当前位置:文档之家› [精品]2019年高考数学二轮专题复习知能专练十五空间角与空间向量6

[精品]2019年高考数学二轮专题复习知能专练十五空间角与空间向量6

[精品]2019年高考数学二轮专题复习知能专练十五空间角与空间向量6
[精品]2019年高考数学二轮专题复习知能专练十五空间角与空间向量6

知能专练(十五) 空间角与空间向量

一、选择题

1.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1―→上且AM ―→=12MC 1―→,N 为B 1B 的中点,则|MN ―→

|为( )

A.216a

B.66a

C.

156

a D.

153

a 解析:选A 以D 为原点建立如图所示的空间直角坐标系,

则A (a,0,0),C 1(0,a ,a ),N ? ?

???

a ,a ,a 2.

设M (x ,y ,z ).

∵点M 在AC 1―→上且AM ―→=12

MC 1―→

.

∴(x -a ,y ,z )=1

2(-x ,a -y ,a -z ),

∴x =23a ,y =a 3,z =a 3,

于是M ?

??

?

?2a 3,a 3,a 3.

∴|MN ―→

|= ? ????a -23a 2+? ????a -a 32+? ??

??a 2-a 32 =

216

a . 2.(2016·全国卷Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面

ABB 1A 1=n ,则m ,n 所成角的正弦值为( )

A.32

B.

22 C.33 D.13

解析:选A 如图,在正方体ABCD -A

1B 1C 1D 1的上方接一个同等大小的正方体ABCD -A 2B 2C 2D 2,则过A 与平面CB 1D 1平行的是平面AB 2D 2,平面AB 2D 2∩平面AA 1B 1B =AB 2,即直线n 就是直线AB 2,

由面面平行的性质定理知直线m 平行于直线B 2D 2,故m ,n 所成的角就等于AB 2与B 2D 2所成的角,

在等边三角形AB 2D 2中,∠AB 2D 2=60°,故其正弦值为

3

2

.

3.在四面体ABCD 中,二面角A -BC -D 为60°,点P 为直线BC 上一动点,记直线PA 与平

面BCD 所成的角为θ,则( )

A .θ的最大值为60°

B .θ的最小值为60°

C .θ的最大值为30°

D .θ的最小值为30°

解析:选A 过A 作AH ⊥平面BCD 于点H ,AG ⊥BC 于点G ,连接PH ,GH ,则易知∠AGH 为

角,则tan ∠APH =AH

PH

.

二面角A -BC -D 的平面角,即∠AGH =60°,∠APH 为PA 与平面BCD 所成因为AH 为定长,所以当PH 取得最小值时,∠APH 取得最大值,易知当点P 与点G 重合时,PH

取得最小值,所以θ

max

=∠AGH =60°,故选A.

4.(2017·哈师大附中模拟)三棱柱ABC -A 1B 1C 1中,底面是边长为2的正三角形,AA 1⊥平面ABC ,且AA 1=1,则异面直线A 1B 与B 1C 所成角的大小为( )

A .30°

B .45°

C .60°

D .90°

解析:选D 如图,把两个相同的三棱柱组合在一起,由于A 1B ∥A 2B 1,那么A 2B 1与B 1C 所成的角即为A 1B 与B 1C 所成的角,由题可得A 2B 1=B 1C =3,A 2C =6,则有A 2B 2

1

+B 1C 2

=A 2C 2

,所以∠

A 2

B 1

C =90°,故所求的异面直线A 1B 与B 1C 所成的角为90°,故选D.

5.已知锐二面角α -l - β中,异面直线a ,b 满足:a ?α,a ⊥l ,

b ?β,b 与l 不垂直,

设二面角α -l - β的大小为θ1,a 与β所成的角为θ2,异面直线a ,b 所成的角为θ3,则( )

A .θ1>θ2>θ3

B .θ3>θ2>θ1

C .θ1=θ2>θ3

D .θ3>θ2=θ1

解析:选D 在锐二面角α-l -β中,a ?α,a ⊥l ,所以二面角α -l - β的平面角即a 与β所成的角,则θ1=θ2,因为b ?β,b 与l 不垂直,根据斜线与平面所成的角是斜线与平面内的任意直线所成角的最小角,则θ3>θ2

=θ1,故选D.

6.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是A 1C 1上任意一点,记平面PAB ,平面PBC 与下底面所成的二面角分别为α,β,则tan(α+β)的最小值为( )

A .-23

B .-3

4

C .-43

D .-3

2

解析:选C 如图,作PP 1⊥AC ,交AC 于P 1,易知,PP 1⊥底面ABCD ,作PM ⊥AB ,PN ⊥BC ,所以tan α=1

x

,tan

连接MP 1,NP 1,易证得∠PMP 1=α,∠PNP 1=β.设MP 1=x ,则NP 1=1-x ,β=11-x .∴tan(α+β)=tan α+tan β

1-tan αtan β=

1x +1

1-x 1-

1

x -

x

1-x 2

+x -1

1-? ????x- 122-3

4

.∵0≤x ≤1,∴tan(α+β)≥-43,当且仅当x =1

2时取到等号,故选C.

二、填空题

7.(2017·嘉兴模拟)已知正四面体ABCD 中,E ,F 分别为AB ,CD 的中点,则异面直线EF 与AD 所成角的大小为________.

解析:取AC 中点G ,连接FG ,易知∠EFG 即为已知两异面直线所成的

角,设棱长为a ,则有

GE =GF =a 2

,EF =22

a ,即△GEF 为等腰直角三角形,故∠EFG =π

4

.

答案:π4

8.如图所示的三棱锥P -ABC 中,PC ⊥平面ABC ,PC =23

3,D 是BC

的中点,且△ADC 是

边长为2的正三角形,则二面角P -AB -C 的大小为________.

解析:由已知条件,D 是BC 的中点,∴CD =BD =2, 又△ADC 是正三角形,∴AD =CD =BD =2, ∴D 是△ABC 的外心且又在BC 上,

∴△ABC 是以∠BAC 为直角的三角形,即AB ⊥AC , 又PC ⊥平面ABC ,∴PA ⊥AB .

∴∠PAC 即为二面角P -AB -C 的平面角, 在直角三角形PAC 中易求得,tan ∠PAC =PC AC =33

, ∴∠PAC =30°. 答案:30°

=3CD =3.将△ABC 9.如图,△ABC 是等腰直角三角形,AB =AC ,∠BCD =90°,且BC 沿BC 边翻折,设点A 在平面BCD 上的射影为点M ,若点M 在△BCD 的内部(含边界),则点M 的轨迹的最大长度等于________;在翻折过程中,当点M 位于线段BD 上时,直线AB 和CD 所成的角的余弦值等于________.

解析:当平面ABC ⊥平面BCD 时,点A 在平面BCD 上的射影为BC 上的点M ,因为AB =AC ,

所以BM =MC ,当点A 在平面BCD 上的射影M ′在BD 上时,因为BC =3CD =3,所以∠DBC =

于12CD =3

2

.当M 位于30°,所以由∠BCD =90°得BM ′=M ′D ,则点M 的轨迹的最大长度等

BD 上时,将其补为四棱锥,由已知条件得其为正四棱锥,所以AB =AE =32

2

,又因为∠EBA 为直线AB 和CD 所成的角,所以cos ∠EBA =AB 2+BE 2-AE 22AB ·BE =6

6

.

答案:

32 6

6

三、解答题

10.(2017·金华十校调研)如图,在四棱锥P -ABCD 中,底面ABCD

是边长为1的菱形,∠

精 品 试 卷

BAD =60°,侧棱PA ⊥底面ABCD ,E 是PC 的中点.

(1)证明:PA ∥平面EBD ;

(2)若直线PC 与平面EBD 所成角的大小为60°,求PA 的长. 解:(1)证明:连接AC 交BD 于点O ,连接OE ,

∵O ,E 分别是AC ,PC 的中点, ∴EO ∥PA . ∵PA ?平面EBD , ∴PA ∥平面EBD .

(2)∵PA ⊥平面ABCD ,∴PA ⊥AC , 又∵EO ∥PA ,∴EO ⊥AC , 又AC ⊥BD ,∴AC ⊥平面EBD ,

∴∠CEO 就是直线PC 与平面EDB 所成角. 在菱形ABCD 中,容易求得OC =32

. 又∵EO ⊥OC ,∠CEO =60°, ∴EO =1

2

,故PA =1.

11.(2018届高三·金丽衢联考)如图,四边形ABCD 为菱形,ACFE 为平行四边形,且平

面ACFE ⊥平面ABCD ,AB =BD =2,AE =3,设BD 与AC 相交于点G ,H

为FG 的中点.

(1)证明:CH ⊥平面BFD ; (2)若CH =

3

2

,求EF 与平面EDB 所成角的大小. 解:(1)证明:∵四边形ABCD 为菱形,∴BD ⊥AC . 又∵平面ACFE ⊥平面ABCD ,

∴BD ⊥平面ACFE ,∴BD ⊥CH ,即CH ⊥BD . 又∵点H 为FG 的中点,CG =CF =3,∴CH ⊥FG . 又∵FG ∩BD =G ,∴CH ⊥平面BFD . (2)连接EG ,由(1)知BD ⊥平面ACFE ,

∴平面EFG ⊥平面BED ,

∴EF 与平面EDB 所成角即为∠FEG . 在△FCG 中,CG =CF =3,CH =

3

2

,CH ⊥GF ,

又∵EF =23,∴在△EFG 中,可求得∠FEG =60°. 故EF 与平面EDB 所成角的大小为60°.

12.(2017·北京高考)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA =PD =6,AB

=4.

(1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;

(3)求直线MC 与平面BDP 所成角的正弦值.

解:(1)证明:如图,设AC ,BD 的交点为E ,连接ME . 因为PD ∥平面MAC , 平面MAC ∩平面PDB =ME , 所以PD ∥ME .

因为底面ABCD 是正方形, 所以E 为BD 的中点. 所以M 为PB 的中点.

(2)取AD 的中点O ,连接OP ,OE . 因为PA =PD ,所以OP ⊥AD .

又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,OP ?平面PAD , 所以OP ⊥平面ABCD . 因为OE ?平面ABCD , 所以OP ⊥OE .

因为底面ABCD 是正方形,所以OE ⊥AD .

以O 为原点,以OD ―→,OE ―→,OP ―→

为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系O -xyz , 则P (0,0,2),D (2,0,0),B (-2,4,0), BD ―→=(4,-4,0),PD ―→

=(2,0,-2). 设平面BDP 的一个法向量为n =(x ,y ,z ), 则???

??

n ·BD ―→=0,

n ·PD ―→=0,

即??

?

4x -4y =0,

2x -2z =0.

令x =1,得y =1,z = 2. 于是n =(1,1,2).

又平面PAD 的一个法向量为p =(0,1,0),

所以cos 〈n ,p 〉=n ·p |n ||p |=1

2

.

由题知二面角B -PD -A 为锐角,

所以二面角B -PD -A 的大小为60°. (3)由题意知M ? ??

??

-1,2,22,C (2,4,0), 则MC ―→=?

????3,2,-22.

设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC ―→

〉|=|n ·MC ―→

||n ||MC ―→|=269.

所以直线MC 与平面BDP 所成角的正弦值为26

9.

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

高三数学专题复习:空间向量

一、知识梳理 【高考考情解读】 高考对本节知识的考查以解答题的形式为主:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明、空间角(主要是线面角和二面角)的计算.2.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题. 1. 直线与平面、平面与平面的平行与垂直的向量方法 设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同). (1)线面平行:l ∥α?a ⊥μ?a ·μ=0?a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α?a ∥μ?a =k μ?a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β?μ∥v ?μ=λv ?a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直:α⊥β?μ⊥v ?μ·v =0?a 3a 4+b 3b 4+c 3c 4=0. 2. 直线与直线、直线与平面、平面与平面的夹角计算 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角:设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22 . (2)线面夹角:设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ| =|cos 〈a ,μ〉|. (3)面面夹角:设平面α、β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v | =|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 3. 求空间距离 直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距 离:d =|PM →·n ||n | (其中n 为α的法向量,M 为α内任一点). 二、课前预习 1.平面α的法向量为m ,向量a 、b 是平面α之外的两条不同的直线的方向向量,给出三个论断:①a ⊥m ;②a ⊥b ;③m ∥b .以其中的两个论断作为条件,余下一个论断作为结论, 写出所有正确的命题______________________. 2.如图,直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1, ∠BCA =90°,棱AA 1=2,则cos 〈BA 1→,CB 1→〉的值为________. 3.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

立体几何与空间向量-浙江省台州市书生中学2020届高三数学复习专题练习(无答案)

立体几何 例1.在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π 2.三视图 例2.某简单组合体的三视图如图所示,则该几何体的体积为( ) A .164+π B .484π+ C .4812π+ D .4816π+ 3.常见几何体的体积计算公式 例3.已知直角三角形 ABC 两直角边长之和为3,将ABC ?绕其中一条直角边旋转一周,所形成旋转体体积的最大值为__________,此时该旋转体外接球的表面积为___________. 例4.如图,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为等边三角形,点、分别为线段,上的动点(不含端点),且 ,则三棱锥体积的最大值为__________. 例5.如图,在几何体中,平面底面ABC , 四边形是正方形,,Q 是的中点,且,. 求证:平面; 求二面角 的余弦值.

例6.如图几何体中,底面ABCD 为正方形,PD ⊥平面ABCD , //EC PD ,且22PD AD EC ===.(1)求证://BE 平面PDA ; (2)求PA 与平面PBD 所成角的大小. 例7.已知三棱锥A BCD -的棱长均为6,其内有n 个小球,球1O 与三棱锥A BCD -的四个面都 相切,球2O 与三棱锥A BCD -的三个面和球1O 都相切,如此类推,…,球n O 与三棱锥A BCD -的 三个面和球1n O -都相切(2n ≥,且n *∈N ),则球1O 的体积等于__________,球n O 的表面积等于__________. 例8.如图所示,在等腰梯形ABCD 中,,,E ,F 为AB 的三等分点,且将和分别沿DE 、CF 折起到A 、B 两点重合,记为点P . 证明:平面 平面PEF ; 若,求PD 与平面PFC 所成角的正弦值.

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高三数学复习专题空间向量与立体几何考点系统复习

A B C A 1 B 1 C 1 M y z A B C D E F x y z M N A 1 x D 1 B 1 A D B C C 1 y z E F 高三数学复习专题 空间向量与立体几何考点系统复习 一、利用向量处理平行与垂直问题(特别是探索性问题) 例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是 1CC 得中点。求证:AM B A ⊥1 练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ? 例 2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线 AE BD ,上,且AE AN BD BM 3 1 ,31==,求证://MN 平面CDE 练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE A B C D A 1 B 1 C 1 D 1P x z y

A B C D E P x y z F A 1 x D 1 B 1 A D B C C 1 y z E 1 F 1 H G A 1 x D 1 B 1 A D B C C 1 y z E 1 F A 1 D 1 B 1 C 1 z 2、如图,在底面是菱形的四棱锥P —ABCD 中, ?=∠60ABC , ,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使 BF ∥平面AEC?证明你的结论. 二、利用空间向量求空间的角的问题 例 1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=4 1 A 1 B 1,D 1F 1=4 1 D 1C 1,求B E 1与D F 1所成的角的大小。 例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 4 1 D 1C 1,试求直线 E 1 F 与平面D 1AC 所成角的大小 例3 在正方体1111D C B A ABCD -中,求二面角11C BD A --的大小。

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

相关主题
文本预览
相关文档 最新文档