当前位置:文档之家› 基于LabVIEW的摄像头视频图像实时采集

基于LabVIEW的摄像头视频图像实时采集

基于LabVIEW的摄像头视频图像实时采集
基于LabVIEW的摄像头视频图像实时采集

基于LabVIEW的摄像头视频图像实时采集

指导老师:李茂奎

小组成员:李化松李雷李成康乐

[摘要] 介绍了USB摄像头视频图像实时采集系统的基本原理及组成。该系统以LABVIEW为核心,通过调用windows平台的OCX控件完成系统的数据采集任务。整个系统结构清晰,构思新颖,具有一定的可操作性。

[关键词] USB摄像头;LabVIEW;视频图像实时采集

一、设计任务

1设计目标

设计一个基于LabVIEW的USB摄像头视频图像实时采集系统

2设计基本要求及发挥

1.能够实时地采集视频,并在电脑上显示出来

2.可以进行录像,拍照

3.美化程序界面,添加同步时间数码管显示功能。

二、方案论证

1.视频采集部分

方案一:采用vb语言编写的ovfw.ocx控件实现视频的实时获取,优点是使用方便,设置简单明了,同步性好,无延迟。缺点是无法实现录像功能。

方案二:采用windows平台的ezvidcap.ocx控件实现视频的实时获取,可以实现录像功能,缺点是设置繁琐,程序复杂。

鉴于此,我们选用了方案二。

https://www.doczj.com/doc/0b8079250.html,BVIEW程序设计

采用usb接口的摄像头读入数据,并在程序中显示出来。利用控件本身的摄像录像功能实现数据的采集存储。

3.界面美化

增加了数码管样式的时间同步显示功能,同时增加了界面透明度可调旋钮,是界面产生玻璃状的美妙效果。

三、总体方案

1.工作原理:

利用现有的摄像头获取图像,通过调用windows平台的ezvidcap.ocx控件实现图像实时显示采集存储。

2.程序设计

LABVIEW从摄像头读入数据,通过空间调用,使图像在程序界面显示,并进行拍照录像等功能。

程序:

图一:子VI数码管

图二:程序总图(一)

图三:程序总图(二)

3.运行界面:

四、总结

通过此次对图像实时采集系统学习和设计,了解到计算机LabVIEW控制系统的设计流程、应用设计的基本的要求和外部硬件的调用的应用。在参考了相关网络及课本资料的同时了解了现时流行的设计思路和时下广泛应用的元器件。该系统综合的应用了LABVIEW的编程、硬件连接等。

五、参考资料

1.《LabVIEW程序设计与应用(第二版)》????? 电子工业出版社

2.《 LabVIEW讲义》?? ????????????????????山东大学物理与微电子学院3.《labview虚拟仪器程序设计与应用》????? 西南交通大学出版社

基于嵌入式Linux的视频图像采集与传输

基于嵌入式Linux的视频图像采集与传输 摘要:视频图像采集及处理技术在远程视频监控和可视电话中有着广泛的应用前景,驱动视频采集设备和获取视频数据并进行相应的处理,是实现这些应用的基础。针对这些应用,构建了一个基于嵌入式Linux和PXA270微处理器的视频采集与传输系统,利用Video4Linux实现USB摄像头视频数据采集,采集的视频数据经JPEG压缩后,在PXA270为核心的系统控制下通过以太网进行传输,并通过重新编译移植Webcam_server应用程序实现了实时视频采集。实验结果表明,该系统动态刷新良好,具有一定的实用性。关键词: PXA270;嵌入式Linux;USB摄像头;图像采集与传输Abstract:Video image acquisition and processing technology had a broad application prospect in the long distance supervisory control with video and video telephone. Driving video acquisition equipments and gaining video data to process accordingly are the basis of realization the applications. Aiming at the applications, designed a video acquisition and transmission system based on PXA270 with embedded Linux. The system used USB camera combined with Video4Linux to implement video data acquisition, then were encoded in JPEG, and sent by Ethernet under the control of the PXA270. In the

基于LabVIEW的摄像头视频图像实时采集

基于LabVIEW的摄像头视频图像实时采集 指导老师:李茂奎 小组成员:李化松李雷李成康乐 [摘要] 介绍了USB摄像头视频图像实时采集系统的基本原理及组成。该系统以LABVIEW为核心,通过调用windows平台的OCX控件完成系统的数据采集任务。整个系统结构清晰,构思新颖,具有一定的可操作性。 [关键词] USB摄像头;LabVIEW;视频图像实时采集 一、设计任务 1设计目标 设计一个基于LabVIEW的USB摄像头视频图像实时采集系统 2设计基本要求及发挥 1.能够实时地采集视频,并在电脑上显示出来 2.可以进行录像,拍照 3.美化程序界面,添加同步时间数码管显示功能。 二、方案论证 1.视频采集部分 方案一:采用vb语言编写的ovfw.ocx控件实现视频的实时获取,优点是使用方便,设置简单明了,同步性好,无延迟。缺点是无法实现录像功能。 方案二:采用windows平台的ezvidcap.ocx控件实现视频的实时获取,可以实现录像功能,缺点是设置繁琐,程序复杂。 鉴于此,我们选用了方案二。 https://www.doczj.com/doc/0b8079250.html,BVIEW程序设计 采用usb接口的摄像头读入数据,并在程序中显示出来。利用控件本身的摄像录像功能实现数据的采集存储。 3.界面美化 增加了数码管样式的时间同步显示功能,同时增加了界面透明度可调旋钮,是界面产生玻璃状的美妙效果。 三、总体方案 1.工作原理: 利用现有的摄像头获取图像,通过调用windows平台的ezvidcap.ocx控件实现图像实时显示采集存储。 2.程序设计 LABVIEW从摄像头读入数据,通过空间调用,使图像在程序界面显示,并进行拍照录像等功能。

基于arm的视频图像采集系统

基于arm的视频图像采集系统 摘要:本系统采用了Samsung公司生产的S3C2440芯片作为嵌入式处理器,再结合系统所需的外围硬件构成基本硬件电路。主要包括二大部分:处理器和存储器部分;电源时钟复位电路部分;外围接口电路部分。在对各部分硬件进行详细设计后,接下来详细介绍了嵌入式软件平台的构建,包括如何移植Linux操作系统:基于嵌入式Linux下USB接口摄像头视频设备采集;移植H.264视频压缩库和视频传输程序的编写。 1 抓拍系统开发环境的构建 本文所设计的采集系统按功能可划分为嵌入式主控模块、视频采集模块、网络传输模块、等三大部分。图1-1为本系统的系统框架图: 1. USB数字摄像头采集图像数据: 2.采集传输应用程序通过摄像头驱动从摄像头获取到采集的图像数据: 3.采集传输应用程序调用H.264编码库对图像数据进行压缩: 4.采集传输应用程序将压缩后的图像数据通过网络传输给windows PC上 的显示程序: 5. Windows上的显示程序对图像数据进行解码并显示: 图1-1软件架构图 本系统的嵌入式主控模块是基于Samsung公司生产的S3C2440这款处理器,主要作用是实现对各模块数据的响应、处理以及控制。在硬件上,主控模块包括电源、时钟、复位电路、存储模块、以太网接口电路等。在软件上,主控模块上运行Linux操作系统,管理各应用程序模块进程并调度各进程。

1.1采集系统的硬件平台设计 本系统的核心处理器为二星公司的S3C2440,外扩64M的SDRAM存储器以及64M 的FLASH存储器,外围接口电路模块:包括USB接口电路,以太网网卡DM9000接口电路以及网眼3000的数字摄像头等。本系统的硬件结构如图1-2所示。 图1-2系统硬件架构图 1.1.1电源、时钟模块设计 系统各部分硬件要求提供1.8V和3V的电压。其中S3C2440处理器内核需要提供1.8V 电源,NandFlash, SDRAM及DM9000等芯片需要提供3V电源,所以本系统采用了LM1117-3.3和LM1117-1.8电压转换芯片设计稳压电源,得到1.8V和3.3V的所需电压。USB 控制器需要提供5V的电源。本文采用了5V直流电压供电。LM1117是一个低压差电压调节器系列。其压差在1.2V输出,负载电流为800mA时为1.2V 。LM1117有5个固定电压输出(1.8V, 2.5V, 2.85V, 3.3V和5V)的型号。根据本系统的需要,这里选用了电压输出为1.8V 和3.3V两型号。 时钟电路为CPU和其它外围电路提供精准的工作时钟,按照电路中设计使用的器件特性分为有源和无源晶振,在本系统的设计电路中采用的是无源晶振。ARM芯片均提供时钟发生电路,结合一定的辅助电路的配合就可以得到所需要的时钟信号。基十ARMS的这款S3C2440芯片的时钟控制逻辑可以产生为CPU核供给时钟信号的FCLK、为AHB总线供给时钟信号的HCLK、为APB总线供给时钟信号的PCLK。 1.1.2外部存储器的扩展 S3C2440微处理器存储空间仅有32M,应用于本系统,需要外扩存储器。本设计采用两片二星公司的HY57V561620来扩展64M的SDRAM。它们均4M* 16bit*4bank的SDRAM 芯片,这样,两片SDRAM实现了位扩展,数据总线达到了32bit,构成64M寻址空间。图1-3为S3C2440与NandFlash的接口图。

视频采集系统

数字图象处理技术在电子通信与信息处理领域得到了广泛的应用,设计一种功能灵活、使用方便、便于嵌入到监控系统中的视频信号采集电路具有重要的实用意义。 在研究基于DSP的视频监控系统时,考虑到高速实时处理及实用化两方面的具体要求,需要开发一种具有高速、高集成度等特点的视频图象信号采集监控系统,为此监控系统采用专用视频解码芯片和复杂可编程逻辑器件(CPLD)构成前端图象采集部分。设计上采用专用视频解码芯片,以CPLD器件作为控制单元和外围接口,以FIFO为缓存结构,能够有效地实现视频信号的采集与读取的高速并行,具有整体电路简单、可靠性高、集成度高、接口方便等优点,无需更改硬件电路,就可以应用于各种视频信号处理监控系统中。使得原来非常复杂的电路设计得到了极大的简化,并且使原来纯硬件的设计,变成软件和硬件的混合设计,使整个监控系统的设计增加柔韧性。 1 监控系统硬件平台结构 监控系统平台硬件结构如图1所示。整个监控系统分为两部分,分别是图象采集监控系统和基于DSP主监控系统。前者是一个基于SAA7110A/SAA7110视频解码芯片,由复杂可编程逻辑芯片CPLD实现精确采样的高速视频采集监控系统;后者是通用数字信号处理监控系统,它主要包括:64K WORD程序存储器、64K WORD数据存储器、DSP、时钟产生电路、串行接口及相应的电平转换电路等。 监控系统的工作流程是,首先由图象采集监控系统按QCIF格式精确采集指定区域的视频图象数据,暂存于帧存储器FIFO中;由DSP将暂存于FIFO中的数据读入DSP的数据存储器中,与原先的几帧图象数据一起进行基于H.263的视频数据压缩;然后由DSP将压缩后的视频数据平滑地从串行接口输出,由普通MODEM或ADSL MODEM传送到远端的监控中心,监控中心的PC机收到数据后进行相应的解码,并将还原后的视频图象进行显示或进行基于WEB的广播。 2 视频信号采集监控系统 2.1 视频信号采集监控系统的基本特性 一般的视频信号采集监控系统一般由视频信号经箝位放大、同步信号分离、亮度/色度信号分离和A/D变换等部分组成,采样数据按照一定的时序和总线要求,输出到数据总线上,从而完成视频信号的解码,图中的存储器作为帧采样缓冲存储器,可以适应不同总线、输出格式和时序要求的总线接口。 视频信号采集监控系统是高速数据采集监控系统的一个特例。过去的视频信号采集监控系统采用小规模数字和模拟器件,来实现高速运算放大、同步信号分离、亮度/色度信号分离、高速A/D变换、锁相环、时序逻辑控制等电路的功能。但由于监控系统的采样频率和工作时钟高达数十兆赫兹,且器件集成度低,布线复杂,级间和器件间耦合干扰大,因此开发和调试都十分困难;另一方面,为达到精确采样的目的,采样时钟需要和输人的视频信号构成同步关系,因而,利用分离出来的同步信号和监控系统采样时钟进行锁相,产生精确同步的采样时钟,成为设计和调试过程中的另一个难点。同时,通过实现亮度、色度、对比度、视频前级放大增益的可编程控制,达到视频信号采集的智能化,又是以往监控系统难以完成的。关于这一点,在监控系统初期开发过程中已有深切体会[1]。 基于以上考虑,本监控系统采用了SAA7110A作为视频监控系统的输入前端视频采样处理器。 2.2 视频图象采集监控系统设计 SAA7110/SAA7110A是高集成度、功能完善的大规模视频解码集成电路[2]。它采用PLCC68封装,内部集成了视频信号采样所需的2个8bit模/数转换器,时钟产生电路和亮度、对比度、饱和度控制等外围电路,用它来替代原来的分立电路,极大地减小监控系统设计的工作量,并通过内置的大量功能电路和控制寄存器来实现功能的灵活配置。

LabVIEW应用于实时图像采集及处理系统

LabVIEW应用于实时图像采集及处理系统 2008-7-29 9:35:00于子江娄洪伟于晓闫丰隋永新杨怀江供稿 摘要:本文在LabVIEW和NI-IMAQ Vision软件平台下,利用通用图像采集卡开发一种图像实时采集处理虚拟仪器系统。通过调用动态链接库驱动通用图像采集卡完成图像采集,采集图像的帧速率达到25帧每秒。利用NI-IMAQ Vision视频处理模块,进行图像处理,以完成光电探测器的标定。该系统具有灵活性强、可靠性高、性价比高等优点。 主题词:虚拟仪器;图像处理;LabVIEW;动态链接库 1.引言 美国国家仪器(NI)公司的虚拟仪器开发平台LabVIEW,使用图形化编程语言编程,界面友好,简单易学,配套的图像处理软件包能提供丰富的图像处理与分析算法函数,极大地方便了用户,使构建图像处理与分析系统容易、灵活、程序移植性好,大大缩短了系统开发周期。在推出应用软件的基础上,NI公司又推出了图像采集卡,对于NI公司的图像采集卡,可以直接使用采集卡自带的驱动以及LabVIEW中的DAQ库直接对端口进行操作。 但由于NI公司的图像采集卡成本很高,大多用户难以接受,因此硬件平台往往采用通用图像采集卡,软件方面的图像处理程序仍采用LabVIEW以及视频处理模块编写。本文正是基于这样的目的,提出了一种在LabVIEW环境下驱动通用图像采集卡的方案,在TDS642EVM高速DSP视频处理板卡的平台下,完成实时图像采集及处理。 在图象处理的工作中主要完成对CCD光电探测器的辐射标定。由于探测器在自然环境下获取图像时,会受到来自大气干扰,自身暗电流,热噪声等影响,使CCD像元所输出信号的数值量化值与实际探测目标辐射亮度之间存在差异,所以要得到目标的精确图像就必须对探测器进行辐射标定。 2.图像采集卡简介 闻亭公司TDS642EVM(简称642)多路实时视频处理板卡是基于DSP TMS320DM642芯片设计的评估开发板。计算能力可达到4Gips,板上的视频接口和视频编解码芯片Philips SAA7115H相连,实现实时多路视频图像采集功能,支持多种PAL,NTSC和SECAM视频标准。本系统通过642的PCI接口与主机进行数据交换。PCI支持“即插即用(PnP)”自动配置功能,使图像采集板的配置变得更加方便,其一切资源需求的设置工作在系统初启时交由BIOS处理,无需用户进行繁琐的开关与跳线操作。PCI接口的海量数据吞吐,为其完成实时图像采集和处理提供保证。 3.系统组成及工作原理

视频交通流采集系统解决方案

视频交通流信息采集系统解决方案 1概述 视频交通流信息采集系统主要包括视频图像采集设备、视频传输网络、交通流视频检测器等。视频检测器采用虚拟线圈技术,利用边缘信息作为车辆的检测特征,实时自动提取和更新背景边缘,受环境光线变化和阴影的影响较小;同时采用动态窗的方式来进行车辆计数,解决了采用以往固定窗方式进行车辆计数时由于车辆变道而导致的错误、重复计数问题。视频检测器能对视频图像采集设备或交通电视监视系统的视频信号自动进行检测,主要采集道路的微观交通信息如流量、速度、占有率、车辆间距、排队长度等,适用于近景监控模式。 2系统功能及特点介绍 2.1数据接口设计 视频交通流信息采集系统可以通过调用本项目提供的交通流数据统一接入接口,或由本项目提供数据格式标准化及上传程序,将采集到的交通流数据共享给本项目相关系统,以实现视频交通流数据的采集功能。 图1 数据接口设计 2.2系统功能 交通流信息视频检测系统的主要功能如下: (1)车辆检测 系统能够对输入的视频流图像进行车型、车牌等特征检测。

(2)交通流数据采集功能 系统可以采集交通流数据包括交通流量、平均车速、车道占有率、车型、平均车头间距、车辆排队长度、车辆密度、交通流状态等,交通流数据采集时间间隔在1~60分钟任意可调。 图 2 视频交通流检测模块 (3)视频图像跟踪功能 系统能对单路监控前端设备在不同预置位采集的视频图像进行不同区域不同事件的自动检测。一旦检测到特定的交通事件,事件检测器应具有该交通事件的视频图像目标自动跟踪、记录、分析功能。 当输入的视频图像不为设定的预置位的视频图像,系统应能自动不进行事件检测。一旦监控前端设备恢复至设定的预置位,系统应能自动进行事件检测。 (4)事件图像抓拍、录像功能 系统可以根据用户的设置,完成相应的录像和图片抓拍功能。 事件录像可以按摄像机、按事件类型、按时间归档存储在系统的预录像子系统中,由系统服务器进行统一的管理调用。 系统循环进行录像,当发生交通异常事件时,系统能够提供事发之前和之后的3分钟间的录像(可设置)。 系统可通过多种组合查询条件对视频交通流检测所采集的数据进行统计,包括时间-流量统计、时间-平均车速统计、时间-占有率统计、速度-流量统计等;统计结果可导出为

03嵌入式视频图像采集和处理

光电学院电子信息工程专业“嵌入式信息系统课程设计”任务书

第一章基础知识 一、编程原理 如何对各种音视频设备进行操作是在Linux上进行音频编程的关键,通过内核提供的一组系统调用,应用程序能够访问驱动程序提供的各种音视频设备接口,这是在Linux 下进行音视频编程最简单也是最直接的方法。在Linux下,设备驱动程序可以看成Linux 内核与外部设备之间的接口。设备驱动程序向应用程序屏蔽了硬件实现了的细节,使得应用程序可以像操作普通文件一样来操作外部设备,可以使用和操作文件中相同的、标准的系统调用接口函数来完成对硬件设备的打开、关闭、读写和I/O控制操作,而驱动程序的主要任务也就是要实现这些系统调用函数。本系统平台使用的嵌入式Linux系统在内核主要功能上与Linux操作系统没本质区别,所以驱动程序要实现的任务也一样,只要编译时使用的编译器、部分头文件和库文件等要涉及到具体处理器体系结构,这些都可以在Makefile文件中具体指定。 Video4Linux(简V4L)是Linux中关于视频设备的内核驱动,它为针对视频设备的应用程序编程提供一系列接口函数,这些视频设备包括现今市场上流行的TV卡、视频捕捉卡和USB摄像头等。对于电视卡、摄像头,其驱动程序中需要提供基本的I/O操作接口函数open、read、write、close的实现。对中断的处理实现,内存映射功能以及对I/O通道的控制接口函数ioctl的实现等,并把它们定义在struct file_operations中。这样当应用程序对设备文件进行诸如open、close、read、write等系统调用操作时,Linux内核将通过file_operations结构访问驱动程序提供的函数。例如,当应用程序对设备文件执行读操作时,内核将调用file_operations结构中的read函数。在系统平台上对摄像头驱动编译进内核后,摄像头就可正常工作了,接着就可以进行了本课题的主要内下一步对视频流的采集编程。 摄像头被驱动后,只需要再编写一个对视频流采集的应用程序就可以了。根据嵌入式系统开发特征,先在宿主机上编写应用程序,再使用交叉编译器进行编译链接,生成在目标平台的可执行文件。宿主机与目标板通信采用打印终端的方式进行交叉调试,成功后移植到目标平台。本设计编写采集程序是在安装Linux操作系统的宿主机PC机上进行的。 Linux 的帧缓冲设备Framebuffer 是在Linux 内核架构版本2.2 以后推出的标准显示设备驱动接口。采用mmap 系统调用,可以将framebuffer 的显示缓存映射为可连续访问的一段内存储针,进行绘图工作。而且多个进程可以映射到同一个显示缓冲区。由于映射操作都是由内核来完成,所以我们基本上不用对Framebuffer 做改动。 Framebuffer 驱动程序的实现分为两个方面:一方面是对LCD 及其相关部分的初始化,包括画在缓冲区的创建和对DMA 通道的设置,我们做的工作主要体现在这方面;另外一方面是对画面缓冲区的读写及控制,具体到代码为read、write、ioctl 等系统调用接口。至于将画面缓冲区的内容输出到LCD 显示屏上,则由硬件自动完成。对于软

在LabVIEW中使用千兆网相机采集图像1.2

在LabVIEW中使用千兆网相机采集图像版本控制

1目的 本手册主要目的为方便使用者基于LabVIEW开发平台,快速上手使用满足GigE Vision 的相机采集图像,为下一步的图像处理打下基础。本文档用于说明PC机第一次和相机相连的设置。 2硬件 电脑一台:带千兆网卡,一般在网卡名称中会有GBE类型的缩写,网卡支持巨帧(Jumbo Packpet),如下面右图所示。如果想要保证速度,最好使用Intel的千兆网卡。 GigE Vision相机,也称千兆网相机,主要优势为速度快,电缆够长,且能够POE供电。确保相机和电脑之间通过千兆网线相连,之间经过的网线接头、交换机越少越好。相机端最好用带螺丝的网线接头,确保连接在物理上可靠。如果非要接交换机,要考虑背板带宽。 3软件 在电脑上安装有LabVIEW和VDM(Vision Development Module)、VAS(Vision Acquisition Software),一般这三个软件版本需要一致。前者是开发平台,中间是视觉处理模块,后者是相机驱动。

1.关闭windows自带防火墙、360防火墙、杀毒一类软件。 2.打开网卡的巨帧功能。右键我的电脑》管理》设备管理器》网络适配器》选择网卡》右 键》属性》高级》属性》巨型帧/极大帧,更改值为最大,一般为9KB MTU。

3.如果网卡不支持巨帧,可以尝试调小网络包的大小。在Max中,点击相机,在获取属 性中,更改包大小packetsize,可以尝试更改为2000或者1000. 4.使用相机自带的软件先进行测试,去相机供应商的网站下载合适的相机驱动,注意电脑 操作系统的位数,32位下载X86,64位下载64位。 a)这里使用Basler的软件pylon IP Configurator。把相机的IP地址设至为与电脑同一 IP段。即IP地址前三位一样。 b)采集连续图像,在pylon Viewer中,点击一个相机进行连接。 c)方框为连接、断开相机,橙色方框为采集、连续采集、停止按钮 d)如果画面太黑或太白,将紫色方框内的用户等级改成专家(Guru),然后选择相机 属性(Basler acA1300-30gm*****)下面的Acquisition Controls》Exposure Auto,改 成自动,然后连续采集几张照片,就可以将曝光时间调整好。

PCB图像采集系统研究背景意义及国内外现状

PCB图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board,PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB,小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1)容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2)检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3)随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4)在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5)有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选

基于Labview的图像采集与处理

目前工作成果: 一、USB图像获取 USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像 程序运行结果: 此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。 (2)基于USB的Grab采集图像 运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理 1、图像灰度处理 (1)基本原理 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。 第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 (2)labview中图像灰度处理程序框图 处理结果:

视频图像的采集与显示

广州大学学生实验报告 开课学院及实验室:物理与电子工程学院 2015年x月xx日 班级光信121 姓名学号指导老师 实验课程名称数字信号处理实验Ⅰ成绩 实验项目名称视频图像的采集和显示 一、实验目的 二、实验原理 三、使用仪器、材料 四、实验步骤 五、实验过程原始记录(数据、图案、计算等) 六、实验结果及分析 一.实验目的 通过实验学习在CodeComposerStudio2.21 的环境下使用ICETEK-VC5509-A 板设计、调试程序的方法;学习用程序控制ICETEK-TVP5150-E 板采集视频图象。 二.实验原理 1.ICETEK-TVP5150 板介绍,请参看《ICETEK-TVP5150-E 板使用说明书》。 2.用程序控制ICETEK-TVP5150-E 板所提供的控制寄存器,可以实现采集一场视频图象。 流程图见后面。 3.一场标准PAL 制视频图象的象素分辨率为720x288。图象中每象素用8 位二进制数表示,取值1-254,表示不同的亮度信息。 4.图象保存在指针lpImage 开始的片外存储器中,由于普通5509 的c 语言数据指针无法超越64k 边界,所以程序中采用FARPTR 类型指针来读写图象。图象的尺寸为722x288。 5.原始图象的缩略图存在数组y 中,尺寸为120x96。 三.实验设备 计算机,ICETEK-VC5509-A-EDU 实验箱,ICETEK-TVP5150-E 板,标准PAL 制摄像头。 四.实验步骤 1.实验准备: 连接实验设备:请参看本书第三部分、第一章、二。 连接ICETEK-TVP5150-E 板:

-ICETEK-VC5509-A 板正面朝上(DSP 芯片朝上),找到板上扩展接口 P3 和 P4。-ICETEK-TVP5150-E 板正面朝上(所有集成电路芯片朝上),找到插头 DSP P4 和DSP P3。 -将 ICETEK-TVP5150-E 板上 DSP P4 对准 DSP 系统板上 P4、DSP P3 对准系统板上 P3 插入接口,注意不要插错位,所有插针均要插入插孔之中。 -连接摄像头电源。 -用视频连接线连接摄像头视频输出插座到 ICETEK-TVP5150-E 板上视频插座 J1。 2.设置 Code Composer Studio 2.21 在硬件仿真(Emulator)方式下运行: 请参看本书第三部分、第一章、四、2。 3.启动 Code Composer Studio 2.21: 请参看本书第三部分、第一章、五、2。 选择菜单 Debug→Reset CPU。 4.打开工程文件: 工程目录:C:\ICETEK-VC5509-EDULab\Lab0901-VideoFrame\Demo.pjt。 5.编译并下载程序。 6.打开工程“Demo.pjt”中的 C 语言源程序“main.c”,在程序中有“BREAK POINT”在此加软件断点”注释的语句上加软件断点。 7.设置观察窗口,观察缩略图: *选择菜单 View->Graph->Image,做如下设置: 8.运行程序 按“F5”键运行到断点,观察图象。如果图象不理想请再次运行到断点。 9.设置观察窗口,观察全图 *鼠标右键单击缩略图窗口,选择菜单中“Properties…”项,做如下修改: 10.观察图象: 由于CCS 需要通过仿真器传输图象,您可能需要等待几分钟才能看到图象。 11.选择菜单File→workspace→save workspacs As…,输入文件名SY.wks 。

图像采集系统设计

DSP实习报告 题目:图像采集系统的设计 班级:xxx 姓名:xxx 学号:xxx 指导老师:xxxx

目录 一.实习题目 (3) 二.实习背景知识 (3) 三.实习内容 (5) 四.实习程序功能与结构说明 (8) 六.实习心得 (19)

一、实习题目 图像采集系统的设计 二、实习目的: 1、熟练掌握数字信号处理的典型设计方法与技术手段; 2、熟悉D6437视频输入,输出端的操作及编程。; 3、掌握常用电子仪器设备的使用方法; 4、熟悉锐化变换算法。 三、实习背景知识 1、计算机 2、CCS3.3.软件 3、DSP仿真器 4、EL_DM6437平台 EL-DM6437EVM是低成本,高度集成的高性能视频信号处理开发平台,可以开发仿真达芬奇系列DSP应用程序,同时也可以将该产品集成到用户的具体应用系统中。方便灵活的接口为用户提供良好的开放平台。采用该系列板卡进行产品开发或系统集成可以大大减少用户的产品开发时间。板卡结构框图如图所示:

板卡硬件资源: TMS320DM6437 DSP ,可工作在400/600 MHz; 2 路视频输入,包括一个复合视频输入及一个S端子视频输入; 保留了视频输入接口,可以方便与CMOS影像传感器连接; 3 路视频输出,包括2路复合视频,一路S端子输出; 128MByte 的DDR2 SDRAM存储器,256MBit的Nor Flash存储器;用户可选的NAND Flash接口; 可选的256K字节的I2C E2PROM; 1个10M/100Mbps自适应以太网接口; 1 路立体声音频输入、1路麦克风输入,1路立体声音频输出; USB2.0高速接口,方便与PC连接; 1个CAN总线、1个UART接口、实时时钟(带256Byte的电池保持RAM);4个DIP开关,4个状态指示LED; 可配置的BOOT模式; 10层板制作工艺,稳定可靠; 标准外部信号扩展接口; JTAG仿真器接口; 单电源+5V供电; 板卡软件资源:

在LabVIEW中利用DLL实现数据采集

在LabVIEW中利用DLL实现数据采集Realization of Data Acquis ition with DLL in LabVIEW 班级学号:0704114-23 姓名:杨鹏

摘要: 随着计算机技术及虚拟仪器技术的迅速发展, 虚拟仪器正逐渐成为测试领域的发展方向。本文介绍了在LabVIEW 环境下驱动普通数据采集卡的重要方法- - 动态链接库机制(DLL), 并结合具体实例介绍了一种利用LabVIEW 提供的Call LibraryFunction (CLF)节点实现对动态链接库(DLL)调用的关键技术及步骤, 实现LabV IEW 与普通数据采集卡的结合, 丰富LabVIEW 对硬件的控制能力。并将数据库技术应用于虚拟测试系统中, 建立了Access 数据库, 实现数据的存储和自动管理,从而拓展了虚拟测试系统的功能。 关键词:动态链接库(DLL); 数据采集; 1 绪论

目前, 电子测试仪器的发展方向正在从简单功能组合向以个人计算机(PC)为核心的通用虚拟测试平台过渡, 从硬件模块向软件包形式过渡。建立在PC 机和数据采集设备上的虚拟仪器系统, 由于其特有的灵活和强大的功能, 也越来越广泛的应用于实验室研究和工业控制中的测试及测量领域。从简单的仪器控制, 数据采集到尖端的测试和工业自动化, 从大学实验室到工厂, 从探索研究到技术集成, 人们都可以发现LabVIEW 应用的成果和开发的产品。LabVIEW采用基于流程图的图形化编程方式, 也被成为G 语言(graphical language)。 G 语言编程和虚拟仪器技术已经成为工业界和学术界关注的热点技术之一。数据采集是LabVIEW 的核心技术之一, 也是LabVIEW 与其他编程语言相比的优势所在。使用LabVIEW 的DAQ 技术,可以编写出强大的DAQ 应用软件。NI 公司生产的系列数据采集卡借助LabVIEW 内部的DAQ 库的驱动,可以在LabVIEW环境下运行。但由于NI 公司的采集卡价格比较昂贵,但是选择第三方的数据采集卡, 就需要解决LabVIEW 与非NI 数据采集卡的兼容和驱动的问题。 2 LabVIEW 调用外部程序代码的途径之一———动态链接库机制 LabVIEW 具有强大的外部接口能力, 可以实现LabVIEW与外部的应用软件, C 语言, Windows API 以及HiQ 等编程语言之间的通信, 在LabVIEW 中可用的外部接口包括:DDE,CIN,DLL,MATLAB Script 以及HiQ Script 等。合理地使用这些接口,充分利用其他软件的功能, 弥补LabVIEW 自身的不足, 可以编 写出功能更加强大的LabVIEW应用软件。 动态链接库(Dynamic Link Libraries,简称DLL)是一个可执行模块, 但不接受任何消息, 所以并不可以直接运行, 只是提供一群函数供Windows 应用程序或其他的动态链接函数库调用。动态链接库只有在别的模块中调用了它的某个函数以后才发生作用。由于动态链接库在应用程序运行期间被连接起来的,故称为动态链接库。动态链接库(DLL)一直是基于Windows 程序设计的一个非常重要的组成部分。DLL 是一种基于Windows的程序模块, 它可以在运行时刻被装入和连接。为了实现LabVIEW对普通数据采集卡的支持, 用户可以使用LabVIEW 提供的调用库函数节点CLF (Call Library Function)和代码接口节点CIN(Code Interface)将编程灵活的C 语言和直观方便的LabVIEW程序结合起来。但是比较调用库函数节点CLF 和代码接口节点CIN 这两种方法, 使用CLF 节点访问动态链接库DLL 更具优势:首先, DLL 是外部模块, 自行开发一个DLL 比使用CIN 节点易于实现且便于维护。其次, CIN

基于虚拟仪器的图像采集处理及仪器控制

第32卷增刊2006年8月光学技术 O PT I C A L T E C H N I Q U E V01.32Sup pl. A u gust2006 文章编号:1002—1582(2006)S-0422.03 基于虚拟仪器的图像采集处理及仪器控制+ 周秀荣,尚凯文,崔小虹,邢冀川 (北京理工大学光电工程系,北京100081) 摘要:针对激光测距机三光轴平行度调校,提出了由C C D摄像机摄取激光光斑图像,然后用图像采集与处理方法计算白光十字线中心与光斑中心偏差的方法,并对选用的图像处理算法进行了论述。此外,采用可变固定衰减片方法测量激光测距机接收系统的灵敏度。以LabV I E W为软件平台,开发出检测激光光轴中心及控制衰减器的虚拟仪器系统。该系统具有直观形象,使用方便,可移植性强等优点。 关键词:虚拟仪器;L abV l E W;图像采集;数字图像处理;仪器控制 中图分类号:TN911.72文献标识码:A I m age acqui s i t i on and pr ocessi ng a nd i nst r um e nt cont r ol ba se d on vi r t ual i ns t r um ent Z H O U X i u—r ong,S H A N G K ai.w e n,C U I X i ao-hong,X l N G Ji.chua n (D e par t m e nt of O pt o-el ec t r oni c E nge nee r i ng,Bei j i ng I ns t i t ut e of T e chnol ogy,Bei j i ng100081,C hi na) A b st r act:I n or der t O m ea sure t he t hree-l ight.axi s paral l el it y of l as er t e l e m e t er,w e u s e C C D t o get l as er s pot i m a ge a nd t h en cap t ur e and pr o cess t he i m a ge t o cal cu l at e t he pos i ti on er r or bet w e en t he cent er of w hi t e l i ght cr os s l i ne and t hat of t he spot and exp l ai n s el ect ed i m a ge pr oces si ng ar i t hm et i cs.B esi des,di f f er ent at t enu at or s ar e appl i e d t o m ea s u r e t he s en s i t i vit y of re e ei v—el".W e s el e ct LabV l E W as so f t w ar e t O de vel op vi rt ual i nst r um ent s ys t e m s t o gai n t he cent er of l as er axi s and cont r o l t he a t te nu—at o r.T h i s s yst e m i s i ntui t i o ni s ti c a nd conve ni ent t o l i s a and ca n be r eu sed i n di f f er ent appl i cat ions. K e y w or ds:vi r t u al i nst r um ent;LabV I EW;i m age acqui si t i o n;di gi t al i m a ge pr oces si ng;i nst r um en t cont r ol 1激光测距机三轴平行度调校系统整体方案 激光三轴平行度调校系统主要由大口径离轴抛物面反射镜、激光模拟器组件、长焦距C CD摄像机、白光光源组件、衰减器、漫反射靶、电控柜、图像采集及处理分系统、光学平台及二次检校设备等构成,其组成框图如图1所示。 图1激光三轴平行度调校系统组成框图 白光光源发射白光,经析光镜透射后又经离轴抛物面镜反射,进入二次校准设备。二次校准设备主要由五棱镜和经纬仪组成,它可以进行离轴抛物面镜准直性的自检。激光测距机发射系统发射的激光束经衰减器后又经过离轴抛物面镜的反射和析光镜的透射打到白光光源前的毛玻璃或漫反射靶上,形成二次光源,经过离轴抛物面镜反射后成为平行光束,进入C C D摄像机。这样光斑图像就被拍摄下来,送人图像采集与处理分系统进行求取中心及计算偏差的处理。激光模拟器组件用于模拟发射激光的回波。为测量激光测距机接收系统的灵敏度,激光模拟器组件中包含了衰减器。衰减盘放于精密电控旋转台上,由步进电机控制器控制。为方便操作,步进电机控制器、激光模拟器控制装置以及进行图像采集处理与仪器控制的计算机统一放到电控柜中。本文主要介绍图像采集处理分系统以及衰减器组件两部分。 2图像采集与处理 首先用图像采集卡将C C D拍摄的激光光斑图像转化为数字图像,然后用数字图像处理的方法获得光斑中心,计算白光十字分划线中心与光斑中心的偏差,根据差值调整激光测距机的发射光轴,直至二者重合‘l I,具体过程如图2所示。 _收稿日期:2006—06—27E-m a i l:zx i ur ong@bi t edu.cn 作者简介:周秀荣(1982一),女,河北省人,北京理工大学硕士研究生,从事光电子技术研究。422

用Labview实现图像采集

用Labview实现图像采集 一、程序功能: 1.通过选择相机实现电脑摄像头或CCD连续图像采集。 2.控制图像采集时间。 3.显示图像采集速率和程序运行时间。 4.给采集到的图像命名并保存到特定的文件夹。 二、程序介绍: 1.前面板(控制面板) 要求:实现连续图像采集所需要的软件条件: 1.安装VAS(Vision Acquisition Software) 2.如果要实现CCD图像采集,需安装CCD的驱动程序 操作说明: 1.选择相机名称 2.设置采集时间 3.运行VI 相机名字:通过下拉菜单选择相机,包括电脑摄像头和USB接口的CCD设备采集速率。采集速率:实时显示采集图像的速率。 缓冲数:实时显示从程序运行开始采集图像的数目。 设置采集时间:根据需求设置采集时间。默认值为0,只采一幅图像。 采集进行时间:程序已经运行的时间。 设置保存路径:指定图片的保存位置。如果不设置,只进行实时采集不保存图像。Stop:采集停止。 图像:显示图像信息。左侧为兴趣区域选择工具,作用是使研究区域更加醒目,便于观察。从上到下依次是: 实现图形的放大 显示鼠标位置,不进行其他操作 拖动图片 选择兴趣区为一点 选择兴趣区为矩形包围的区域,两边为水平和竖直

选择兴趣区为矩形包围的区域,矩形方向任意 选择兴趣区为折线 选择兴趣区为折线区域(所画折线自动闭合) 选择兴趣区为曲线 选择兴趣区为曲线保卫的区域 选择兴趣区为椭圆 选择兴趣区为圆环 以折线兴趣区域为例,如图 2.后面板(程序框图) 1. 循环,将采集、保存、计时等功能循环进行。 在循环中,获取最新的图像并输出。 2.循环的初始条件设置,选择相机,并将相机作为循环的输入。 和前面版里的相机名字相对应,作用是选择相机。 打开一个照相机,查询摄像机功能,装载的照相机的配置文件,并创建一个唯一的参考到摄像机。 Camera Control Mode照相机控制模式,在控制器模式打开相机,配置和获取图像数据。Session In指定要打开摄像机的名称,默认值是CAM0。 Session Out是相机的一个参考,输出图像数据。 配置并开始抓取图像,抓取循环连续进行,并将抓取到的图像放到缓冲区,可以实现高速图像采集。 Session In/out作用与打开相机里的类似。 3.循环结束时,关闭相机,若循环出错,则关闭相机并报错。 终止采集程序并关闭相机。 当有错误输入时,破坏图像,并释放它在存储器占据的空间。 4.将从相机采集到的数据,以图像的形式输出,并计算图像采集速率和采集数,在前面板输出。 5.在循环中计算采集速率和程序运行速率,控制采集时间。 本部分与stop按钮以及错误三者共同控制条件的运行,当三个条件中的任意一个为真时,循环都会终止。 显示从指定起始时间起,已经用去的时间,达到目标时间后会重置。“已用时间(s)”可以输出程序运行的时间。将已用时间与设置时间进行比较,当已用时间大于设置时间是条件为真,控制循环停止。 6.在特定的路径保存图像,并通过循环为其命名。

相关主题
文本预览
相关文档 最新文档