当前位置:文档之家› 产淀粉酶的枯草芽孢杆菌培养基的优化

产淀粉酶的枯草芽孢杆菌培养基的优化

产淀粉酶的枯草芽孢杆菌培养基的优化
产淀粉酶的枯草芽孢杆菌培养基的优化

南阳理工学院本科生毕业论文

学院:生化学院

专业:生物工程

学生:范振前

指导教师:李入林

完成日期 2009 年 6 月

南阳理工学院本科生毕业论文

产淀粉酶的枯草芽孢杆菌培养基的优化Amylase Production By Bacillus Subtilis Culture Medium Optimization

总计:18 页

表格: 4 个

插图: 6 幅

南阳理工学院本科生毕业论文

产淀粉酶的枯草芽孢杆菌培养基的优化

Amylase Production By Bacillus Subtilis Culture Medium Optimization

总计:18 页

表格: 5 个

插图: 5 幅

学院(系):生化学院

专业:生物工程

学生姓名:范振前

学号:15407017

指导教师(职称):李入林(副教授)

评阅教师:

完成日期:2009-05-30

南阳理工学院

Nanyang Institute of Technology

产淀粉酶的枯草芽孢杆菌培养基的优化

生物工程专业范振前

[摘要]本课题以产α-淀粉酶的枯草芽孢杆菌为出发菌株,研究其摇瓶分批发酵的最优液体发酵培养基,通过单因素实验确定发酵培养基中最佳碳、氮源分别为蔗糖和蛋白胨,其浓度分别为3%和6%。利用旋转回归法研究枯草芽孢杆菌发酵生产α-淀粉酶的2个重要因素:蔗糖、蛋白胨对α-淀粉酶活力的影响,并拟合出回归方程。经回归分析表明,蔗糖、蛋白胨的含量及其配比对α-淀粉酶活力有显著影响。

由响应面优化实验设计得出最优液体发酵培养基组成为:蔗糖3%、蛋白胨6%、磷酸氢二钾0.8%、硫酸铵0.4%、无水氯化钙0.2%。条件:pH值7.0,温度37℃;此条件下α-淀粉酶活性显著提高并可达到391.66u/L。

[关键词] 枯草芽孢杆菌 SAS 优化α-淀粉酶

Amylase Production By Bacillus Subtilis Culture Medium Optimization

Biological Engineering Major FAN Zhen-qian

Abstract: subject to the production of α-amylase from Bacillus subtilis strain for the study of its shake-flask batch fermentation liquid of the optimal fermentation medium, Single factor experiments to determine the best fermentation medium carbon and nitrogen sources were sucrose and peptone, and its concentration was 3% and 6%. Study on the use of rotational regression fermentation of Bacillus subtilis α-amylase production of two important factors: sucrose, peptone of α-amylase activity, and fitting a regression equation. By regression analysis showed that sucrose, peptone content and the ratio of α-amylase activity has a significant influence.

From the experiment of response surface optimization design include the optimum composition of the liquid fermentation medium: sucrose 3%, 6% peptone, 2 potassium hydrogen phosphate 0.8%, 0.4% ammonium sulfate, anhydrous calcium chloride 0.2%. Conditions: pH value of 7.0, temperature 37 ℃; these conditions α-amylase activity significantly increased and reached 391.66u / L.

Key words: Bacillus subtilis SAS optimization α-amylase

目录

1 引言 (1)

1.1 枯草芽孢杆菌简介及应用 (1)

1.1.1 枯草芽孢杆菌简介 (1)

1.2.2 枯草芽孢杆菌应用 (1)

1.2 α-淀粉酶简介及应用 (2)

1.2.1 α-淀粉酶简介 (2)

1.2.2 α-淀粉酶在工业上的应用 (3)

1.3 课题背景 (4)

1.4 国内外研究现状及发展动态 (4)

1.5 本课题的研究方法及目的 (5)

1.5.1 本课题研究方法 (5)

1.5.2 研究目的 (5)

2 研究内容 (6)

2.1 材料与方法 (6)

2.1.1 菌种 (6)

2.1.2 培养基 (6)

2.1.3 主要试剂 (6)

2.1.4 主要仪器 (6)

2.1.5 分析测定方法 (7)

2.2 结果与分析 (8)

2.2.1 菌种对数生长期的确定 (8)

2.2.2 菌种最佳发酵周期的确定 (9)

2.2.3 单因素实验结果 (10)

2.2.4 预备试验设计及结果 (11)

2.2.5 响应面法实验设计结果 (12)

2.2.6 数据分析 (12)

2.2.7 采用岭脊分析寻求蔗糖与蛋白胨的最佳配比 (13)

2.2.8 验证试验 (14)

3 结论 (15)

参考文献 (16)

致谢 (17)

附录 (18)

1 引言

1.1 枯草芽孢杆菌简介及应用

1.1.1 枯草芽孢杆菌简介

枯草芽孢杆菌(Bacillaceae)编号为Strain Number ACCC 11060,是芽孢杆菌属的一种。单个细胞0.7~0.8×2~3微米,着色均匀。无荚膜,周生鞭毛,能运动。革兰氏阳性菌,芽孢0.6~0.9×1.0~1.5微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大。菌落表面粗糙不透明,污白色或微黄色,在液体培养基中生长时,常形成皱醭,需氧菌。可利用蛋白质、多种糖及淀粉,分解色氨酸形成吲哚[1]。早在1835 年,Ehrenberg 所描述的“Vibrio subtilis”即是现在大家熟悉的“枯草芽孢杆菌”,它是由Cohn 于1872 年正式命名的,现作为芽孢杆菌科(Bacillaceae) 的模式菌株[2],芽孢杆菌是人类发现最早的细菌之一。

1.2.2 枯草芽孢杆菌应用[3]

枯草杆菌(B acillus Subtilis) 是一种重要的α-淀粉酶生产菌。同时枯草芽孢杆菌作为一种安全、高效、多功能和极具开发潜力的微生物菌种已广泛应用于工业、农业、医药、卫生、食品、畜牧业、水产及科研诸领域。随着经济的发展、科研水平的提高,枯草芽孢杆菌与人们的日常生活将更为密切,它也必将作为一种十分重要的工业微生物菌种越来越引起人们的普遍关注和青睐。

①枯草芽孢杆菌在工业酶生产中的应用

工业酶的生产是工业微生物发酵的重要组成部分。枯草芽孢杆菌是当今工业酶生应用最广泛的菌种之一,据不完全统计,枯草芽孢杆菌所产的酶占整个酶市场的50 %。由于其产酶量高、种类多、安全性好和环保等优点,在现代工业生产中被广泛用作生产菌种,其发酵生产的酶已在食品、饲料、洗涤、纺织、皮革、造纸和医药等领域均发挥着十分重要的作用。

②枯草芽孢杆菌在生物防治领域中的应用

枯草芽孢杆菌作为植物病害生防细菌之一,具有较强的防病作用美国迄今已有4 株枯草芽孢杆菌生防菌株获得环保局商品化或有限商品化生产应用许可,如美国AgraQuest公司用枯草芽孢杆菌QST713 菌株开发出活菌制剂杀菌剂SerenadeTM,并于2000 年通过美国环保局(EPA) 的登记,用于防治多种作物的白粉病、霜露病、疫病、灰霉病等病害。我国利用枯草芽孢杆菌防治植物病害的应用研究也达到了世界先进水平,现已成功开发并投入生产的商品制剂有亚宝、百抗、麦丰宁、纹曲宁等产品。

③枯草芽孢杆菌是微生物学与分子生物学研究的良好试验材料

枯草芽孢杆菌作为基因工程受体菌,可表达出近200 种原核和真核生物来源的蛋白

基因,并且无论是在生产上还是对基因组及物理图谱的研究上都处于中心位置,对它的研究涉及各个方面。

④枯草芽孢杆菌在微生物添加剂领域中的应用

枯草芽孢杆菌是我国允许使用的饲料微生物菌种,因其无毒、无害,经常被制成微生物添加剂,用于改善动物肠道功能、促进动物生长和预防疾病。枯草芽孢杆菌在制剂中以内生孢子形式存在,孢子进入动物肠道后,在肠道上部能迅速复活并分泌高活性的蛋白酶、脂肪酶、淀粉酶,有助于降解植物性饲料中复杂的碳水化合物,产生具有拮抗肠道致病菌的多肽类物质等,起到抑菌和预防作用。另外,枯草芽孢杆菌是好氧菌,可通过消耗肠道内的氧气造成厌氧环境,促进肠道内优势菌厌氧菌的繁殖,维持肠道生态平衡。

⑤枯草芽孢杆菌在医药卫生领域的应用

研究证明,枯草芽孢杆菌的活菌制剂可以作为口服液用于治疗肠炎、支气管炎和腹泻等多种疾病,也用来预防和治疗烧伤面的感染。

⑥枯草芽孢杆菌在水产养殖领域中的应用

枯草芽孢杆菌在水产养殖中的应用起步较晚,由于它能分泌蛋白酶等多种酶类和抗生素,使池底积累的大量残余饵料、排泄废物、动植物残体及有害气体(氨、硫化氢等) ,使之先分解为小分子(多肽、高级脂肪酸等) ,后分解为更小分子的有机物,最终分解

-N) 、为二氧化碳、硝酸盐和硫酸盐等,有效降低了水中的COD、BOD ,使水体中氨基氮(NH

3 -N) 和硫化物浓度降低,从而有效地改善水质,同时还能为以单细胞藻类亚硝基氮(NO

2

为主的浮游植物提供营养物质,促进繁殖。浮游植物的光合作用,又为池内底栖水产动物的呼吸、有机物的分解提供氧气,从而使养殖水体形成一个良性的生态循环;另外,它们分泌的多种酶类和抗生素可以抑制其他细菌的生长,进而减少甚至消灭水产养殖动物的病原体。越来越多研究发现,枯草芽孢杆菌可在水产养殖中发挥重要的作用。

1.2 α-淀粉酶简介及应用

1.2.1 α-淀粉酶简介

α-淀粉酶分布十分广泛,遍及微生物至高等植物。其国际酶学分类编号为EC.3.2.1.1。作用于淀粉时可从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖,由于产物的末端残基碳原子构型为α构型,故称之为α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子的内部随机切开α-1,4 糖苷键,起液化作用的一类酶。

1.2.2 α-淀粉酶在工业上的应用

α-淀粉酶在淀粉加工、食品、医药、发酵及酿造、制糖和纺织等工业上应用广泛,

它是目前国内外应用最广、产量最大的酶种之一,工厂上都以微生物发酵法为主进行大规模生产。目前,利用枯草芽孢杆菌(Bacillus subtilis)发酵生产α-淀酶,对于人类的生产、生活具有十分重大的现实意义。

①面包焙烤工业,作为保鲜剂

酶应用在焙烤工业中生产各种高品质的产品已经有几百年的历史。最近几十年,麦芽α-淀粉酶和微生物α-淀粉酶被广泛用于焙烤工业。这些酶用于面包工业,可以使产品体积更大,颜色更好,颗粒更柔软。

直到今天,焙烤工业中的α-淀粉酶一直是从大麦麦芽和细菌、真菌中提取的。从1955年以及1963年在英国经过GRAS等级验证后,真菌淀粉酶一直作为面包的添加剂。现在,它们应用于不同领域。现代化连续焙烤过程中,在面粉中添加α-淀粉酶不仅可以增加发酵率,降低生面团粘度,增加生面团中糖的含量,改良面包的口感、外皮颜色和焙烤质量,还可以延长焙烤食品的保鲜时间。

淀粉的液化作用和糖化作用

α-淀粉酶的主要市场是淀粉水解的产物,如葡萄糖、果糖等。淀粉被转化为高果糖玉米糖浆(HFCS),由于它们的高甜度,被用于饮料工业中软饮料的甜味剂,这个液化过程就用到在高温下热稳定性好的α-淀粉酶。α-淀粉酶在淀粉液化上的应用工艺已经相当成熟。

②纤维脱浆

现代纤维制造工艺在编织过程中会在纱线中产生大量的细菌,为防止这些纱线断裂,往往会在纱线的表面加一层可去除的保护层。这些表面保护层的材料有很多种,淀粉是非常好的一个选择,因为它便宜,容易获取,并且可以很容易去除。淀粉脱浆可以利用α-淀粉酶,它能够选择性的去除淀粉浆而不伤害纱线纤维,还能随机的使淀粉降解为易溶于水的糊精,因而容易被洗掉。

③造纸工业

淀粉酶在造纸工业中的用途主要是改良纸张涂层淀粉,纸张上的浆糊主要是保护纸张在处理过程中免于机械损伤,它同样也改良了成品纸的质量,浆糊提高了纸张的硬度和强度,增强了纸张的可擦除性,是一种很好的纸张涂料。自然界的淀粉浓度对于纸张上浆来说太高,可以利用α-淀粉酶部分降解。

④除垢剂中的应用

淀粉调节酶是现代高效除垢剂的成分之一。酶在除垢剂中最大的功能就是使除垢剂更温和无害。早期的自动洗碗机的除垢剂非常粗糙,容易在进食时对人体造成伤害,而且对陶瓷、木质餐具也会造成损害。α-淀粉酶从1975年就被应用于洗衣粉,现在90%的液体除垢剂都含有α-淀粉酶而且自动洗碗机的除垢剂对α-淀粉酶的需求也在不断增长。

⑤制药和临床化学分析

随着生物工程的不断发展,淀粉酶的应用涉及到许多其他领域,如临床、制药和分析化学。有报道,于α-淀粉酶的液体稳定试剂已应用于全自动生化分析仪Ciba Corning Express 临床化学系统。已经建立起一种利用淀粉酶探测更高低聚糖含量的方法[4]。

1.3 课题背景

α-淀粉酶一般可由微生物发酵生产,也可由动物和植物提取。目前,工厂都以微生物发酵法为主进行大规模生产α-淀粉酶。我国从1965年开始应用枯草芽孢杆菌BF-7658生产α-淀粉酶,当时仅无锡酶制厂独家生产。现在国内生产酶制剂的厂家已发展到上千家,其中约有40%-50%的工厂生产α-淀粉酶,总产量上万吨[5]。

近年来,国外生产耐热α-淀粉酶发展较快,已从嗜热真菌、高温放线菌、特别是嗜热细菌中分离得到了耐高温的α-淀粉酶菌种。但就国内而言,虽已开展了耐高温α-淀粉酶的研究工作,目前仍以枯草芽孢杆菌菌种生产α-淀粉酶。

1.4 国内外研究现状及发展动态

芽孢杆菌是人类发现最早的细菌之一,它是由Cohn 1872年正式命名的,现在作为芽孢杆菌科的模式菌株。国内外关于枯草芽孢杆菌的研究与应用已有100多年的历史,早期大部分的工作主要集中在形态观察、分类鉴定、生理机制、功能发掘及防治等方面。近年来,对枯草芽孢杆菌的研究渐进到遗传学与分子生物学领域,研究内容体现在特定功能基因的寻找并克隆到需要的物种中或者通过诱变、基因工程等手段对枯草芽孢杆菌生产菌进行遗传改造等。随着人们对枯草芽孢杆菌研环保等优点,在现代工业生产中被广泛用作生产菌种,其发酵生产的酶已在食品、饲料、洗涤、纺织、皮革、造纸和医药等领域均发挥着十分重要的作用。枯草芽孢杆菌能够产生蛋白酶、α-淀粉酶、纤维素酶、β-葡聚糖酶等十几种酶[6]。其生产的蛋白酶、淀粉酶是工业酶中应用最为广泛的酶,仅二者就占到了整个工业酶市场的50%。其中,淀粉酶的生产和应用处于整个酶制剂的首位,其最早是在20世纪初,由德国的Boiden和E ffront先后从枯草芽孢杆菌培养液中分离出的[7]。

1965年,我国开始应用淀粉芽孢杆菌BF-7658生产α-淀粉酶。1967年杭州怡糖厂实现了应用α-淀粉酶粉酶生产饴糖的新工艺,可以节约麦芽7%,提高出糖率10%左右。1984年我国开始了酶法水解淀粉生产葡萄糖工艺的研究。1989年9月通过了酶法注射葡萄糖新工艺的鉴定,并先后在华北制药厂、河北东风制药厂、郑州嵩山制药厂等单位得到应用,取得了良好的经济效益。另外我国以酶法进行柠檬酸生产、谷氨酸发酵、糖化制啤酒、酒精发酵、黄酒酿造、酱油制造、醋生产等方面也已经成功投入生产。虽然我国酶制剂工业近年来取得了长足的发展,但仍无法跟上世界同行业发展的步伐,科研

乏力已成为制约中国酶工业发展的瓶颈因素。

1.5 本课题的研究方法及目的

1.5.1 本课题研究方法

利用微生物发酵生产各种有用代谢产物,其培养基成分种类繁多,各成分间的相互作用也错综复杂。因而,微生物培养基的优化工作就显得尤为重要,数学统计中的多种优化方法已开始广泛地应用于微生物发酵培养基的优化工作中,其中以响应面方法的效果最为显著。

通常优化发酵培养基的方法是单次单因子法,预先不知道哪些是重要因素,可以通过极差试验或和正交试验设计法。采用单次单因子法时,只是讨论一种因素的影响,由于考察因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件[8]。正交试验设计则注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因素水平组合,但它不能在给出的整个区域上找到因素和响应值之间的一个明确的函数表达式即回归

方程,从而无法找到整个区域上因素的最佳组合和响应值的最优值。因此,人们期望找到一种试验次数少、周期短,求得的回归方程精度高、能研究几种因素间交互作用的回归分析方法,响应面分析方法则在很大程度上满足了这些要求[9]。

响应面方法(ResponseSur-faceMethodology,简称RSM)是利用合理的试验设计并通过实验得到的一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法。RSM在优化研究中应用频繁[10],是降低开发成本、优化加工条件、提高产品质量、解决生产过程中的实际问题的一种有效方法,它已广泛地应用于农业、生物、食品、化学、制造等领域[11] 。本试验通过响应面方法优化枯草芽孢杆菌液体发酵培养基,以求降低生产成本,提高发酵产物α-淀粉酶活力。

1.5.2 研究目的

α-淀粉酶是在淀粉加工、食品工业、医药工业、发酵工业及酿造、制糖和纺织工业上应用广泛的酶种,也是目前国内外应用最广、产量最大的酶种之一。它占了整个酶制剂市场份额的25%左右。本课题的研究工作目的是探讨在液体培养条件下培养基组成对发酵产物α-淀粉酶活性的影响,力求寻找实验室内保存的枯草芽孢杆菌菌种的最优液体发酵培养基,以提高α-淀粉酶活力,从而为工业大规模生产中降低生产成本,提高产量,获得较高的经济效益提供有力的实验依据[12]。

2 研究内容

2.1 材料与方法

2.1.1 菌种

产α-淀粉酶的枯草芽孢杆菌(Bacillus subtilis),实验室内保存。

2.1.2 培养基

(1) 固体斜面培养基:牛肉膏1g、蛋白胨1g、NaCl 0.5g、可溶性淀粉0.5g、琼脂2g,加水到100mL,调节pH至7.0。

(2) 液体种子培养基:牛肉膏1g、蛋白胨1g、NaCl 0.5g、可溶性淀粉0.5g,加水到100mL,调节pH至7.0。

(3) 初始液体发酵培养基:玉米粉5g、豆饼粉4g、磷酸氢二钠0.8g、硫酸铵0.4g、无水氯化钙0.2g,加水到100mL,调节pH至7.0。

(4) 最优液体发酵培养基:蔗糖3%、蛋白胨6%、磷酸氢二钾0.8%、硫酸铵0.4%、无水氯化钙0.2%,pH 7.0。

2.1.3 主要试剂

无水磷酸氢二钠(分析纯,广州鑫镁化工公司);氯化钠(分析纯,天津化学试剂厂);苯酸钾(分析纯,天津化学试剂厂);碘酸钾(分析纯,天津化学试剂厂);碘化钾(分析纯,天津化学试剂厂);硫酸(分析纯,天津化学试剂厂);结晶紫(分析纯,北京华美生科生物技术有限公司);95%乙醇(化学纯,天津化学试剂厂)

(1) 基质缓冲液:取无水磷酸氢二钠26.6g、氯化钠1.75g、苯酸钾8.6g、蒸馏水500ml置2000ml烧杯中,加热至沸。先将可溶性淀粉0.4g和冷蒸馏水10ml搅成混悬液,然后将其缓缓倾入已加热的试剂中,边搅边加。再加热至沸1min。待冷却至室温,加蒸馏水1000ml,调节pH至7.0。

(2) 5mol/L碘液:取碘酸钾0.3567g、碘化钾4.5g,蒸馏水800ml搅拌均匀后,缓缓滴加,边搅边加入12mol/L浓硫酸0.9ml。混匀后加蒸馏水至1000ml。配置好的溶液保存在琥珀色瓶中。

(3) 结晶紫染色液:结晶紫1g、95%乙醇20ml、1%草酸铵水溶液80ml,将结晶紫溶解于乙醇中,然后与草酸铵溶液混合。

2.1.4 主要仪器

LDZX-75KBS立式电热压力蒸汽灭菌锅(四川省新德医疗器械有限公司)

SHJ系列洁净工作台(上海民仪电子有限公司)

LRH系列控温生化培养箱(杭州中拓仪器有限公司)

FA1004B电子天平(西安超杰生物科技有限公司)

KDC-16H高速离心机(广州倍玛特科学仪器有限公司)

HZS-H水浴振荡锅(郑州杜甫仪器厂)

台式M295356低速离心机(北京市中西远大科技有限公司)

T6新世界紫外可见分光光度计(北京华洋仪器厂)

电子显微镜(成都启跃光电仪器有限公司)

2.1.5 分析测定方法

(一)试验方法

(1) 菌种浓度的确定:选取培养至一定时期的菌液,采用光电比浊计数法,测定菌液的吸光度,以吸光度的大小判断菌种的浓度。

(2) 菌种最佳发酵周期的确定:选取培养至一定时期的发酵液测定发酵产物α-淀粉酶的活力。

(3) 菌种活化培养:斜面试管接种后,将其置于控温生化培养箱内,37℃下培养24小时。

(4) 种子培养:摇床转数为120r/min,种子液摇床培养温度为37℃,装液量为种子液50mL/100mL。

(5) 发酵培养:摇床转数为180r/min,发酵液摇床培养温度为37℃,装液量为发酵液50mL/100mL,接种量为8%。

(二)分析方法

(1) 菌种对数生长期的确定:取培养至一定时间的种子培养液,低速离心除去样品中的少量基质后在660nm处测定其吸光度,以吸光度的大小来判断菌液的浓度,从而断定菌种达到对数生长期的培养时间,或可将菌液用结晶紫染色液染色后,通过在电子显微镜下观察菌种的形态来断定对数长期。

(2) α-淀粉酶活力的测定:取发酵液10mL,7000r/min离心10分钟。取0.1ml的上清液到100ml的锥形瓶中,再加入5ml的基质缓冲液,混匀后于37℃水浴锅中静置反应7.5分钟。取出后加入5ml的5 mmol/L碘液与40ml蒸馏水,混匀后以蒸馏水校零点在660nm处测定吸光度,从而可测得淀粉酶活力(即碘淀粉比色法[13])。酶活力单位的定义为:37℃下,30min水解10mg淀粉所需要的酶量为1个酶活力单位(u/L)。

淀粉酶活力单位(u/L)=(空白吸光度-测定吸光度)/空白吸光度×8000

(三)单因素实验

在基本培养基中去掉所有的碳源或氮源再分别加入某单一碳、氮源[14],通过对发酵水平的测定,考察这两个因素对α-淀粉酶活力的影响,从而确定最优的碳、氮源。实验测定后确定这两个因素分别为蔗糖、蛋白胨。

(四)预备试验

在初始液体发酵培养基的基础上,分别选取蔗糖、蛋白胨为唯一碳、氮源,设计新的含量配比,测定α-淀粉酶活力,从而获得一个粗略的发酵培养基含量组成。

(五)响应面法实验设计

在单因素实验的基础上,根据预备试验确定上下水平后,按二元二次正交旋转组合的设计表确定各试验组的编码与取值[15]选取蔗糖、蛋白胨为实验因素,其水平编码表见表2-1

表2-1 响应面分析试验因素水平表

Table 1 Test-factor response surface analysis of the level of table

因素

水平(%)

-1 -0.5 0 0.5 1

蔗糖 2 2.5 3 3.5 4

蛋白胨 5 5.5 6 6.5 7 (六)实验流程

菌种活化

菌种对数生长期的确定

菌种最佳发酵周期的确定

发酵培养基中最佳碳源的确定

发酵培养基中最佳氮源的确定

预备试验

响应面法确定最佳浓度配比

验证试验

2.2 结果与分析

2.2.1 菌种对数生长期的确定

将实验室中冷冻保藏的枯草芽孢杆菌菌种活化后在液体种子培养基中摇瓶培养。分

别在培养至第4、5、6、7、8、9、10、11、12小时的菌液中取样,并在660nm 处测定其吸光度,以菌液的浓度确定菌种达到对数生长期所需的培养时间[16]。由图2-1可以看出,第4个实验号吸光度数值最大,即菌种培养至大约第7小时可达到对数生长期。 菌液OD值

0.000

0.020

0.040

0.060

0.080

0.100

024

6810

实验号O D 值

图2-1 菌种对数生长期的确定

Fig.2- 1 Strains to determine the logarithmic phase

注:实验号1-9分别代表培养至第4-12时小的菌液

2.2.2 菌种最佳发酵周期的确定

将培养至对数生长期的种子液以8%的接种量接种到初始液体发酵培养基中进行培养。分别在培养至第12、14、16、18、20、22、24、26、28

小时的发酵液中取样,用碘淀粉比色法测定发酵产物α-淀粉酶的活力,以淀粉酶活力的大小确定最佳发酵周期。由图2-2可以看出,第7个实验号数值最大,即发酵培养到大约第24小时时α-淀粉酶活力最大。

图2-2 菌种最佳发酵周期的确定

Fig.2-2 Strains to determine the best fermentation cycle

注:实验号1-9分别代表发酵培养至12、14、16、18、20、22、24、26、28小时的菌液

2.2.3 单因素实验结果

碳源是培养基的最主要成分,是菌体的骨架,用于构成微生物的细胞物质和一些代谢产物[17],又是一种双功能的营养物,可为微生物提供新陈代谢所需能源。

从图2-3可以看出,液体发酵培养基在分别以蔗糖、葡萄糖、乳糖、可溶性淀粉、玉米粉为唯一碳源时对发酵产物α-淀粉酶活力的影响。其中第4个实验号数值最大,即以蔗糖为碳源时,淀粉酶活力最大,可达到295.60u/L。其次是乳糖,淀粉酶活力为251.71u/L。

.

图2-3 不同碳源对α-淀粉酶活力的影响

Fig. 3 different carbon sources on α-amylase activity

注:实验号1-5分别代表玉米粉、乳糖、葡萄糖、蔗糖、可溶性淀粉氮源主要用于构成菌丝体细胞物质和含氮的目的产物。有机氮源中除含有丰富的蛋白质﹑多肽﹑氨基酸外,往往还含有少量脂肪﹑糖类﹑维生素以及某些生长因子,因而微生物在含有有机氮源的培养基中表现为生长旺盛,菌体浓度增长迅速,代谢产物积累丰富等特点。

在以蔗糖为唯一碳源,其它条件不变的前提下,从图4可以看出液体发酵培养基在分别以牛肉膏、蛋白胨、酵母膏、硝酸钾、豆粉为唯一碳源时对α-淀粉酶活力的影响。其中第1个实验号数值最大,即以蛋白胨为氮源时,淀粉酶活力最大,可达到258.5u/L。在以其它元素为氮源时,淀粉酶活力相对较低。

图2-4 不同氮源对α-淀粉酶活力的影响

Fig.2-4 Effects of di fferent nitrogen sources on α-amylase activity

注:实验号1-5分别代表蛋白胨、牛肉膏、酵母膏、硝酸钾、豆粉

2.2.4 预备试验设计及结果

以初始液体发酵培养基各组分的含量为基础,设计新的碳、氮源配比(其中,碳源为蔗糖,氮源为蛋白胨),以α-淀粉酶活力为检测水平,为响应面实验作准备。预备试验方案与结果如下表格。

表2-2 预备试验方案与结果

Table 2 with the results of a pilot program to prepare

蔗糖(%)蛋白胨(%)酶活力(u/L)

3 2 279.33

3 4 343.24

3 6 390.59

5 2 111.73

5 4 155.87

5 6 256.42

7 2 245.81

7 4 246.37

7 6 201.12

从表2可以大致推断,当蔗糖、蛋白胨的含量分别在3g、6g这一配比的小范围内α-淀粉酶的活力可以达到最大值,可以此含量为基础来确定响应面实验各因素水平。

2.2.5 响应面法实验设计结果

根据Box-Benhnken的中心组合实验设计原理[18],进一步进行二因素五水平的响应面

分析实验,结合表2-1响应面分析实验因素水平表可规划15个实验点,其给出的实验结

果如表2-3所示。15个实验点可以分为两类,其一是析因点,自变量取值-1、-0.5、0、

0.5、1,实验共有12个析因点(实验1至12号);其二是零点,为区域的中心点,零点试

验重复3次13至15号),用以估计试验误差。

表2-3 实验方案与结果

Table2-3 Experimental program and results

实验号蔗糖(%)蛋白胨(%)淀粉酶活力 (u/L)

1 -0.5 -0.5 223.41

2 -0.5 0.5 257.31

3 0.5 -0.5 287.13

4 0.

5 0.5 246.78

5 -1 0 170.18

6 1 0 146.78

7 0 -1 123.40

8 0 1 321.05

9 1 1 327.49

10 1 -1 260.00

11 -1 -1 274.27

12 -1 1 280.00

13 0 0 392.20

14 0 0 390.80

15 0 0 389.82

2.2.6 数据分析

以α-淀粉酶活力为响应值,根据表2-3的实验结果,用SAS统计分析软件景象多元

回归分析[19],得到的主要分析结果见表2-4。

从方差分析表(表2-4)中可以看出,方程一次项、二次项的影响都是显著的,交

互项作用影响不显著,故交互项可以省略,也可以看出各具体实验因子对响应值的影响

不是简单的线性关系。经回归拟合后,实验因子对响应值的影响可用回归方程表示为:

Y1 = 358.1999 - 9.961273*X1 + 81.96157*X2 - 152.8002*X1*X1 - 93.45*X1*X2 - 70.94997*X2*X2

表2-4回归方程偏回归系数的估计值

Table 4 The regression equation of the partial regression coefficient estimates

大于|t|的参数自由度参数估计标准误t值

概率

x1 1 -9.961273 22.97229 -0.43362 0.677613

x2 1 81.961572 22.97229 3.567845 0.009130

x1*x1 1 -152.8002 24.63506 -6.20255 0.000444

x2*x1 1 -93.4500 32.48770 -2.87647 0.023771

x2*x2 1 -70.94997 24.63506 -2.88004 0.023650

Root MSE 离回归偏差64.97541

R-square 决定系数0.9014 从表2-4中可以看出,用上述回归方程描述各因子与响应值之间的关系时,其因变量和自变量之间的线性关系是显著的,决定系数为90.14%,说明回归方程的拟合程度较好,总回归达到显著。表明蔗糖和蛋白胨两个培养基组分与对发酵产物α-淀粉酶活力总的来说存在显著的回归关系。表明改变蔗糖和蛋白胨用量对α-淀粉酶活力的影响是显著的。

2.2.7 采用岭脊分析寻求蔗糖与蛋白胨的最佳配比

对全变量的二次回归模型进行规范分析,考察所拟合出的响应曲面的形状。获得的响应面立体图如图2-5所示。

图2-5 响应面立体分析图和相应的等高线图

Figure 2-5 Three-dimensional analysis of response surface and corresponding contour map

利用SAS软件进行岭脊分析[20](也可以通过求偏导解出最佳值),对这两个显著因素进行寻优,通过岭脊分析后,得出回归模型存在最大值点,即采用岭脊分析寻求蔗糖与蛋白胨的最佳配比时的α-淀粉酶活性为391.66u/L。从而可得优化后的培养基中各因素

的取值分别为:蔗糖为3%、蛋白胨为6%、磷酸氢二钾为8%、硫酸铵为4%、无水氯化钙为2%。

2.2.8 验证试验

在以上优化条件:蔗糖为3%、蛋白胨为6%、磷酸氢二钾为8%、硫酸铵为4%、无水氯化钙为2%进行验证试验,共进行3批次250ml摇瓶试验并测定α-淀粉酶活性的平均值为408.89u/L。证明采用岭脊分析寻求蔗糖与蛋白胨的最佳配比时预测值391.66u/L与试验平均值408.89u/L是非常接近的。

3 结论

工业上用于生产α-淀粉酶常采用的菌株是枯草芽孢杆菌,而其发酵方法也可以分为固体发酵和液体深层发酵。本课题采用液体摇瓶发酵,主要从培养基优化这一方面,选取应用广泛而又节约时间和资源的响应面分析法来研究α-淀粉酶的发酵生产。

通过对本课题的研究可以得出以下结论:

(1)培养基组成对淀粉酶活力的影响:通过单因素实验可以得出,枯草芽孢杆菌液体发酵培养基在以蔗糖为单一碳源,蛋白胨为单一氮源时,发酵产物α-淀粉酶活力最大;(2)培养基成分含量对淀粉酶活力的影响:通过响应面分析得出,本实验所用的枯草芽孢杆菌菌株的最佳液体发酵培养基组成为蔗糖为3%、蛋白胨为6%、磷酸氢二钾为8%、硫酸铵为4%、无水氯化钙为2%;pH为7.0;

(3)通过验证试验可以确定,对培养基组分进行优化后,可以明显提高淀粉酶的活力,并基本上能够达到预计的酶活力水平。

枯草芽孢杆菌的发酵

枯草芽孢杆菌的发酵学院:化工学院 专业:生物工程 班级:生物10-2 姓名:姜霞

摘要 枯草芽孢杆菌是我国农业部允许作为饲料添加剂的15种菌种之一,其已被越来越多地制成饲用微生态制剂。因其制剂是无毒、无残留、无污染的“绿色”添加剂,故具有广阔的发展前景,并已在畜牧业、饲料业广泛应用,显示巨大的社会效益和生态效益。通过摇床培养筛选出较适宜于枯草芽孢杆菌发酵的培养基配方,发酵培养基配方确定后,在摇床条件下,通过对温度、初始pH值、初始接种量、装液量、摇床转速等发酵条件的摸索,确定最佳发酵条件。在摇瓶条件下优化发酵培养基和发酵工艺后,采用发酵罐进行发酵培养,对枯草芽孢杆菌在液体发酵过程中的菌体数量、pH值、总糖含量和总氮含量四个因素随时间的变化进行了观察。 枯草芽孢杆菌,是芽孢杆菌属的一种。单个细胞0.7~0.8×2~3微米,着色均匀。无荚膜,周生鞭毛,能运动。革兰氏阳性菌,芽孢0.6~0.9×1.0~1.5微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大。菌落表面粗糙不透明,污白色或微黄色。枯草芽孢杆菌菌体生长过程中产生的枯草菌素、多粘菌素、制霉菌素、短杆菌肽等活性物质,这些物质对致病菌或内源性感染的条件致病菌有明显的抑制作用。枯草芽孢杆菌迅速消耗环境中的游离氧,造成肠道低氧,促进有益厌氧菌生长,并产生乳酸等有机酸类,降低肠道pH值,间接抑制其它致病菌生长。枯草芽孢杆菌菌体自身合成α-淀粉酶、蛋白酶、脂肪酶、纤维素酶等酶类,在消化道中与动物体内的消化酶类一同发挥作用,能合成维生素B1、B2、B6、烟酸等多种B族维生素,提高动物体内干扰素和巨噬细胞的活性,在饲料中应用广泛。它还可以用来改善水质,应用在污水处理和环境保护中。和其它微生物混合使用,还可以用于生物肥料和土地改良等 关键词:枯草芽孢杆菌生长发酵活菌数

产淀粉酶枯草芽孢杆菌

“生物制药技术实训”课程研究报告 项目一:产淀粉酶枯草芽孢杆菌 一实验原理 枯草芽孢杆菌的多数中都能产生大量的淀粉酶,较易得到分离。由于芽孢具有较强的抗热能力,分离纯化时可采用热处理的方法,高温加热处理,杀死样品中所有不含芽孢的菌类,在培养过程中使芽孢杆菌得到很好的富集。利用该菌产淀粉酶的特性,选择以淀粉为碳源的分离培养基,菌体分泌的淀粉酶会使菌落周围的淀粉水解,滴加碘液即可在菌落周围出现清晰的透明圈。根据透明圈的直径(C)与菌落直径(H)之比(C/H)可初步鉴定酶活力的高低,即比值越大酶活力越高,进而筛选出优良的生产用菌。 二材料 灭过菌的种子培养基无菌生理盐水(杀了菌的生理盐水,盐浓度0.9%)培养基配方:蛋白胨10g,酵母浸膏5g,NaCl10g,水1L,淀粉,1. 8%的琼脂PH7.2-7.4,121℃灭菌20min(各量取其三分之一)。 三操作步骤 1.包平板 2.配生理盐水 3.根据培养基配方配置培养基,并取出45ml用于液体培养基,其余作为固体培养基 4.取1,2,3中配成的平板,生理盐水,大型三角瓶在121℃中灭菌20min

5.称取土壤10g与 90mL无菌水中,振荡20分,使土壤中菌体或孢子均匀分散,取其悬浮液于80℃下保持10min,以杀死非芽孢的菌体。取5ml悬浮液接入到装有45 ml种子培养基的三角瓶内,(于37℃、200 r/min摇床中)培养20 h 6.灭完菌后倒平板,自然冷却凝固后放入恒温培养箱中静致一夜,观察其是否染菌 7.将用于做梯度试验的试管8个,每个加9ml蒸馏水,移液管8个,塞棉花拿去灭菌121℃,20min 8. 取培养后的菌液,用无菌生理盐水适当稀释,取一定量涂布于平板,做梯度试验分别标记为100,10-1,10-2,10-3,10-4,10-5,10-6,10-7,10-8,10-9,10-10。 9.将标记的的试管,移取1ml与培养基中涂布并进行标记,于37℃,培养20h 10.将灭菌好的平板拿出,进行无菌划线,在培养基中观察到10-8,10-9,10-10,有单一菌落,而10-6,10-7并不明显,.对10-8,10-9,10-10的培养基中的菌落加碘液进行观察,发现有透明圈。

枯草芽孢杆菌产淀粉酶试验要点

枯草芽孢杆菌产α-淀粉酶发酵试验 化学与生命科学学院 摘要:以枯草芽孢杆菌(BacilusSubtilisBF—7658)为实验菌株,通过种子扩大培养,选出生长力旺盛的菌株进行液体摇瓶发酵。通过测定不同发酵时间生产的酶活,来初步估计发酵最佳时期和终点。 关键词:枯草芽孢杆菌,α-淀粉酶,液体摇瓶发酵,酶活 淀粉酶是能够分解淀粉糖苷键的一类酶的总称,包括α-淀粉酶、β-淀粉酶、糖化酶和异淀粉酶。芽孢杆菌主要用来产生α-淀粉酶和异淀粉酶,其中α-淀粉酶又称淀粉1,4-糊精酶,能够切开淀粉链内部的α-1,4-糖苷键,将淀粉水解为麦芽糖、含有6 个葡萄糖单位的寡糖和带有支链的寡糖;而异淀粉酶又称淀粉α-1,6-葡萄糖苷酶、分枝酶,此酶作用于支链淀粉分子分枝点处的α-1,6-糖苷键,将支链淀粉的整个侧链切下变成直链淀粉。通过发酵实验,我们可以以酶活为依据,初步估计发酵的最佳时期和发酵终点。 实验材料和方法 一、实验材料: (一)实验菌株:以枯草芽孢杆菌(BacilusSubtilisBF—7658) (二)培养基: 1、种子培养液 葡萄糖 1% Tryptone(胰蛋白胨):1%, Yeast Extract(酵母提取物):0.5%, NaCl(氯化钠):1% 调pH7.2 若配置固体培养基,则再加入1.5% 琼脂。 2、产淀粉酶发酵培养液 玉米粉 2 .0 % 黄豆饼粉1 .5% CaCl 2 0 .02 % MgSO4 0 .02% NaCl 0 .25% K2HPO4 0 .2% 柠檬酸钠0 .2% 硫酸铵0 .075% Na2HPO4 0 .2 % 调节pH 值7 .0

枯草芽孢杆菌发酵工艺2

(10)申请公布号 (43)申请公布日 (21)申请号 201510320760.5(22)申请日 2015.06.11 C12N 1/20(2006.01)C12R 1/125(2006.01) (71)申请人山东西王糖业有限公司 地址256209 山东省滨州市邹平县韩店镇驻 地西王工业园电厂路南侧(72)发明人王棣 王居亮 李伟 杨荣玉 唐海静 夏颖颖(74)专利代理机构济南舜源专利事务所有限公 司 37205 代理人宋玉霞(54)发明名称 一种用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法(57)摘要 本发明提供一种以玉米淀粉生产过程中的副产品玉米粗蛋白粉为原料生产枯草芽孢杆菌微生态制剂的生产方法,采用本方法在不添加其它碳源和氮源的条件下,单纯以玉米粗蛋白粉为营养源经过固态培养可以生产出活菌数为3000亿-5000亿/g 的枯草芽孢杆菌微生态制剂。生产过程不需要通压缩空气,不产生任何废水废气。减少了枯草芽孢杆菌微生态制剂的生产成本。且所得产品以玉米纤维低聚糖为载体具有益生元的功能提高了产品质量。 (51)Int.Cl. (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书4页 (10)申请公布号CN 104988088 A (43)申请公布日2015.10.21 C N 104988088 A

1.一种用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,步骤如下: (1)取玉米粗蛋白粉移入固体发酵罐中,加水调到料水比为1:0.7-0.9,加氧化钙调pH 到6.0-7.0; (2)打开循环水使固体发酵罐温度上升到80-90℃后,通入蒸汽消毒30分钟; (3)待原料冷却到40℃-44℃后,加入物料干基重量1/9-1/10培养15h以后的种子液,固含量为5%; (4)维持30-40℃培养50-60h,24h后每隔6h搅拌一次物料; (5)培养到50-60h后,物料明显粘湿,有较浓的枯草芽孢杆菌特有气味,升温到44-56℃继续培养12-22h; (6)共计培养72h后移出物料,65-80℃烘干物料; (7)烘干物料水份到小于6%后,粉碎物料; (8)将粉碎的物料进行包装,取样检测产品质量。 2.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(1)中,料水比是指:物料干基质量即无水的物料质量。 3.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的种子液为将枯草芽孢杆菌菌种在液体培养基中通气搅拌培养15小时以后的液体培养基和菌种的混合物,所述的液体培养基为:葡萄糖5%w/w,玉米浆10%w/w,硫酸镁0.03%w/w,碳酸钙调pH到7.0,其余为黄河水,所述的玉米浆干基含量为26%。 4.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(4)中,维持温度为33-38℃。 5.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(5)中,升温到45-50℃。 6.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(4)(5)中,发酵过程罐体与空气相通,有空气过滤器装置过滤掉空气中的杂菌。 7.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,得到的枯草芽孢杆菌微生态制剂,活菌数3000-5000亿/g。 8.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,采用的玉米粗蛋白粉的情况见表1, 表1 玉米粗蛋白粉指标 蛋白质%脂肪%纤维质%淀粉%灰分%木质素%水份%玉米皮1125412 2.612 粗蛋白10 2.41250 4.6—10 胚芽粕1825314 2.3— 。

芽孢杆菌常用培养基配方

芽孢杆菌常用培养基配方 (按理说,该实验的所有培养基都在这了,后红字更为清楚些。。。摘自百度) 一、肉汤琼脂培养基:蛋白胨10g ,牛肉膏15g ,NACL15g ,蒸 馏水1000ml ,琼脂18g 。调节PH7.2,0.1MPA20min 灭菌。如果用液体做培养基,则去掉琼脂即可。100 mL/组,其中20 mL 液体培养基/250 mL△中(内装玻璃珠10颗);50 mL固体斜面培养基分装在试管中:5mL/支,10支。 2、或是(J-琼脂培养基:胰蛋白胨5g,酵母膏15g,磷酸 氢二钾3g,葡萄糖2g, 琼脂20g, 蒸馏水1000ml。调节PH7.3 —7.5Mpa 30min灭菌。) 二、过氧化氢酶测定 1、试剂:3-10%过氧化氢 2、接种与培养:一般将测试菌种接种于肉汤琼脂斜面上,30度下 培养1-2天。 3、试验方法:取一干净载玻片,在上面加一滴3-10%的双氧水, 挑取1环1-2天的的菌苔,在双氧水溶液中涂抹,如有气泡出 现(O2),作为过氧化氢酶阳性,无泡为阴性。也可以将过氧 化氢液直接加入斜面上,观察气泡的产生。

三、需氧性测定 1、培养基:酪素水解物20g,葡萄糖 10g, ,NACL5g,HOCH2SO3Na1g,HSCH2COONa2g,琼脂15g,蒸馏水1L。调节PH7.2,分装试管,0.06Mpa,30min灭菌,培养基不摆斜面。 2、接种与观察:用一小环的肉汤菌液,穿刺接种到上述培养基中 (穿刺管底),一般与30 度培养3-7天观察结果。若芽孢杆菌在琼脂柱表面生长为好氧菌,沿穿刺线生长则为厌氧菌。四、酪素水解(用于检测不同种类的芽孢杆菌是否具有分解酪素的 特点) 1、培养基 (1)脱脂牛奶制备取新鲜牛奶,煮沸后去掉上层油脂,再经离心脱脂(3000r/min,10min),除去上层油脂,即为脱脂牛奶。(2)牛奶平板的制备取50ml的脱脂牛奶放入一只三角瓶中,另外称1.5g琼脂置于含有50ml蒸馏水的另外3只三角瓶中,然后将两液分开灭菌,0.06Mpa-20min,带冷至45-50摄氏度时, 速将两液混匀倒平板,即为牛奶平板。将平板倒置过夜,使表面水分干燥。 2、接种与观察

响应面法优化枯草芽孢杆菌产蛋白酶的发酵条件

响应面法优化枯草芽孢杆菌产蛋白酶的 发酵条件 张 智,朱宏亮,钮宏禹,罗欢华 (东北林业大学林学院,黑龙江 哈尔滨 150040) 摘 要:在单因素试验的基础上,应用响应面分析法对影响枯草芽孢杆菌产蛋白酶的因素进行分析,得到了最佳发酵条件为温度40℃、pH8.04、接种量8.3%、发酵时间56h,此条件下的蛋白酶酶活为247.8 U/ml,比单因素试验的最高酶活228.3U/ml提高了8.54%。关键词:枯草芽孢杆菌;蛋白酶;响应面 Optimization of Fermentation Production Conditions of Protease by Bacillus subtilis with Response  Surface Methodology ZHANG Zhi,ZHU Hong-liang,NIU Hong-yu,LUO Huan-hua(College of Forestry, Northeast Forestry University, Harbin 150040,China) Abstract :On the basis of single-factor test, response surface methodology was used to analyze the main factors affectingfermentation production of protease by Bacillus subtilis. Results showed that the optimal fermentation conditions are as follows:40 ℃, pH 8.04 and inoculation amount 8.3%, Under these conditions, the produced protease activity is up to 247.8 U/ml afterfermentation for 56 hours. The protease activity is higher 8.54% than the highest one obtained in the single-factor test, which isonly 228.3 U/ml. Key words: Bacillus subtilis;protease;response surface methodology 中图分类号:Q815 文献标识码:A 文章编号:1002-6630(2008)12-0400-05 收稿日期:2007-10-18 作者简介:张智(1964-)女,研究员,硕士,研究方向为食品发酵与食品微生物。E-mail:zhlwz07@163.com 枯草芽孢杆菌(Bacillus subtilis)是一种安全的蛋白酶 生产菌[1],它可产生大量的胞外蛋白酶,在工业生产中应用广泛。主要应用有以下五个方面:(1)在食品工业中应用:如奶酪生产、焙烤食品、大豆、玉米的深加工[2-3] 、水解产物的脱苦以及阿斯巴甜的合成等。(2)在制革行业中应用:如脱毛、脱皮等。(3)洗涤剂行业[4-5],衣服的主要污染是汗液、血迹、食迹等。在汗液中除脂肪外,干物质的1/3是蛋白质。织物上的蛋白质,特别是陈化以后很难洗除,加入蛋白酶可大大的提高洗涤效果,延长织物的寿命,目前全世界洗涤剂用酶的消费量已达到10000多吨。现已将蛋白酶加入牙膏、牙粉、漱口水中有助于去除牙垢。(4)医药行业,可作为消化、消炎、化痰止咳等药物以及治疗跌打伤、水肿血肿、消除坏死组织等。(5)除了应用于工业及医药行业外,还可以应用于基础研究中,蛋白酶的选择性肽键裂解可用于阐明结构功能关系、肽链合成以及蛋白质测序[6]等。现在蛋白酶的生产日趋火热。 响应面分析法[8](response surface methodology,RSM)是一种优化工艺条件的有效方法,可用于确定各因素及其交互作用在工艺过程中对指标(响应值)的影响,精确地表述因素和响应值之间的关系,已被广泛地用于同时存在多因素影响的实验优化上。为了得到最佳产酶条件,本实验采用响应面分析法对影响菌种产酶的几个条件做了优化。1材料与方法1.1 菌种 枯草芽孢杆菌(Bacillus subtilis)本实验室保存,是经过选育筛选出来的产蛋白酶性能稳定的菌株。1.2 培养基 斜面培养基:葡萄糖0.5%、酵母膏1%、蛋白胨0.5%、氯化钠0.2%、琼脂2%、自然pH值。

枯草芽孢杆菌发酵培养基的优化

枯草芽孢杆菌发酵培养基优化 作者姓名 专业 指导教师姓名 专业技术职务

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1枯草芽孢杆菌简介 (3) 1.2枯草芽孢杆菌的应用 (3) 1.2.1枯草芽孢杆菌在工业酶生产中的应用 (3) 1.2.2枯草芽孢杆菌在生物防治领域中的应用 (3) 1.2.3枯草芽孢杆菌在微生物添加剂领域中的应用 (4) 1.2.4 枯草芽孢杆菌在医药方面的应用 (4) 1.2.5 枯草芽孢杆菌在水产中的应用 (4) 1.2.6枯草芽孢杆菌是微生物学与分子生物学研究的良好试验材 料 (5) 1.2.7枯草芽孢杆菌在环境保护方面的应用 (5) 1.3 国内外的研究现状与发展趋势 (6) 1.4研究的思路、目的及意义 (7) 第二章材料与方法 (7) 2.1实验材料 (7) 2.1.1 菌株鉴定 (7) 2.1.2 培养基 (7)

2.1.3 主要设备 (8) 2.2 培养基的优化 (9) 2.2.1 培养方法 (9) 2.2.2实验流程 (9) 2.2.3实验方法 (10) 2.2.4正交试验 (11) 第三章结果和分析 (11) 3.1 鉴定结果如下 (11) 3.2 枯草芽孢杆菌最优化培养基正交实验结果 (16) 3.3 pH变化曲线(以G18为例) (19) 3.4 实验总结 (25) 致谢 (27)

摘要 枯草芽孢杆菌是主要的饲用益生菌菌株,本论文以两株枯草芽孢杆菌G18和G21培养的延滞期和倍增时间为评价指标,通过三角瓶摇床培养,进行了两因素三水平的正交试验,对发酵培养基主要组分进行了优化,豆粕处理的蛋白酶加量2u/g 豆粕、5u/g豆粕、10u/g豆粕和玉米浆添加量0.5%、1.0% 、1.5% 做两个因素三水平的正交实验,研究表明:G18最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.0%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量10u/g豆粕。G21的最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.5%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量5u/g豆粕。[关键词] 枯草芽孢杆菌培养基优化正交试验

枯草杆菌生产_淀粉酶的研究

10 科技创新导报 Science and Technology Innovation Herald 2010 NO.29 Science and Technology Innovation Herald 研 究 报 告 科技创新导报α-淀粉酶是在淀粉加工、食品工业、医药工业、发酵工业及酿造、制糖和纺织工业上应用广泛的酶种,也是目前国内外应用最广、产量最大的酶种之一。α-淀粉酶一般可由微生物发酵产生,也可由植物和动物提取。 目前,工业生产上都以微生物发酵法为主进行大规模生产α-淀粉酶。我国从1965年开始应用枯草芽孢杆菌(Bcaillussubtilis)BF-7658生产α-淀粉酶,当时仅无锡酶制厂独家生产,年产量为10.22吨。现在国内生产酶制剂的厂家己发展到上千个,其中约有40%~50%的工厂生产α-淀粉酶。总产量上万吨。 近年来,国外生产耐热α-淀粉酶发展较快,己从嗜热真菌、高温放线菌、特别是从嗜热细菌(嗜热脂肪芽孢杆菌B.stearothermophilust和地衣芽孢杆菌B.licheniformus等)中分离得到了耐高温的α-淀粉酶菌种。但就国内而言,虽己开展了耐高温α-淀粉酶的研究工作,目前仍以枯草杆菌菌株生产α-淀粉酶为主。 本文就枯草杆菌在淀粉培养基上产 α-淀粉酶做一下研究,其对在以玉米(淀粉含量为70%~75%)或大米(淀粉含量为80%~85%)主要原料的发酵酿酒过程,具有实际的指导意义。 1 材料和方法 1.1实验材料 1.1.1菌种 枯草芽孢杆菌(Bacillussubtilis)为实验室保藏菌种。 1.1.2种子培养基 马铃薯固体(及液体)培养基(简称PDA,马铃薯200g、蔗糖20g、琼脂15g、水1000ml、PH自然,马铃薯去皮,切成块煮沸30min,然后用纱布过滤,再加糖及琼脂,溶化后补足水至1000ml。121℃灭菌30min) 1.1.3发酵培养基 淀粉液体培养基(可溶性淀粉、蒸馏水、pH自然。121℃灭菌30min) 1.2实验方法 1.2.1菌种激活 枯草芽孢杆菌在马铃薯固体培养基(简称PDA)上37℃培养12h后使用 1.2.2液体种子的制备 100mL三角瓶装50mL马铃薯液体培养基(起始PH为自然PH),灭菌后接激活菌种悬液1.5mL,培养36h。 1.2.3发酵培养 在各淀粉液态培养基中加1.5mL液体种子,用电热恒温振荡培养箱培养枯草芽孢杆菌(Bacillus subtilis)。 1.2.4分析方法 酶活力测定,根据国家标准局发布的方法进行①。即1mL酶液于60℃,PH4.8条件下,1小时液化1g可溶性淀粉为1个活力单位。[①国家标准局颁布,GB8275-87,1988-02-01实施] 2 实验结果与讨论 (1)培养温度对菌体生长和产酶的影响在不同温度下用电热恒温振荡培养箱(天津产SH6000A型)在23℃至44℃范围内培养枯草芽孢杆菌(Bacillus subtilis),36h后测定α-淀粉酶活力。结果示于表1。菌体生长和产酶的最适温度均在37℃。温度高于44℃菌体生长和酶活力迅速下降。 (2)培养基对菌体生长和产酶的影响,同在最适温度37℃下,相同的接种量、相同的种龄的枯草杆菌,比较不同比例的淀粉液体培养基产α-淀粉酶,结果见表2测定产α-淀粉酶的最适培养基为:淀粉∶水=75∶100。 (3)培养时间对产酶的影响,在最适温度37℃下,相同的接种量,淀粉与水的比例为:75∶100时1(最适产α-淀粉酶的淀粉液体培养基),测定枯草杆菌产α-淀粉酶最适培养时间为36h。 3 结论 α-淀粉酶是产量在,用途广的酶制剂 品种之一,我国目前枯草杆菌α-淀粉酶是主要品种之一,在行业应用具有重要价值。本实验采用枯草杆菌在淀粉液态培养基上产α-淀粉酶,其研究结果对以玉米或大米为主要原料的发酵造酒具有指导意义。1)在23℃至44℃范围内,振荡培养,起始PH为自然PH,产α-淀粉酶最适培养条件:培养温度37℃。2)在温度37℃下,用淀粉液体培养基发酵,当淀粉与水的比例为75∶100时,产α-淀粉酶酶活力最高。3)在最适温度37℃,淀粉与水的比例为75∶100(即产酶最高的淀粉液体培养基)时,最佳培养时间为12h,此时α-淀粉酶活力最高。 参考文献 [1]沈萍,范秀容,李广武.微生物学实验. 北京:高等教育出版社,2000.[2]臧明玺,姜延程,李廷生.发酵助剂提高 枯草杆菌α-淀粉酶的活性研究.郑州粮食学院学报,1997. [3]钟穗生等.枯草杆菌α-淀粉酶的活性 研究.太原工业大学学报,1997. 枯草杆菌生产α-淀粉酶的研究 哈申吐力古尔 (内蒙古通辽职业学院 通辽 028045) 摘 要:以枯草杆菌(Bacillus subtilis BF7658)为实验菌株,以淀粉为主要原料,采用液态培养基摇瓶发酵,生产α-淀粉酶。结果表明:①在23℃至44℃内,培养基起始PH为自然PH,产酶最适培养温度为:37℃②枯草杆菌在淀粉液态培养基中37℃,振荡培养,其产酶最适淀粉水组成为:淀粉∶水=75∶100;③在最适温度37℃下,淀粉∶水=75∶100时,最适培养时间为36h。关键词:α-淀粉酶 枯草杆菌 淀粉液体培养基中图分类号:R313文献标识 码:A 文章编号:1674-098X(2010)10(b)-0010-01 表1 不同温度下所测糖度值 表2 不同培养基对枯草杆菌产α-淀粉酶的影响

产蛋白酶菌株枯草芽孢杆菌的分离

实验一产蛋白酶菌株枯草芽孢杆菌的分离 一、教学目标及基本要求 1. 学习从各种样品中分离微生物的操作技术 2. 掌握分离微生物时定性测定产物的筛选方法 3. 学习和掌握枯草芽孢杆菌的分离技术 4. 掌握高产蛋白酶菌株的初筛方法 二、实验原理 枯草杆菌是属于芽孢杆菌属的一类细菌。枯草芽孢杆菌的分布十分广泛,主要存在于土壤或腐烂的稻草之中。由于能够形成芽孢,因此能够抵抗高温,低温等不良环境,所以是实验室及工业生产中主要污染菌之一,危害极大。但是许多枯草芽孢杆菌能分泌蛋白酶、淀粉酶、抗菌素等物质,是工业酶制剂生产的重要菌种。例如,我国使用的BF7658枯草芽孢杆菌生产а-淀粉酶,用于淀粉水解,纺织品退浆等。又如AS1398枯草杆菌是生产蛋白酶的重要菌株。 1. 枯草芽孢杆菌的芽孢耐热的特点。 由于芽孢具有较强的抗高温能力,分离纯化时可采用热处理的方法,即通过高温加热杀死其中不生芽孢的菌种,使耐热的芽孢菌得到富集。 2. 枯草芽孢杆菌的产酶特征。 利用枯草芽孢杆菌产生水解酶的特性,可以选择酪蛋白或淀粉为主要营养成分的分离培养基,因菌体分泌的酶可以将大分子的蛋白或淀粉水解而在菌落周围形成透明圈。根据透明圈直径(H)和菌落直径(C)之比值(H/C)可以初步确定酶活力,其比值越大,酶活力越高,进而可筛选出高产酶活的菌株。 3. 枯草芽胞杆菌的形态特征 枯草芽孢杆菌的细胞大小0.7×2~3 μm,营养细胞为杆状,杆端钝圆、单生或者短链,着色均匀,无荚膜,周边运动,革兰氏染色阳性。有芽孢0.6×1~1.5 μm,芽孢中生或近中生,壁薄,不膨大,孢子呈椭圆或长筒形,常为两端染色。菌落变化很大,枯草芽孢杆菌在麦芽汁琼脂培养基斜面上,菌落呈细皱状,干燥或颗粒状。在土豆培养基上菌落呈细皱状,干燥,有时呈现天鹅绒状的菌苔,在液体培养基表面形成银白色的菌膜。菌落粗糙,扁平、扩展,不透明,不闪光,表面干燥,污白色或微带黄色。 4. 枯草芽胞杆菌的生理生化特性 枯草芽孢杆菌能够液化明胶,冻化牛乳,还原硝酸盐,不产生吲哚,H2S,V-P反应阳性,水解淀粉。葡萄糖发酵产酸不产气,需氧,适温25~31℃生长。 三、实验材料 1. 样品:从地表下10~15cm的土壤或者枯枝烂叶、腐烂稻草中用无菌小铲、纸袋取土样, 并记录取样的地理位置、pH、植被情况等。(学生自取) 2. 培养基 ①肉汤培养基(附录Ⅱ-1.1):100 mL/组,其中20 mL液体培养基/250 mL△中(内装玻璃

产淀粉酶芽孢杆菌分离与酶活力测定

产淀粉酶芽孢杆菌的分离、纯化并发酵测定淀粉酶活力杨敏仪,罗桂莲,关婷婷,黄真梅,肖维兴,梁妃法 注明:蓝色字体是已修改的 一、实验目的 1、掌握分离鉴定产淀粉酶微生物的方法; 2、掌握测定酶活力的方法; 3、培养自行设计、实施实验的能力。 二、实验原理 1、土壤中含有各种微生物,其中产淀粉酶的枯草芽孢杆菌含量在不同土壤中含量也不同,因此实验前进行预埋工作,能使土壤中产淀粉酶的细菌含量增加。待实验前取样即可。 2、在只用淀粉充当碳源的选择培养基中,只有能产生淀粉酶利用淀粉的菌体能成为优势菌种。在淀粉选择培养基中,产淀粉酶的菌种可以得到富集及分离。 3、菌体可经革兰氏染色后在显微镜下被判断出是否为枯草芽孢杆菌。 4、在含有淀粉的鉴别培养基上的平板上,具有产淀粉酶能力的枯草芽孢杆菌,水解淀粉生成小分子糊精和葡萄糖,在淀粉平板上菌落周围出现水解圈,但肉眼不易分辨,滴加碘液,未水解的淀粉呈蓝色,水解圈无色。 三、实验材料 1、土壤样品 湛师弘志苑后面的花圃,实验前一周在距土壤表层5—8厘米左右处填埋馒头,实验前一天用塑料袋在预埋处取样。 2、培养基 淀粉培养基:可溶性淀粉1%,蛋白胨1%,葡萄糖0.5%,氯化钠0.5%,牛肉膏0.5%,琼脂粉2.0%,pH7,配制300ml 种子培养基:牛肉膏0.5%,蛋白胨1%,氯化钠0.5%,可溶性淀粉0.5%,琼脂粉2.0%,pH7,配制300ml

发酵培养基:玉米粉 2% ,黄豆饼粉1.5 %, CaCl20.02% , MgSO40.02 %, NaCl 0.25 %, K2HPO4 0.2 %,柠檬酸钠0.5 % ,硫酸 氨0.075(溶解后),Na2HPO4 0.2% ,校正pH7.0,发酵培养 条件为:温度37℃,装液100ml/250ml,配制200 ml 3、试剂 草酸铵结晶紫染液,95%乙醇,番红水溶液、卢戈氏碘液 4、玻璃器皿 锥形瓶(250mL)3个,培养皿40个,涂布棒1根,移液管(1mL) 10根,试管15根,烧杯(250mL)5个,盖玻片、载玻片若干,5、其他仪器及设备: 天平,pH试纸,棉花,牛皮纸,玻璃珠,超净工作台,生化培 养箱,电热干燥箱,高压蒸汽灭菌锅,水浴锅,显微镜,接种 环等 四、实验步骤 1、样本采集 ①在预埋处采取土样用塑料袋装好,不要损坏土壤的内部结构。 ②取12.5g土壤加入250ml烧杯中,再加入112ml去离子水制成土壤混悬液,加入一小层玻璃珠。在锥形瓶中加入2g的可溶性淀粉,蛋白胨0.625g,NaCL0.625g,调节PH值为7.0—7.2。在37℃摇床培养箱中培养两天,使菌体富集且产生大量芽孢。 在85℃-90℃水浴锅中加热10分钟,杀灭菌体,使芽孢得到富集。 3、初筛 将富集得到的菌体液静置5分钟,然后进行浓度梯度稀释到10-6,分别在10-1 、10-2、10-3、10-4、10-5、10-6浓度下各取1mL均匀涂布在淀粉培养基上,培养皿放入37℃培养箱中培养24小时。取出培养好的平皿在长出的菌落上滴加碘液,菌落周围如有无色透明圈出现,说明淀粉被水解,即该菌株能产生淀粉酶。 4、划线分离 从初筛所得的菌落中选择菌落周围透明圈和菌落直径之比值较大的菌落,进行划线分离。将于种子培养基上划线后,再将培养皿放入37℃培养箱中培养24小时。 5、镜检 挑取一个较好的单个菌落,通过革兰氏染色制片观察,判别所选菌

枯草芽孢杆菌酶在发酵工艺上的应用

枯草芽孢杆菌酶在发酵工艺上的应用 王伟王上俞志敏丛丽娜* (大连工业大学生物工程学院辽宁大连 116034) 摘要:枯草芽孢杆菌(Bacillus subtilis)是当今工业酶的主要生产菌种之一,由于其产酶量高、种类多、安全性好、环保等优点在现代发酵工业生产中被广泛应用,其发酵生产的酶在工业、医学、食品、饲料、洗涤、纺织、皮革、造纸、水产养殖等领域均发挥着十分重要的作用。 关键词:枯草芽孢杆菌;发酵;酶 B. subtilis enzyme used in the fermentation process WANG Wei WANG Shang YU Zhi-Min CONG Li-Na* (School of Biological Engineering,Dalian polytechnic University,Dalian,Liaoning 116034, China) Abstract:Bacillus subtilis (Bacillus subtilis) is one of today's major producing strain of industrial enzymes,enzyme production because of its high volume,variety,safety, environmental protection,etc.are widely used in modern industrial production fermentation,fermentation enzymes produced in the fields of industry,medicine,food, feed,wash,textile,leather,paper,aquaculture and other have played a very important role. Keywords:Bacillus subtilis; fermentation; Enzyme 长期以来,枯草芽孢杆菌一直是工业微生物的主力军之一,它的使用可追溯到一千多年前,早在日本平安时代(794~1192年)日本人就已经利用枯草芽孢杆菌在大豆中采用固态发酵的方法生产他们的传统食品——纳豆,开创了利用枯草芽孢杆菌的历史[1]。由于其具有发酵周期短、产物丰富、可利用开发价值高以及作为食品药品安全性好等显著优点,使得它的应用一直延续至今,并在过去的一百多年中有了长足的进步。近年来,由于分子生物学的飞速发展,新的分子手段和技术的不断介入使得枯草芽孢杆菌的研究利用进入了新时期,在食品加工、农业生产、能源开发等方面不断地涌现新突破,在工业微生物中的地位不断得到

枯草芽孢杆菌和地衣芽孢杆菌产酶研究分析

个人收集整理仅供参考学习 枯草芽孢杆菌和地衣芽孢杆菌产酶分析 一、概述 1. 枯草芽孢杆菌 枯草芽孢杆菌是芽孢杆菌属地一种.单个细胞0.7~0.8 ×2~3微米,着色均匀. 无荚膜,周生鞭毛,能运动.革兰氏阳性菌,芽孢0.6~0.9 ×1.0~1.5 微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大.菌落表面粗糙不透明, 污白色或微黄色,在液体培养基中生长时,常形成皱醭.需氧菌.可利用蛋白质、多种糖及淀粉,分解色氨酸形成吲哚.b5E2RGbCAP 有地菌株是α-淀粉酶和中性蛋白酶地重要生产菌;有地菌株具有强烈降解核苷酸地酶系,故常作选育核苷生产菌地亲株或制取5'-核苷酸酶地菌种.在遗传学研究中应用广泛,对此菌地嘌呤核苷酸地合成途径与其调节机制研究较清楚.广泛分布在土壤及腐败地有机物中,易在枯草浸汁中繁殖,故名.p1EanqFDPw

2.地衣芽孢杆菌 地衣芽孢杆菌,种属芽孢杆菌科细菌为革兰氏阳性杆菌;细胞大小:0.8μm×(1.5~3.5)μm;细胞形态及特点:细胞形态和排列呈杆状、单生.细胞内无聚-β-羟基丁酸盐(PHB )颗粒,产生近中生地椭圆状芽孢,孢囊稍膨大. 在肉汁培养基上地菌落为扁平、边缘不整齐、白色、表面粗糙皱褶,24h 后菌落直径为3mm.本菌有动力.可调整菌群失调达到治疗目地,可促使机体产生抗菌活性物质、杀灭致病菌.能产生抗活性物质,并具有独特地生物夺氧作用机制,能抑制致病菌地生长繁 殖.DXDiTa9E3d 二、产酶地种类 1.枯草芽孢杆菌代谢产酶种类枯草芽孢杆菌产生多种酶和其他代谢产物,主要由以下几个方面:枯草芽孢杆菌菌体在生长过程中产生地枯草菌素、多粘菌素、制霉菌素、短杆菌肽等活性物质对致病菌或内源性感染地条件致病菌有明显地抑制作用;RTCrpUDGiT 枯草芽孢杆菌能迅速消耗消化道内环境中地游离氧,形成肠道低氧环境,促进有益厌氧菌生长,并产生乳酸等有机酸类,降低肠道PH 值,间接抑制其它致病菌地生长;5PCzVD7HxA 枯草芽孢杆菌能刺激动物免疫器官地生长发育,激活淋巴细胞,提高免疫球蛋白和抗体水平,增强细胞免疫和体液免疫功能,提高群体免疫力; jLBHrnAILg 枯草芽孢杆菌菌体能自身合成消化性酶类,如蛋白酶、淀粉酶、脂肪

枯草芽孢杆菌表达手册 个人翻译中文版

枯草芽孢杆菌表达载体 产品信息和说明 2005年11月

目录 1.简介 (3) 2. pHT 载体 (3) 2.1. pHT01载体图谱 (4) 2.2. pHT43载体图谱 (5) 2.3. pHT01衍生物中标签的定位 (5) 3. 实验方案 (6) 4. 参考文献 (6) 5. 订单信息,运输和存储 (6) 本载体系统由德国拜罗伊特大学遗传研究所的沃尔夫冈·舒曼实验室 开发。 仅用于科研! 本手册由wy135033405翻译百度文库首发任何意见请PM

枯草芽孢杆菌表达载体 通过质粒在枯草芽孢杆菌中高效表达胞内/胞外重组蛋白 1.简介 革兰氏阳性菌因其在农业,医疗和食品生物技术和重组蛋白生产等方面的贡献而广为人知。在所有革兰氏阳性菌中,枯草芽孢杆菌载体因下列原因尤为引人瞩目。(一)无致病性,且一般认为安全的有机体;(二)无明显的密码子偏好性;(三)可直接将功能性胞外蛋白分泌到培养基中(目前,大约60%的市售酶由芽孢杆菌生产);(四)具备包含转录,翻译,蛋白质折叠、分泌机制,遗传操作和大规模发酵的大信息量机体。 但是下述两个障碍减少了枯草芽孢杆菌的使用:(一)产生一定数目的识别并降解外源蛋白的胞外蛋白酶;(二)载体质粒稳定性。第一个障碍已因蛋白酶缺失株的构建而基本解决。第二个因引入使用θ-复制模式质粒被完全克服,如由天然质粒pAMβ1和pBS72衍生的一些质粒(Jannière等,1990;Titok等,2003)。 最近,基于大肠杆菌 - 枯草杆菌穿梭质粒pMTLBS72的四种不同表达载体的构建和使用展示出全面的结构稳定性,业已出版(Nguyen等,2005)。 两个新的载体pHT01和pHT43允许在细胞质中高水平表达重组蛋白,其中pHT43载体引导重组蛋白到培养基。这两个载体基于强σA-依赖性启动子的枯草杆菌gro E操纵子通过添加lac操纵子改造成为一种高效可控的(IPTG诱导的)启动子。pHT01衍生载体可与8×His 标签(pHT08),链球菌标签(pHT9)或C - Myc的标签(pHT10)相结合。 2. pHT 载体 所有在枯草芽孢杆菌的gro ESL操纵子之前使强启动子与lac操纵子融合的载体都可通过加入IPTG进行诱导。尽管当未添加诱导物时表达组件的背景表达水平很低,还是成功从约1300种诱导因子中筛选出一种来使用bga B报道基因(Phan等,2005)。当分别将htp G 和pbp E基因融合到gro E启动子时,加入IPTG后,表达的重组蛋白可能分别占细胞总蛋白的10%和13%(Phan等,2005)。热纤梭菌的amyQα-淀粉酶和纤维素酶A、B的高水平表达实验证实。该载体还插入了一个高效SD序列以及一个多克隆位点(BamH I, Xba I, Aat II, Sma I)。编码α-淀粉酶的amyQ基因的信号肽编码区域与pHT01的SD序列融合,构成了pHT43,以此获得分泌的重组蛋白。

从土壤中分离产淀粉酶的芽孢杆菌实验方案解析

土壤中产淀粉酶芽胞杆菌的筛选及其淀粉酶活力的测定设计性实验方案 一、综述: 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。淀粉酶广泛存在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂]等多种领域。在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程中均有重要价值,如添加淀粉酶分布非常广泛,是人们经常研 【】究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用1。 常见产淀粉酶的主要为芽孢杆菌属。其中的常见产淀粉酶的芽孢杆菌菌种有:地衣芽 【】【】孢杆菌、枯草芽孢杆菌、蜡样芽孢杆菌和纳豆芽孢杆菌2、凝结芽孢3。由于芽孢杆菌属 是一类好氧或兼性厌氧、产生抗逆性内生抱子的杆状细菌,许多为腐生菌,主要分布于土壤【】和植物体表面及水体中4。所以此次实验从土壤中分离产淀粉酶的芽孢杆菌。 二、实验目的要求 1.了解生物分离提纯的原理和方法技术 2.掌握从土壤中筛选产淀粉酶菌株的原理和方法 3.掌握微生物摇瓶培养方法及淀粉酶活力测定的原理和方法 4.培养学生的综合应用微生物实验方法的能力 5.培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 三、实验原理 自然界中,土壤是微生物生活最适宜的环境。土壤具有微生物进行生长繁殖和生命活动中所需的各种条件。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的 【】土层中菌数最多,随土层加深,菌的数量减少5。 从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。平板分离法普遍用于微生物的分离与纯化。其基本原理是选择适合与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物生长的环境,从而淘汰一些不需要的微生物。

枯草芽孢杆菌生产工艺

枯草芽孢杆菌生产工艺-实验室操作 1. 培养基 1.1 种子培养基蛋白胨1 %,酵母浸出物0. 5 %,氯化钠1 % ,自然pH。 1.2 基础发酵培养基蔗糖1 %,蛋白胨1 %,磷酸氢二钠0. 2 %,磷酸二氢钠0. 2 %,pH 7. 0。 1.3 主要试剂 蔗糖、葡萄糖、淀粉、玉米淀粉、麦芽糖、酵母浸出物、胰蛋白胨、牛肉膏、尿素、氯化铵、硫酸锰、硫酸镁、磷酸二氢钠、磷酸氢二钠、硫酸亚铁、氯化钠和氯化钙。 1.4 仪器设备 控温摇床、高压蒸气灭菌锅、电子天平、pH 测定仪、无菌操作台和紫外分光光度计。 2.方法 2. 1培养方法 2. 1. 1菌种活化 将保存的菌种转接到斜面培养基,37 ℃培养24 h,备用。 2. 1. 2种子液的制备 取一环活化的菌种,接入装量为50 mL种子培养基的250mL三角瓶中,37℃,180 r/ min 培养18 h。 2. 1. 3摇瓶培养 分别取1 mL 种子液,接入盛有50 mL 发酵培养基的200 mL三角瓶中(接种量为2 % ,V/ V) 。置摇床中,30 ℃振荡培养12 h,转速为160 r/ min 3. 培养条件 3.1碳源 以葡萄糖、蔗糖和麦芽糖为碳源时枯草芽孢杆菌的生长明显优于可溶性淀粉和玉米淀粉。最佳碳源是葡萄糖,其次是蔗糖。 3.2氮源 氮源为有机氮源时枯草芽孢杆菌的生长明显优于无机氮源。最适氮源是酵母浸出物,从发酵成本考虑,酵母浸出物、胰蛋白胨及氯化铵组成的复合氮源较合适。

4.发酵条件 4.1生长曲线 接种12 h后细菌数量开始减少,枯草芽孢杆菌进入生长衰亡期。因此,采用8~12 h 时的菌液作为菌种较合适,此时枯草芽孢杆菌为对数生长末期,既可保持高的细胞活力,又可获得尽可能多的细胞数。 4.2 初始PH 在初始pH 5. 5~8范围内枯草芽孢杆菌均可良好生长,pH 为6. 0 时生长最好,说明枯草芽孢杆菌对pH 的适应性较宽,但随pH 的增大,活菌数呈下降趋势。 4.3温度 枯草芽孢杆菌在25~40℃均可良好生长,其生长的最适温度为35℃。 4.4装液量及接种量 枯草芽孢杆菌为需养菌,在生长过程中需要大量的氧气,装液量不可过多,培养液与容器体积比可设定为2:25;接种量3 % (V/ V) 较适合其生长。 5.干燥方式 采用喷雾干燥和低温冷冻干燥。低温冷冻干燥更利于芽孢的形成,但其操作复杂、成本高,不利于规模化工业生产。而喷雾干燥同样可产生高芽孢率,且成本相对低,更适合工业生产。

枯草芽孢杆菌的介绍

目录 第一章芽孢杆菌的简要介绍 (1) 第一节芽孢杆菌种类 (1) 第二节芽孢杆菌表达系统发展简史 (2) 第二章枯草芽孢杆菌的转化系统 (3) 第一种方法:电转化 (3) 第二种方法:Spizizen转化 (3) 第三种方法:原生质体法(Takashi) (4) 第四种方法:原生质体转化之二 (4) 第五种转化方法:质粒混合法(BGSC推荐) (5) 第三章芽孢杆菌表达系统发展简史 (6) 第一节芽孢杆菌表达系统的优点(相对于大肠杆菌) (7) 第二节芽孢杆菌的缺点 (7) 第三节助表达系统 (7) 第四节芽孢杆菌基因表达的主要特点 (7) 第四章枯草芽孢杆菌转录翻译系统 (8) 第一节:转录系统 (9) 第二节:翻译系统 (9) 第五章芽孢杆菌常用的宿主和载体 (10) 第六章芽孢杆菌表达系统应用实例 (11) 1 中国 (11) 2 日本 (12) 3 加拿大 (12) 第七章芽孢杆菌其他产品 (13) 第一节核苷类产品 (13) 第二节核黄素 (13) 第三节微生物制剂/益生菌 (13) 第八章结语 (14) 附录一. 芽孢杆菌的相关经典文章 (14) 附录二. 枯草芽孢杆菌相关数据库 (15) 致谢及参考文献 (15)

第一章芽孢杆菌的简要介绍 芽孢杆菌作为一个属,于1872年被首次提出,至今已有一百多年。目前人们对芽孢杆菌的研究几乎涉及到了革兰氏阳性可生孢细菌的各个领域。尤其是在感受态、芽孢形成及其调控、遗传操作、菌种改良、生物技术等领域进行了大量的工作。芽孢杆菌是一个泛泛的概念,而科学研究中应用最多的当属枯草芽孢杆菌,例如168菌株及其大量的衍生菌株。枯草杆菌的研究之所以领先于其他芽孢杆菌的种,主要是由于他的转化、转导方法较完善,以及大量的衍生菌株。 目前应用最多的芽孢杆菌属菌种有枯草芽孢杆菌、嗜碱芽孢杆菌、解淀粉芽孢杆菌、短芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、短小芽孢杆菌、球形芽孢杆菌、嗜热脂肪芽孢杆菌、苏云金芽孢杆菌和耐碱的芽孢杆菌以及病原菌炭疽芽孢杆菌等12种。 第一节芽孢杆菌种类 目前,芽孢杆菌属很多菌株的全基因组序列已经报道,截至2011年10月,在KEGG 上公布全基因组序列的芽孢杆菌属菌种有: 简称菌种名称测序时间测序链接 bsu Bacillus subtilis1997RefSeq bss Bacillus subtilis subsp. spizizenii W232010RefSeq bst Bacillus subtilis subsp. spizizenii TU-B-102011 RefSeq bsn Bacillus subtilis BSn52011RefSeq bha Bacillus halodurans2000RefSeq ban Bacillus anthracis Ames2003RefSeq bar Bacillus anthracis Ames 05812004RefSeq bat Bacillus anthracis Sterne2004 RefSeq bah Bacillus anthracis CDC 6842009 RefSeq bai Bacillus anthracis A02482009 RefSeq bal Bacillus cereus biovar anthracis CI2010RefSeq bce Bacillus cereus ATCC 145792003RefSeq bca Bacillus cereus ATCC 109872004RefSeq bcz Bacillus cereus ZK2004RefSeq bcr Bacillus cereus AH1872008 RefSeq bcb Bacillus cereus B42642008 RefSeq bcu Bacillus cereus AH8202009 RefSeq bcg Bacillus cereus G9******* RefSeq bcq Bacillus cereus Q12009RefSeq

相关主题
相关文档 最新文档