种潜在的用途而引起广泛关注。本文综述了pH敏感双亲性聚合物的概念,组成,分类,合成方法以及在药物输送中的应用,并对其发展趋势进行了展望。 关键词:pH敏感;双亲性;聚合物;共聚物;胶束;脂质体;纳米粒 两亲性聚合物是指同一高分子中同时具有对两种性质不同的相(如水相与油相,两种油相,两种不相容的固相等)皆有亲和性的聚合物。pH敏感性聚合物是其溶液相态能随环境pH、离子强度变化的聚合物。已有理论研究结果表明,聚合物分子内及分子间交联作用力可以分为以下几种:氢键、范德华力、静电作用和疏水作用力[1]。在pH响应体系中四种作用力共同起作用引发pH敏感性,其中离子间作用力起主要作用,其它三种作用力起到相互影响、相互制约的作用。一般来说,具有pH响应性的高分子中含有弱酸性(弱碱性)基团,随着介质pH值、离子强度改变,这些基团发生电离,造成聚合物内外离子浓度改变,并导致大分子链段间氢键的解离,引起体相分子构型或溶解度的改变。 1.pH敏感双亲性聚合物的分类 pH敏感双亲性聚合物有两大类:一是聚合物中包含弱酸、弱碱基团和聚电解质的化合物;二是聚合物中有能在酸性条件下水解的连接段[2]。 1.1包含有可离子化的弱酸、弱碱基团的聚合物和聚电解质化合物 羧基是典型的弱有机酸聚合物取代基。这一类可在较低pH下接受质子并在中性和较高pH下放出质子,如聚丙烯酸(PAA)或聚甲基丙烯酸(PMAA)。弱有机碱聚合物如聚(4-乙烯基吡啶)在较高pH下接受质子,在较低pH下放质子,如聚[甲基丙烯酸-2-(N,N-二甲氨基)乙酯](PDMAEMA),侧基带有取代氨基,因而在中性或酸性条件下可获得质子[3,4]。 药物载体在酸性或碱性条件下,聚合物中pH敏感基团会水解断裂或极性发生变化,使得聚合物纳米粒子破裂,同时负载其中的药物会被释放出来[5-7],释放过程中没有药物和载体之间没有化学键的变化。 Armes等[8]制备了聚[2-(二甲基胺基)甲基丙烯酸乙酯]-聚[2-(二乙基胺基)甲基丙烯酸乙酯](DMAEMA-DEAEMA),DMAEMA-聚[2-(N-吗啉)甲基丙烯酸乙

2018年新型制剂微球脂质体行业分析报告

2018年新型制剂微球脂质体行业分析报告 2018年10月

目录 一、新型注射制剂兴起,关注微球和脂质体 (6) 1、剂型是药物的表现形式,注射剂型独具优势 (6) 2、传统注射制剂存在诸多缺陷,新型注射制剂应运而生 (7) 3、关注进展最快的注射用微球和脂质体 (9) (1)微球:长效化优势明显,市场表现较好,技术壁垒较高 (9) ①微球制剂长效化优势明显,上市后取代普通制剂,市场份额可超50% (9) ②微球主要用于多肽类药物,近些年多肽药物发展迅速,微球制剂市场空间广阔 (12) ③微球制剂产业化技术壁垒较高,研发成本高昂,研发周期长,竞争格局良好13 (2)脂质体:靶向性好,抗肿瘤药物前景广阔,技术壁垒较高 (15) ①脂质体作为药物运载体,靶向性强,在提高药物疗效的同时可降低药物副作用 (15) ②脂质体主要用于抗肿瘤药物,抗肿瘤药物市场增长迅速,前景广阔 (17) ③脂质体工业化生产较难,技术壁垒较高,竞争格局良好 (18) 二、全球注射微球脂质体的崛起之路 (19) 1、三十余年的发展,全球注射微球脂质体市场稳步增长 (19) 2、回溯全球90年代制剂发展,探寻微球脂质体的崛起原因 (21) (1)技术端:制剂水平的进步和相关技术突破 (21) (2)政策端:专利法案推动科研成果转化,政策鼓励剂型创新 (24) (3)需求端:全球疾病谱变化,肿瘤等慢性病患者人数增加 (26) 三、国内外代差明显,三大因素推动行业快速发展 (27) 1、微球脂质体处于起步阶段,销售额增长迅速 (27) 2、“技术+政策+需求”三因素推动行业快速发展 (29) (1)技术端:技术已有突破,产品质量不断提升 (29)

脂质体的研究现状及主要应用

脂质体及其医药应用 化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。 关键词:脂质体、制备、医药、应用 脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。 1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。 我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。 当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。 1 脂质体及其分类 脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。 1.1 结构 脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。 1.2 性质 1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

硫酸长春新碱脂质体的质量评价研究

硫酸长春新碱脂质体的质量评价研究 张雪冰1, 2,李文静1,王杏林2*,杨志强2,吴溪1, 2 1. 天津中医药大学,天津 300193 2. 天津药物研究院释药技术与药代动力学国家重点实验室,天津 300193 摘 要:目的评价硫酸长春新碱脂质体的质量。方法采用pH梯度法制备硫酸长春新碱脂质体。透射电镜观察脂质体的外观形态,阳离子交换树脂柱法测定包封率,并考察其pH值、粒径、Zeta电位、稳定性及体外释放规律。结果形态学观察结果显示,脂质体均匀圆整度良好。硫酸长春新碱脂质体粒径为120 nm左右,Zeta电位约为10 mV,包封率均在90%以上。光照、4 ℃、18 ℃、25 ℃条件下,脂质体各项指标无显著变化。40 ℃条件下,包封率明显降低。结论本法准确,操作简便,可用于硫酸长春新碱脂质体的质量评价。 关键词:硫酸长春新碱脂质体;硫酸长春新碱;质量评价;稳定性 中图分类号: R927.2;R944 文献标志码:A 文章编号:1674 - 5515(2015)06 - 0658 - 05 DOI:10.7501/j.issn.1674-5515.2015.06.011 Quality evaluation of Vincristine Sulphate Liposomes ZHANG Xue-bing1, 2, LI Wen-jing1, WANG Xing-lin2, YANG Zhi-qiang2, WU Xi1, 2 1. Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China 2. Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin 300193, China Abstract:Objective To evaluate the quality of Vincristine Sulphate Liposome. Methods Vincristine sulphate was encapsulated in the liposomes using the pH gradient-dependent remote loading technique. The morphological examination of liposomes was observed with transmission electron microscopy. The encapsulation efficiency was determined by cation exchange resin column. Their pH value, particle size, Zeta potential, stability, and in vitro delivery of vincristine sulphate were investigated. Results The morphology of Vincristine Sulphate Liposome showed that liposomes were uniformity, good roundness. The particle size of the liposomes was about 120 nm, the Zeta potential was about 10 mV, and the encapsulation efficiency was above 90%. Vincristine sulphate liposomes did not occur significant changes under the light condition and at 4 ℃, 18 ℃, and 25 ℃ conditions. At 40 ℃, the encapsulation efficiency decreased. Conclusion The method is accurate and simple to evaluate the quality of Vincristine Sulphate Liposomes. Key words: Vincristine Sulphate Liposome; vincristine sulphate; quality evaluation; stability 长春新碱为夹竹桃科植物长春花Catharanthus roseus (Linn.) G. Don中有效成分,主要用于治疗白血病、乳腺癌、支气管肺癌、软组织肉瘤及神经母细胞瘤等,其作用机制是抑制微管蛋白的聚合,阻止纺锤体微管形成,使有丝分裂停止于中期[1-3]。由于长春新碱性质极不稳定,因此常用其硫酸盐,即硫酸长春新碱[4]。临床应用的硫酸长春新碱制剂通常为注射剂,存在药物半衰期短、神经系统和胃肠道毒性强等缺点,使其应用受到限制。将硫酸长春新碱制成脂质体可改善其体内药动学行为,提高药物治疗指数,降低毒副作用,延缓药物释放[5-7]。本课题组选用氢化磷脂(SPC-3)/胆固醇、二硬脂酰磷脂酰胆碱(DSPC)/胆固醇作为膜材,采用pH 梯度法制备硫酸长春新碱脂质体。本实验对硫酸长 收稿日期:2015-01-06 基金项目:国家重大新药创制项目(2014ZX09507005-001) 作者简介:张雪冰,硕士研究生,研究方向为药物新制剂。E-mail: zhangxuebing2012@https://www.doczj.com/doc/075688434.html, *通信作者 王杏林,女,研究员,主要从事药物制剂和质量分析方向的研究。Tel: (022) 23006885 E-mail: wangxl@https://www.doczj.com/doc/075688434.html,

pH敏感药物传递系统的研究进展

pH敏感药物传递系统的研究进展 发表时间:2016-08-03T13:56:01.367Z 来源:《医药前沿》2016年7月第21期作者:王鹏[导读] 各种不同的酸敏感基团的使用,人们可以根据需要来获取不同pH响应行为的聚合物分子,进而在不同的体系中加以应用。王鹏 (国药控股天津有限公司天津 300040) 【中图分类号】R94 【文献标识码】A 【文章编号】2095-1752(2016)21-0376-02 人们已经认识到,在许多治疗方案中,药物比如抗癌药等要想发挥高效作用。药物运载系统要想将药物运载到靶向部位,需要克服重重困难,总体概括为细胞外与细胞内。在细胞外,运载体在血液中的稳定性,血液中的循环时间,靶向组织部位的累积情况等等。在细胞内,运载体如何高效进入细胞,内含体逃逸问题,药物可控释放等等。 下面简单介绍几种具有酸敏感的聚合物分子的合成以及特点。首先是在主链上引入酸敏感基团。在主链上引入酸敏感基团,设计合成的聚合物分子在中性条件(pH=7.4)具有稳定的结构,而在酸性条件(pH=5.0-6.0)下会发生降解为小分子的行为。缩醛结构在pH敏感药物运载体中得到了广泛的研究,这是由于其在酸性条件下比较快速的水解反应,而且其水解产物为可生物降解的醇与醛。Jin-Ki Kim等合成出一种新颖的pH敏感的基于缩醛结构的两亲性嵌段聚合物的药物运载分子PEG–PEtG–PEG,同时使用水溶性极差的药物分子紫杉醇PTX作为药物控制释放实验。经实验得知,该嵌段聚合物由于具有缩醛结构,所以在酸性条件可酸催化水解[1]。在不同的pH条件下,经过24h,考察释药环境的pH对载药体释药的影响。通过实验结果可以看出,pH很大程度上影响着药物分子的释放行为。在PEtG–PEG500聚合物胶束中,在pH=5.0时,1h内的PTX释药量达到了50%,而对于pH=7.4,在1h内的PTX释药量仅仅为20%。在释药6h后,对应pH=7.4,6.5以及5.0的条件下,PTX的累积释放百分率分别为49.3%,71.7%以及94.1%。对于聚合物胶束PEtG–PEG750而言,其释药行为也有类似的趋势。在释药6h后,对应不同的pH=7.4,6.5以及5.0,其PTX释药率分别为54.4%,68.3%以及89.1%。总的实验结果证明,具有缩醛结构的聚合物胶束搭载药物后的释药行为是收到释药体系的pH条件控制的。在弱酸条件下,聚合物胶束中的酸敏感基团的水解速率较快,导致药物分子的释放速率大为增加。 另外,与缩醛结构类似,缩酮结构也常常被用于聚合物结构中,赋予聚合物分子酸敏感功能。Dongwon Lee等人合成出具有pH敏感的两亲性聚合物分子聚缩酮己二酸-co-聚乙二醇嵌段共聚物(PKA-PEG)[2]。在该聚合物的疏水骨架中,具有酸敏感的缩酮键结构。该两亲性聚合物分子可以自组织成核/壳层结构,利用其疏水内腔可以搭载疏水性药物分子。搭载药物后,在酸性条件下,药物运载体结构破坏,从而将药物分子释放,即在弱酸性条件下具有可控药物释放功能。该嵌段共聚物(PKA-PEG)的结构示意图如下,作为对比,作者又合成出没有酸敏感基团的聚合物胶束聚环己基己二酸-co-聚乙二醇(PCA-PEG),结构示意图1如下。 * 图1 PKA-PEG与PCA-PEG示意图 两聚合物胶束均可经自组织形成壳层结构,都可在疏水内腔搭载药物分子。为了研究其对pH的响应性,作者采用模型分子尼罗红Nile Red来研究其释放行为。Nile Red是一种疏水性荧光探针,在水溶液中其荧光强度很低,然而在疏水性环境中,其荧光强度变得很高[3]。据此,研究聚合物胶束在中性条件以及弱酸性条件下的结构变化。下图为聚合物胶束PKA-PEG与Nile Red复合物的荧光强度随pH变化情况。从图2中可以看出,对于pH=7.4,在观察18h后,体系的荧光强度没有明显变化,然而对于pH=5.4而言,荧光强度有着显著的下降。这说明,在弱酸性条件(pH=5.4)条件下,聚合物胶束中的缩酮结构水解从而胶束结构被破坏,导致疏水性荧光分子从胶束中转移到水溶液中,从而降低了荧光强度。这说明两亲性嵌段共聚物由于具有缩酮结构从而对酸敏感,可以根据体系的pH来控制药物分子的释放行为。 *

脂质体

脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 脂质体作为目前最先进的,被喻为"生物导弹"的第四代给药系统成为靶向给药系统的新剂型。 脂质体的靶向性 通过改变脂质体的给药方式、给药部位和粒径来调整其靶向,另外,还可在脂质体上连接某种识别分子,通过其与靶细胞的特异性结合来实现专一靶向性。 靶向性是脂质体作为药物载体最突出的优点,脂质体进入体内后,主要被网状内皮系统吞噬,从而使所携带的药物,在肝、脾、肺和骨髓等富含吞噬细胞的组织器官内蓄积。 1.天然靶向性是脂质体静脉给药时的基本特征,这是由于脂质体进入体内即被巨噬细胞作为外界异物吞噬的天然倾向产生的。脂质体不仅是肿瘤化疗药物的理想载体,也是免疫激活剂的理想载体。 2. 隔室靶向性是指脂质体通过不同的给药方式进入体内后,可以对不同部位具有靶向性,可以通过各种给药方式进入体内不同的隔室位置产生靶向性。在组织间或腹膜内给予脂质体时,由于隔室的特点,可增加对淋巴结的靶向性。 3. 物理靶向性这种靶向性是在脂质体的设计中,应用某种物理因素的改变,例如用药局部的pH、病变部位的温度等的改变而明显改变脂质体膜的通透性,引起脂质体选择性地在该部位释放药物。弱离子性药物的脂质体,在进入体内后,可以选择性地在肿瘤的低pH局部释放药物。这种受pH影响释放药物的脂质体称为pH敏感脂质体。 4.配体专一靶向性这种靶向性是在脂质体上连接某种识别分子,即所谓的配体,通过配体分子的特异性专一地与靶细胞表现的互补分子相互作用,而使脂质体在靶区释放药物。 脂质体的分类 1. 阳性脂质体 阳性脂质体(cationic liposome)又称阳离子脂质体,正电荷脂质体(Positiveiy charged liposome)是一种本身带有正电荷的脂质囊泡。 1.1 阳性脂质体的组成大多数阳性脂质体是由一种中性磷脂和一种或多种阳性成分 组成。 中性磷脂成分:阳性脂质体中使用的中性磷脂成分上与常规脂质体相似,如胆固醇(cho1)、磷脂酰胆碱(PC)、磷脂酚乙醇胺(PE)等。 阳性成分:多为合成的双链季铵盐型表面活性剂,具有体外稳定性好,体内可被生物降解的优点,但均具有一定的细胞毒性。

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

一种新型脂质体热敏脂质体

一种新型脂质体热敏脂质体脂质体是一种定向药物载体,属于靶向给药系统的一种新剂型。它可以将药物粉末或溶液包埋在直径为纳米级的微粒中,这种微粒具有类细胞结构,进入人体内主要被网状内皮系统吞噬,从而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体由双分子层组成,主要由磷脂为膜材及附加剂构成,其成分不但是形成脂质体双分子层的基础物质,而且本身也具有极为重要的生理功能。按性能脂质体可分为一般脂质体、热敏脂质体、pH敏感脂质体、微波敏感脂质体、声振波敏感脂质体、光敏感脂质体和磁性脂质体等。 热敏脂质体的释药原理 在研究的各种新型脂质体中,热敏脂质体(温度敏感脂质体)是一个很有发展前途的分支,它有效利用了脂质体和热疗的双重优势来提高治疗效果,降低毒副作用。 在正常的体温下,脂质体膜呈致密排列的胶晶态,亲水性药物很难透过脂质体膜而扩散出来。当脂质体随血液循环经过被加热的靶器官时,局部的高温使磷脂分子运动加强,脂质体膜的结构发生变化,原来排列整齐致密的胶晶态磷脂双分子层在较高温度下变成疏松混乱的液晶态。脂质体在由凝胶态转变到液晶结构的相变温度(Tm)时,其磷脂的脂酰链紊乱度及活动度增加,膜的流动性也增大,这种结构的变化导致脂质体膜的通透性发生改变,脂质体内部

包封的药物借助于跨膜浓度梯度而大量扩散到靶器官中,在靶部位形成较高的药物浓度,对周围的肿瘤细胞产生较强的杀伤作用,从而达到局部化疗的作用;而偏出相变温度时药物释放则缓慢。因此,根据这一原理用相变温度较低的类脂制备的脂质体,在未加热的器官中药物浓度比较低,对正常细胞产生的杀伤作用很小,使化疗药物所致的恶心、呕吐等副作用明显降低,减轻了病人的痛苦,增加了用药的顺应性;而当机体全身或局部温度升高到41~42℃时,就可以引起脂质体迅速释放内含药物,发挥药效。 制备热敏脂质体的材料 合成磷脂一般以二棕榈酰磷脂酰胆碱(DPPC)为主,通过加入其他不同碳链长度的磷脂来调节脂质体膜的释放特性。例如,DPPC (Tm=41℃)通常与二棕榈酰磷脂酰甘油(DPPG)(Tm=41℃)按一定比例混合以得到不同的Tm。由于合成磷脂的纯度高,脂酰基的烃链长度基本一致,受热时分子运动规律相近,因此有比较固定的相变温度。但合成磷脂的制备工艺复杂,成本高,因此限制了热敏脂质体在临床上的推广应用。 高分子聚合物各国学者试图用廉价的合成高分子材料替代合成磷脂,制备具有热敏性的类脂泡囊,以降低成本,增加实用性。经体外试验证明,这类高分子类脂小囊具有良好的热敏性,但受到生物相容性和生物可降解性的限制。 天然磷脂天然磷脂也可作为制备热敏脂质体的材料,但是由于组成天然磷脂的脂酰基的烃链长短不一,形成脂质体时这些烃链容

表阿霉素脂质体的制备与质量评价

[收稿日期] 2007-11-23 [作者简介] 吴 燕(1979-),女,湖北省红安县人,在读博士生,E mai:l w uyan2001@163.co m ,Te:l 010 ********。 *通讯联系人,梅兴国,男,博士生导师,研究员,T el/Fax :010 66932644 表阿霉素脂质体的制备与质量评价 吴 燕1 ,吴 诚2 ,康艳敏3 ,梅兴国 1* (1.军事医学科学院毒物药物研究所,北京 100850;2.第二炮兵总医院药剂科,北京 100088; 3.延边大学药学院,吉林延吉 133000) [摘要] 目的:制备盐酸表阿霉素脂质体,建立H PLC 含量测定方法并优选包封率测定方法。方法:采用薄膜分散 p H 梯度法制备盐酸表阿霉素脂质体;采用HPLC 测定药物含量;采用葡聚糖凝胶色谱、超滤及透析3种分离方法测定脂质体的包封率。结果:制备的表阿霉素脂质体粒径较小、分布较窄;3种方法测得盐酸表阿霉素脂质体的包封率分别为96.1%,98.4%,92.9%;结论:薄膜分散 p H 梯度法适于制备盐酸表阿霉素脂质体,含量测定方法可靠。超滤法可以准确、快速地测定脂质体包封率。[关键词] p H 梯度法;盐酸表阿霉素;脂质体;包封率[中图分类号] R 979.1 [文献标识码] A [文章编号] 1000 5501(2008)02 0165 03 P reparation and quality control of epirubicin hydrochloride liposo m es WU Yan 1 ,WU Cheng 2 ,KANG Yan M in 3 ,MEI X ing Guo 1* (1.Instit ute o f Phar m aco l ogy and T ox i co l ogy ,A cade m y ofM ilitary M edical Sciences ,B eiji ng 100850,Ch i na ;2.T he Sec ond A rtillery G enera lH osp ita,l Be iji ng 100088,Ch i na ;3.Co lleg e of Phar m acy ,Y anbian U n i versity ,Y anj,i J ilin 133000,Ch i na) [Abstract] O b jectives :T o prepa re epirubic i n hydroch l o ri de liposom es (Epi li p),estab lish an HPLC me t hod for the deter m i nation o f EP I and to opti m i ze the m ethod fo r determ i nation o f entrap m ent effic i ency (EE %).M ethod s :Epi lip w as prepared by thin fil m p H g rad i ent m ethod .Sephadex G 50chro m atog raphy ,the u ltrafiltra tion m et hod and dialysis m et hod w ere used to deter m i ne EE %o f li posomes .R esu lts :T he EP I li p had a s m a ll particle size and narro w size distributi on .T he EE %of li poso m es was 96.1%,98.4%and 92.9%de ter m i ned by Sephadex G50chrom atog raphy ,ultra filtrati on and dia l ys i s respectively .Conc l u sion :The t h i n fil m p H g rad i entm ethod i s suitable for prepa ration of Ep i li p .T he H PLC m ethod i s sensitive and accurate .T he u ltrafiltra tion m ethod can deter m i ne EE%of li poso m es accura tely and qu i ckly .[K ey words] p H g radien tm ethod ;ep irub i c i n hydroch l o ri de ;li po so m e ;entrap m ent effic i ency 表阿霉素(表柔比星,ep irub i c i n ,EP I)是一种新型蒽环类抗肿瘤药,为阿霉素的同分异构体。其骨髓抑制和心脏毒性比阿霉素低25%,主要应用于肝癌、肺癌、乳腺癌、卵巢癌和白血病的化疗[1]。EPI 是一种高效、广谱的抗肿瘤药,为同类药物的首选,单一用药对多种肿瘤有广谱的抑制作用,但临床使用的注射用盐酸表阿霉素容易发生脉管疼痛和脉管炎,长期应用有骨髓抑制,对肝功能不全者易产生蓄积中毒,特别是对心脏的毒性限制了其广泛应用[2]。脂质体作为抗肿瘤药物载体具有改变药物在组织中的分布,提高靶向性,减小毒副作用的特点。本研究制备了表阿霉素脂质体,并对制剂进行了初步的评价,旨在为临床提供一种新的高效低毒制剂。 1 仪器与试药 1.1 仪器 L 2130型HPLC(日本日立公司);RE5299型旋转蒸发 仪(巩义市英峪予华仪器厂);A vesti n C 3型高压均质机(加拿大);激光粒度分析仪(德国Sympatec Gm b H 公司);J E M 1230型透射电子显微镜(日本电子公司);C intra 10e 紫外 可见分光光度计(澳大利亚GBC 公司);2132电子蠕动泵(瑞典LKB B romm a 公司);Z 160M 台式微量离心机(德国H er m l ego 公司);W a terP ro PS 纯水系统(德国L abconco 公司);M D34透析袋(截留相对分子质量为14 103,美国So larb i o 公司);超滤管(截留相对分子质量30 103,美国M i n i pore 公司); 1.2 试药与试剂 表阿霉素及其对照品(浙江海正药业);蛋黄卵磷脂(纯 165 军事医学科学院院刊 2008年4月第32卷第2期Bu llAcad M ilM ed S c,i Apr 2008; Vol 32 No 2

相关主题
文本预览
相关文档 最新文档