当前位置:文档之家› 电力拖动仿真第三章

电力拖动仿真第三章

第三章 MATLAB的基本操作及数值计算3.1 MATLAB的工作空间变量操作

1. MATLAB的工作空间包含了一组可以在命令窗口中调整(调用)的参数

who:显示当前工作空间中所有变量的一个简单列表如:》a=1,b=2,c=3

who

显示: Your variables are:a,b,c

whos:则列出工作空间内各变量的大小、数据格式等详细信息。

clear :清除工作空间中所有的变量

clear + 变量名:清除指定的变量

如:clear a b A:清除a b A变量,保留其它变量

注意:MATLAB区分字母的大小写。

2. 保存和载入workspace

(1)save filename variables

将变量列表variables所列出的变量保存到磁盘文件filename中Variables所表示的变量列表中,不能用逗号,各个不同的变量之间只能用空格来分隔。

未列出variables时,表示将当前工作空间中所有变量都保持到磁盘文件中。

缺省的磁盘文件扩展名为“.mat”

(2)load filename variables

将以前用save命令保存的变量variables从磁盘文件中调入MATLAB工作空间。

用load 命令调入的变量,其名称为用save命令保存时的名称,取值也一样。

Variables所表示的变量列表中,不能用逗号,各个不同的变量之间只能用空格来分隔。

未列出variables时,表示将磁盘文件中的所有变量都调入工作空间。

3. 退出工作空间

quit 或 exit

3.2 变量和数值显示格式

1. 变量

(1)变量的命名

变量的名字必须以字母开头(不能超过19个字符),之后可以是任意字母、数字或下划线;变量名称区分字母的大小写;变量中不能包含有标点符号。(2)一些特殊的变量

ans:用于结果的缺省变量名

i、j:虚数单位

pi:圆周率

inf:无穷大

flops:浮点运算数

(3)变量操作

在命令窗口中,同时存储着输入的命令和创建的所有变量值,它们可以在任何需要的时候被调用。如要察看变量a的值,只需要在命令窗口中输入变量的名称即可:如:》a

2.数值显示格式

任何MATLAB语句的执行结果都可以在屏幕上显示,同时赋值给指定的变量,没有指定变量时,赋值给一个特殊的变量ans,数据的显示格式由format命令控制。

format只是影响结果的显示,不影响其计算与存储;MATLAB总是以双字长浮点数(双精度)来执行所有的运算。

如果结果为整数,则显示没有小数;如果结果不是整数,则输出形式有:

format (short):短格式(5位定点数)99.1253 format long:长格式(15位定点数)

99.12345678900000

format short e:短格式e方式 9.9123e+001

format long e:长格式e方式

9.912345678900000e+001

format bank: 2位十进制 99.12

format hex:十六进制格式

3. 复数

复数的赋值采用实部和虚部的方法,虚数用虚数单位表示。

如:a=1+2j,b=3+4i,其运算与实数相同。还有其它运算:

模abs(1+2j) 2.2361

幅角(rad)angle(1+2j) 0.9273

实部real(1+2j) 1

虚部imag(1+2j) 2

共轭conj(1+2j) 1.0000-2.0000j

3.3 MATLAB的各种运算符

MATLAB的运算符有三种类型:算术运算符、关系运算符、逻辑运算符。它们的处理顺序依次为算术运算符→关系运算符→逻辑运算符。

1.常用的数学运算符

+,—,*(乘),/(左除),\(右除),^(幂)在运算式中,MATLAB通常不需要考虑空格;多条命令可以放在一行中,它们之间需要用分号隔开;逗号告诉MATLAB显示结果,而分号则禁止结果显示。

建议:一般程序在执行过程中,语句后加“;”以提高程序的运行速度。

2. 常用数学函数

abs, sin, cos, tan, asin, acos, atan, sqrt, exp, imag, real, sign, log, log10, log2, conj(共扼复数)等

3.关系运算符关系操作符说明

< 小于

< = 小于或等于

> 大于

> = 大于或等于

== 等于

~ = 不等于

注意:=和 ==意味着两种不同的事:“==”比较两个变量,当它们相等时返回1,当它们不相等时返回0;“=”被用来将运算的结果赋给一个变量。

MATLAB关系操作符能用来比较两个同样大小的数组,或用来比较一个数组和一个标量。在后一种情况,标量和数组中的每一个元素相比较,结果与数组大小一样。

例如:

? A=1:9, B=9-A

A =

1 2 3 4 5 6 7 8 9

B =

8 7 6 5 4 3 2 1 0

? tf=A>4

tf =

0 0 0 0 1 1 1 1 1

找出A中大于4的元素。0出现在A<=4的地方,1出现在A>4的地方。

4.逻辑运算符

在处理逻辑运算时,运算元只有两个值即0和1,所以如果指定的数为0,MATLAB认为其为0,而任何数不等于0,则认为是1。也可以用函数and(A,B),or(A,B)和not(A,B)分别实现与、或、非等逻辑运算。

逻辑运算符主要包括:

“&”:与“|”:或“~”:非

需要注意的是:在一个表达式中,算术运算符优先级最高,其次是关系运算符,逻辑运算符的级别最低。在逻辑运算符中,“非”的优先级最高。另外,用圆括号可以改变优先级的顺序。

??

????

????=987654321A 【例3-1】简单矩阵输入步骤: (1)在键盘上输入下列内容: A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

(2)按【Enter 】键,指令被执行。

(3)在指令执行后,MATLAB 指令窗中将显示以下结果: A =

1 2 3

4 5 6

7 8 9

3.4.1 矩阵的输入

3.4 MATLAB 的矩阵运算

1. 矩阵生成

【例3-2】矩阵的分行输入

A=[1, 2, 3

4, 5, 6

7, 8, 9] 显示结果如下:

A =

1 2 3

4 5 6

7 8 9

》a=1; b=2; c=3;

》x=[5 b c; a*b a+c c/b] x=

5.000 2.000 3.000

2.000 4.000 1.500

【例3-3】命令窗口中输入

》y=[2 4 5;3 6 8]

y=

2 4 5

3 6 8

2. 语句生成

(1)用线性等间距生成向量矩阵(start: step: end)》a=[1:2:10] ↙

a=

1 3 5 7 9

(2)a=linspace (n1, n2, n)

在线性空间上,行矢量的值从n1到n2,数据个数为n,缺省n为100。

》a=linspace(1,10,10) ↙

a=

1 2 3 4 5 6 7 8 9 10

(3)a=logspace(n1,n2,n)

在对数空间上,行矢量的值从10n1到10n2,数据个数为n,缺省n为50。应用于建立频域轴坐标。

(4)一些常用的特殊矩阵

单位矩阵:eye(m,n); eye(m)

零矩阵:zeros(m,n);zeros(m)

一矩阵:ones(m,n); ones(m)

对角矩阵:对角元素向量

V=[a1,a2,…,,an] A=diag(V)

随机矩阵:rand(m,n)产生一个维数为m×n且均匀分布的随机矩阵。

例如:

》eye(2,3) ans=

1 0 0

0 1 0

》zeros(2,3) ans=

0 0 0

0 0 0

》ones(2,3) ans=

1 1 1

1 1 1 》eye(2) ans=

1 0 0 1 》zeros(2) ans=

0 0 0 0 》ones(2) ans=

1 1 1 1

3.逆矩阵与行列式计算

求逆:inv(A);

要求矩阵必须为方阵

》a=[1 2 3; 4 5 6; 2 3 5];

》b=inv(a)

b =

-2.3333 0.3333 1.0000

2.6667 0.3333 -2.0000

-0.6667 -0.3333 1.0000

4. 了解矩阵超越函数

在MATLAB中exp、sqrt等命令也可以作用到矩阵上,但这种运算是定义在矩阵的单个元素上的,即分别对矩阵的每一个元素进行计算。

超越数学函数可以在函数后加上m而成为矩阵的超越函数,例如:expm, sqrtm。矩阵的超越函数要求运算矩阵为方阵。

3.4.2 矩阵的操作

1. 矩阵的子块操作

MATLAB通过确认矩阵下标,可以对矩阵进行插入子块,提取子块和重排子块的操作。具体操作如下:

A(m,n):提取第m行,第n列元素

A(:,n):提取第n列元素

A(m,:):提取第m行元素

如A(2,:)表示矩阵A的第2行所有元素

如A(:,3)表示矩阵A的第3列所有元素

A(m1:m2, n1:n2):提取第m1行到第m2行和第n1 列到第n2列的所有元素(提取子块);

A(:):得到一个长列矢量,该矢量的元素按矩阵的列进行排列。

2. 矩阵的大小

[m,n]=size(A,x):返回矩阵的行列数m与n,当x=1,则只返回行数m,当x=2,则只返回列数n。

length(A)=max(size(A)):返回行数或列数的最大值。rank(A):求矩阵的秩

》a=[1 2 3;3 4 5];

》[m,n]=size(a) m =2

n =3 》length(a)

ans = 3

》max(size(a)) ans =3

》rank(a)

ans =2

电力拖动自动控制系统Matlab仿真实验报告

电力拖动自动控制系统 ---Matlab仿真实验报告

实验一二极管单相整流电路 一.【实验目的】 1.通过对二极管单相整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识; 2.通过实验进一步加深理解二极管单向导通的特性。 图1-1 二极管单相整流电路仿真模型图 二.【实验步骤和内容】 1.仿真模型的建立

①打开模型编辑窗口; ②复制相关模块; ③修改模块参数; ④模块连接; 2.仿真模型的运行 ①仿真过程的启动; ②仿真参数的设置; 3.观察整流输出电压、电流波形并作比较,如图1-2、1-3、1-4所示。 三.【实验总结】 由于负载为纯阻性,故输出电压与电流同相位,即波形相同,但幅值不等,如图1-4所示。

图1-2 整流电压输出波形图图1-3 整流电流输出波形图

图1-4 整形电压、电流输出波形图 实验二三相桥式半控整流电路 一.【实验目的】 1.通过对三相桥式半控整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识; 2.研究三相桥式半控整流电路整流的工作原理和全过程。 二.【实验步骤和内容】 1.仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数, 模块连接。 2.仿真模型的运行;仿真过程的启动,仿真参数的设置。 相应的参数设置: (1)交流电压源参数U=100 V,f=25 Hz,三相电源相位依次延迟120°。 (2)晶闸管参数 Rn= Ω,Lon= 1 H,Vf=0 V,Rs=50 Ω,Cs=250e-6 F。 (3)负载参数R=10 Ω,L=0 H,C=inf。

(4)脉冲发生器的振幅为5 V,周期为 s (即频率为25 Hz),脉冲宽度为2。 图2-1 三相桥式半控整流电路仿真模型图 当α=0°时,设为 3s, 6s, 9 s。

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

电力系统软件介绍

电力系统软件介绍 电力系统分析软件介绍 一、PSAPAC 简介:由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能: DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient Midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和

华科电力电子实验报告

电气11级 《信号与控制综合实验》课程 电力电子部分实验报告 姓名学专业班 同组学号专业班号 同组者 实验评分表

基本实验实验编号名称/内容实验分值评分 PWM信号的生成和PWM控制的实现 DC/DC PWM升压降压变换电路性能的研究 三相桥式相控整流电路性能的研究 DC/AC单相桥式SPWM逆变电路性能的研 究 设计性实验实验名称/内容实验分值评分 实验三十九信号的调制—SPWM信号 的产生与实现 教师评价意见总分 目录

实验二十八 PWM信号的生成和PWM控制的现 (4) 实验二十九 DC/DC—PWM升压、降压变换电路性能研究 (11) 实验三十三相桥式相控整流电路性能研究 (14) 实验三十一DC/AC单相桥式SPWM逆变电路性能研究 (23) 实验三十九信号的调制—SPWM信号的产生与实现 (32) 实验心得 (40)

实验二十八 PWM信号的生成和PWM控制的实现 一.实验目的 分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能,从而掌握PWM 控制芯片的工作原理和外围电路设计方法。 二.实验原理 PWM控制的基本原理:将宽度变化而频率不变的的脉冲作为电力电子变换器电路中的开关管驱动信号,控制开关管的适时、适式的通断;而脉冲宽度的变化与变换器的输出反馈有着密切的联系,当输出变化时,通过输出反馈调节开关管脉冲驱动信号,调节驱动脉冲的宽度,进而改变开关管在每个周期中的导通时间,以此来抵消输出电压的变化,从而满足电能变换的需要。 本实验中采用实验室中已有的PWM控制芯片TL494来完成实验,当然在进行具体的PWM控制之前,我们必须要详细的了解和认识该控制芯片的工作原理和方式,如何输出?输出地双路信号存在怎样的关系?参考信号是如何形成的?反馈信号是如何加载到控制芯片上,同时又是如何以此反馈信号来完成输出反馈的?另外我们也必须了解和认识到对不同开关管进行驱动时,为保证开关管的完全可关断,保证电路的正常可靠工作,死区时间的控制方式。最后我们也要了解为防止电力电子变换器在突然启动时,若开放较宽脉冲而带来的较大冲击电流的影响(和会给整个电路带来许多不利影响),控制芯片要采用“软启动”的方式,这也是本实验中认识的一个重点。 三.实验内容 (1)考察开关频率为20kHz,单路输出时,集成电路的软启动功能。 (2)考察开关频率为20kHz,单路输出时,集成电路的反馈电压Vf对输出脉宽的影响。(3)考察开关频率为20kHz,单路输出时,集成电路的反馈电流If对输出脉宽的影响。(4)考察开关频率为20kHz,单路输出时,集成电路的保护封锁功能 (5)考察开关频率为20kHz,单路输出时,集成电路死区电压对输出脉宽的影响。 四.实验步骤 本实验采用单路输出,将端口13接地。 1.PWM脉宽调节:软启动后,在V1端口施加电压作为反馈信号Vf,给定信号Vg=2.5v,改变V1端口电压大小,即可改变V3,从而改变输出信号的脉宽。V3越大,K越大,C=J+K越大,脉宽越小;反之脉宽越大。记录不同V1下的输出波形并与预计实验结果比较。 2.软启动波形:为防止变换器启动时较大的冲击电流,控制芯片TL494和其他控制芯片相似也采用了软启动。在启动时,为防止变换器冲击电流的出现,驱动脉宽应从零开始增大,逐渐变宽到工作所需宽度。本实验中此功能由脉冲封锁端口电位的逐渐开放来实现,电位又打逐渐变小,便可实现软启动。为对控制芯片的该控制过程有更明确和清晰的认识,我们可以观察芯片启动过程中“启动和保护端口4”(TP3)的电压波形变化并与实验前预测进行比较。

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

电力电子技术matl新编仿真实验报告

电力电子技术m a t l新编仿真实验报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

上海电机学院卢昌钰 BG0801 10号 1.单相半波可控整流电路 (1)电阻性负载(R=1欧姆,U2=220V,α=30°) 接线图 电阻性负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (2)阻感负载(R=1欧姆,L=,U2=220V,α=30°) 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (3)阻感负载+续流二极管(R=1欧姆,L=,U2=220V,α=30°)有问题 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入与输出电压波形 2.单相桥式全控整流电路

(1)电阻性负载(R=1欧姆,U2=220V,α=60°) 电阻性负载电路图搭建 电阻负载输入电压和输出电压对比 电阻负载直流电压和电流波形 电阻负载时晶闸管T1的波形 电流i2的曲线 (2)电感性负载(R=1欧姆,L=,α=60°,U2=220V,) 阻感负载电路图搭建 阻感负载电压输入与输出波形 阻感负载输出电流id 阻感负载输出电压ud 阻感负载交变时的电流i2

阻感负载交变时的电压u2 阻感负载VT1的电压波形 (3)电感性负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 电感性负载+续流二极管接线图 输入和输出电压波形 负载电流 负载电压 二次侧电流 晶闸管两端电压 3.单相桥式半空整流电路 (1)电阻负载(R=1欧姆,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (2)阻感负载(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (3)阻感负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管VT1电压,二极管VD4 电压,二极管VD4电流波形图

电拖仿真实验指导书

实验一 转速反馈控制(单闭环)直流调速系统仿真 一.实验目的 1.研究直流电动机调速系统在转速反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR 的工作及其对系统响应特性的影响。 3. 观察转速反馈直流调速系统在给定阶跃输入下的转速响应。 二、实验原理 ● 直流电动机:额定电压 , 额定电流 , 额定转速 ,电动机电势系数 ● 晶闸管整流装置输出电流可逆,装置的放大系数 K s =44,滞后时间常数 T s =0.00167s 。 ● 电枢回路总电阻 R=1.0Ω ,电枢回路电磁时间常数T 1=0.00167s ,电力拖动系统机电时 间常数T m =0.075s 。 ● 转速反馈系数α=0.01 V ·min/r 。 ● 对应额定转速时的给定电压 图1 比例积分控制的直流调速系统的仿真框图 三、实验内容 1. 仿真模型的建立 ? 进入MATLAB ,单击MATLAB 命令窗口工具栏中的SIMULINK 图标, 图2 SIMULINK 模块浏览器窗口 220N U V =55dN I A =1000min N n r /=0.192min/ e C V r =?* 10n U V =

(1)打开模型编辑窗口:通过单击SIMULINK 工具栏中新模型的图标或选择File →New →Model 菜单项实现。 (2)复制相关模块:双击所需子模块库图标,则可打开它,以鼠标左键选中所需的子模块,拖入模型编辑窗口。 在本例中拖入模型编辑窗口的为:Source 组中的Step 模块;Math Operations 组中的Sum 模块和Gain 模块;Continuous 组中的Transfer Fcn 模块和Integrator 模块;Sinks 组中的Scope 模块; 图3 模型编辑窗口 (3)修改模块参数: 双击模块图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。 双击sum 模块,Transfer Fen 模块,Step 模块,Gain 模块,Integrator 模块 图4 加法器sum 模块对话框 描述加法器三路输入的符号,|表示该路没有信号,用|+-取代原来的符号。得到减法器。

电力系统仿真

如图所示为一无穷大功率供电的三相对称系统,短路发生前系统处于稳定运行状态。假设a 相电流为)sin(i |0|0?αω-+=t (1-1) 式中, 2 22|0|m )'()'(L L R R U I m +++= ω,) '()'(arct an R R L L ++=ω? 假设t=0s 时刻,f 点发生三相短路故障。此时电路被分成俩个独立回路。由无限大电源供电的三相电路,其阻抗由原来的)'()'(L L j R R +++ω突然减小为L j R ω+。由于短路后的电路仍然是三相对称的,依据对称关系可以得到a 、b 、c 相短路全电流的表达式 []a T t m m m e I I t I ----+-+=)sin()sin()sin(i |0||0|a ?α?α?αω [ ] α ?α?α?αωT t m e I I t I - -----+--+=)120sin()120sin()120sin(i m |0||0|m b 。 。。 [ ] α ?α?αααωT t m m m c e I I t I - -+--++-++=)120sin()120sin()120sin(i |0||0|。 。。 式中, 2 2m )(L R U I m ω+= 为短路电流的稳态分量的幅值。 短路电流最大可能瞬时值称为短路电流的冲击值,以m i 表示。冲击电流主要用于检验电气设备和载流导体在短路电流下的受力是否超过容许值,即所谓的动稳定度。由此可得冲击电流的计算式为 m m 01.001 .0m )e 1(i I K I e I I im T T m m =+=+≈α α 式中,im K 称为冲击系数,即冲击电流值对于短路电流周期性分量幅值的倍数;αT 为时间常数。 短路电流的最大有效值m I 是以最大瞬时值发生的时刻(即发生短路经历约半个周期)为中心的短路电流有效值。在发生最大冲击电流的情况下,有 22 2m 2 1(21)1(m 2) -+= -+= im I im I im K K I I m 短路电流的最大有效值主要用于检验开关电器等设备切断短路电流的能力。 无穷大功率电源供电系统仿真模型构建 假设无穷大功率电源供电系统如图所示,在0.02s 时刻变压器低压母线发生三相短路故障,仿真其短路电流周期分量幅值和冲击电流的大小。线路参数为 ;km 17.0,km 4.0,5011Ω=Ω==r x km L 变压器额定容量A MW S N ?=20,电压 U s %=10.5,短路损耗KW P s 135=?,空载损耗KW P 220=?,空载电流I 0%=0.8,变比 11110=T K ,高低压绕组均为Y 形联结;并设供点电压为110KV 。其对应的Simulink 仿真

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS(HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell 方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。 虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。

电力系统仿真软件介绍

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP 的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由Drs.

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 (3) (一)实验目的: (3) 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3) 掌握各器件的参数设置方法,以及对触发信号的要求。 (3) (二)实验原理 (3) (三)实验内容 (3) (四)实验过程与结果分析 (3) 1.仿真系统 (3) 2.仿真参数 (4) 3.仿真波形与分析 (4) 4.结论 (10) 实验二:可控整流电路 (11) (一)实验目的 (11) (二)实验原理 (11) (三)实验内容 (11) (四)实验过程与结果分析 (12) 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例 (12) 2.仿真参数 (12) 3.仿真波形与分析 (14) 实验三:交流-交流变换电路 (19) (一)实验目的 (19) (三)实验过程与结果分析 (19) 1)晶闸管单相交流调压电路 (19) 实验四:逆变电路 (26) (一)实验目的 (26)

(二)实验内容 (26) 实验五:单相有源功率校正电路 (38) (一)实验目的 (38) (二)实验内容 (38) 个性化作业: (40) (一)实验目的: (40) (二)实验原理: (40) (三)实验内容 (40) (四)结果分析: (44) (五)实验总结: (45)

实验一:常用电力电子器件特性测试 (一)实验目的: 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; 掌握各器件的参数设置方法,以及对触发信号的要求。(二)实验原理 将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 ?在MATLAB/Simulink中构建仿真电路,设置相关参数。 ?改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 以GTO为例,搭建仿真系统如下:

计算机仿真实验-基于Simulink的简单电力系统仿真参考资料

实验七 基于Simulink 的简单电力系统仿真实验 一. 实验目的 1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用; 3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。 二.实验内容与要求 单机无穷大电力系统如图7-1所示。平衡节点电压044030 V V =∠?。负荷功率10L P kW =。线路参数:电阻1l R =Ω;电感0.01l L H =。发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。发电机转动惯量和极对数分别为224.9 J kgm =和2p =。发电机输出功率050 e P kW =时,系统运行达到稳态状态。在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点 V 负 荷 l R l L L P 图 7.1 单机无穷大系统结构图 输电线路 三.实验步骤 1. 建立系统仿真模型 同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。模块的第1个输入端子(Pm)为电机的机械功率。当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。在发电机模式下,输入可以是一个正的常数,也可以是一个函数或者是原动机模块的输出;在电动机模式下,输入通常是一个负的常数或者是函数。模块的第2个输入端子(Vf)是励磁电压,在发电机模式下可以由励磁模块提供,在电动机模式下为一个常数。 在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造仿真模型,三相电压源幅值为4403,频率为50Hz。按图连接好线路,设置参数,建立其仿真模型,仿真时间为5s,仿真方法为ode23tb,并对各个单元部件模型的参数进行修改,如图所示。

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

电力拖动直流电机仿真实验(实验1)

实验一 转速单闭环直流电机调速系统的性能研究 一、实验目的 1.验证电动机在理想空载状态下转速的调节过程 2.验证电动机在突然加上负载时转速的调节过程 3. 通过实验了解自控原理中关于控制器设计方法的重要性 二、实验原理 图1所示为本次实验所用的含PI 调节器的直流电机转速单闭环调速系统。采用教材例2-1给出的直流电机参数确定图中转速传感器、电机、电力电子装置的数学模型。 图1 含PI 调节器的直流电机转速单闭环调速系统 建立系统的仿真模型,通过对I dL 的控制来实现空载和负载的变换。PI 调节器的参数可根据经验调节,也可采用基于BODE 图的工程最佳设计方法设计。 三、实验步骤 1. 在Matlab 的Simulink 中构建图示的仿真模型。 系统的仿真图 2. 电机空载起动的仿真

按图2和图3所示分别设置给定值和负载电流的数值,并将仿真时间设置为1s。 图2 给定值模块图3 负载电流模块 点击仿真按钮,记录示波器中显示的转速和电流曲线。对于转速曲线,从上升时间(第一次达到稳态值的时间)、超调量、调节时间、振荡次数等方面对转速曲线进行分析,说明该控制系统的性能好坏,并写在实验报告上。 3. 仿真分析系统的抗扰动性能 双击图中的IdL模块,按照图4设置仿真模块的数值。仿真时间设置为1.5s。 图4 IdL模块的参数设置

点击仿真按钮,记录示波器中显示的转速和电流曲线。对于转速曲线,从转速降落(转速下降的最大值)、恢复时间、振荡次数等方便对转速曲线进行分析,说明该控制系统的抗扰动能力的好坏,并写在实验报告上。 4.验证基于BODE图的工程最佳设计方法的优越性 将下图中的比例环节和积分环节的参数重新设置为初始值1,IdL模块的值重新设置为0。现增加一个控制要求:要求系统没有超调量。请自行调节比例环节和积分环节的参数,将你认为性能已调节到最好的系统的输出曲线记录下来,并粘贴在实验报告上。仿真时间改回为原来的10s。 注意:如果输出曲线很快能接近稳态值,但有迟迟达不到稳态值,这种情况称为爬坡现象,这在自控系统中是不允许的。你可以用一个单独的示波器观察一下积分环节的输出,根据积分器的工作原理,想想这个问题应该怎么处理。 四.思考题 (1)观察空载起动时的电流曲线,结合例2-1给出的额定值,说明起动电流的最大值达到了额定值的多少倍?对于大中型电机,允许出现这种情况么? (2)通过你自行调节参数时遇到的困难,谈谈你对根据自动控制理论设计系统参数的优越性的理解。

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号: 年月日

实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

国内外电力系统仿真技术

1国内外电力系统仿真技术 1.1电力系统仿真技术发展概述 目前,电力系统的仿真技术主要有三大类,即电力系统动态模拟仿真技术、电力系统数模混合式仿真技术以及电力系统全数字仿真技术。 1.1.1电力系统动态模拟仿真技术 电力系统动态模拟仿真技术采用动态模拟装置,也就是物理仿真系统。20世纪60年代以前,电力系统仿真主要采用这种全物理的动态模拟装置。其原理是用比原型系统在规格上缩减一定比例的方法建立物理模型系统,通过在物理模型上做试验代替在实际系统中的试验。其优点是可以较真实的反映被研究系统的全动态过程,现象直观明了,物理意义明确,缺点是仿真的规模受实验室设备和场地限制,而且每一次不同类型的试验都要重新进行电气接线,耗力耗时,另外,可扩展性和兼容性差。 1.1.2电力系统数模混合式仿真技术 电力系统数模混合式技术采用数模混合仿真系统,这种技术一般是用数字仿真模型模拟发电机、电动机、控制系统等,变压器、交流输电线路、直流输电换流阀组和控制装置等元件仍采用物理模型。其优点是综合了数字仿真和物理仿真优势,能够较真实地模拟一些系统电气元件,准确地反映系统的动态过程,缺点是接口环节多、试验接线工作量大和仿真规模受限。 1.1.3电力系统全数字仿真技术 电力系统全数字仿真系统是进入20世纪90年代以来发展起来的一种仿真技术。全数字仿真系统内所有元件都采用数字仿真模型。这种仿真系统对于计算方法和计算机运算处理速度的要求很高。全数字仿真系统的优点是不受被研究系统规模和结构复杂性的限制,计算速度快、使用灵活、扩展方便、成本相对低廉,

是当前电力系统仿真系统发展的主要方向。尤其是近年来随着数字计算机和并行技术的发展而出现的基于高性能PC机群的全数字仿真系统使得其价格低廉、升级扩展方便的优势更为突出,电力系统全数字实时仿真得到了越来越广泛的应用。 全数字仿真系统优势明显,是当前仿真系统的发展趋势。随着电力系统的发展,系统规模和复杂程度的增加,采取物理模拟的方法对实际系统进行仿真受到限制。由于电力系统数字仿真具有不受原有系统规模和结构复杂性的限制、保证被研究和试验系统的安全性、具有良好的经济性和便利性、可用于对设计未来系统性能的预测等优点,现已成为分析、研究电力系统必不可少的工具。随着计算机和数值计算技术的飞速发展,为电力系统数字仿真的发展提供了坚实的基础,使得电力系统数字仿真技术得到了迅速地发展。电力系统数字仿真包括离线数字仿真和实时数字仿真。 电力系统离线数字仿真是在计算机技术发展的基础上,建立电力系统物理过程的数学模型,用求解数学方程的方法来进行仿真研究。电力系统仿真软件根据动态过程中系统模型和仿真方法的不同,离线数字仿真可以分为电磁暂态过程仿真、机电暂态过程仿真和中长期动态过程仿真。电磁暂态数字仿真是用数值计算方法对电力系统中从数微秒至数秒之间的电磁暂态过程进行仿真模拟。电磁暂态仿真程序普遍采用的是电磁暂态程序(简称为EMTP),中国电力科学研究院在EMTP基础上开发了EMTPE。另外,加拿大Manitoba直流研究中心的EMTDC、加拿大哥伦比亚大学的MicroTran和德国西门子的NETOMAC,都具有与EMTP 相似的软件功能;机电暂态数字仿真主要研究电力系统受到大扰动后的暂态稳定和受到小扰动后的静态稳定性能。国际上常用的机电暂态仿真程序有美国的PSS/E和ETMSP、ABB的SYMPOW、西门子的NETOMAC,国内主要采用中国电科院的PSASP和中国版的BPA;电力系统中长期动态过程仿真是电力系统受到扰动后较长过程的动态仿真,主要用来分析电力系统内较长时间的动态特性。国际上主要采用的中长期动态过程仿真程序有EUROSTAG程序、LTSP程序、EXTAB程序,另外PSS/E和MODES程序也具有长过程动态稳定计算功能。 电力系统实时数字仿真系统是基于现代计算机技术开发的体系机构和大型电力系统电磁暂态仿真软件系统,可以进行电力系统电磁暂态的全过程实时模

电子仿真实验报告doc

电子仿真实验报告 篇一:电路仿真实验报告 实验一电路仿真 一、实验目的 通过几个电路分析中常用定理和两个典型的电路模块,对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表和一些基本操作进行学习。 二、实验内容 1.叠加定理:在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支路的响应都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和; 2.戴维南定理:一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可以等效为一个理想电压源串联内阻的模型。其理想电压源的数值为有源二端电路N的两个端子间的开路电压uoc,串联的内阻为N内部所有独立源等于零,受控源保留时两端子间的等效电阻Req,常记为R0; 3.互易定理:对一个仅含线性电阻的二端口,其中,一个端口夹激励源,一个端口做响应端口。在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同; 4.暂态响应:在正弦电路中,电量的频率、幅值、相位

都处于稳定的数值,电路的这种状态称为稳定状态。电路从一种稳态向另一种稳态转换的过程称为过渡过程,由于过渡过程一般都很短暂,因此也称为暂态过程,简称暂态; 5.串联谐振:该电路是一个由电阻、电容和电感串联组成,当激励源的频率达到谐振频率时,输出信号的幅值达到最大。 三、实验结果及分析 1.叠加定理: ①两个独立源共同作用时: ②电压源单独作用时: ③电流源单独作用时: 2.戴维南定理: 所以,根据戴维南定理可知,该电路的戴维南等效电阻 Req=10.033/(781.609*10-6) =12.8 kΩ 3.互易定理: 当激励源与响应互换位置之后, 该激励源所产生的响应不变。 4.暂态响应: ①当电容C=4.7uF时, ②当电容C=1uF时, 对比①、②所对应的输出响应的波形图可以得知:电容

相关主题
相关文档 最新文档